Intelligent Systems Lab 2016 spring

- Mobile robots I-IV.
- Genetic algorithms I-II.
- Neural networks I-II.
- GPS I-II.

(D. Stojcsics)(Zs. Sziklai)(G. Nagy)(D. Stojcsics)

Requirements

Student participation in practical lectures is required.

Final grade calculation method:

The average result of the practical test and the theoretical test must be at least 50-50%!

ResultGrade89%-100%excellent (5)76%-88<%</td>good (4)63%-75<%</td>average (3)51%-62<%</td>satisfactory (2)0%-50<%</td>failed (1)

During the semester students are going to write <u>two practical</u> and two theoretical tests.

Lectures: http://users.nik.uniobuda.hu/mobil/en/intsys_lab/

Sensor systems

BEAM

- B Biology
- E Electronics
- A Aesthetics
- M Mechanics
 - mechanikák.

BEAM

- B Biology
- E Electronics
- A Aesthetics
- M Mechanics

Application of robots

Application of robots

Sensors

Infrared reflection sensor

fast and easy to use

(0/1 – no obstacle/obstacle)

Ultrasonic / Laser rangefinder similar to IR Reflection sensor, but gives the distance from obstacle (A or D)

Camera

FOV: usually 50-120°

Huge amount of RAW data

(min. 640x480x8 bit)

Image procession required -> slow, much computition power needed Detailed information!

360° Camera

Disortion, but wide area coverage

Sensors

Types

Passive

- Measure a phisical entity
 - temperature
 - pressure
 - Light intesity
 - Sound intensity
- Active
 - Measuring signal emission
 - Radar
 - Rangefinders

Structured light

- Projected pattern (e.g. laser line or net)
- Disortion gives the distance from object
- Image processing!
- Like Kinect

- Projec net)
- Disort object
- Image
- Like K

Mobile robots

Navigation

Navigation

- The mission is to get the robot to the Finish from the Initial (Start) position
 - Robot movement possibilities
 - Energy comspumption
 - Time
 - Mechanic restrictions
 - Terrain
- Known / unknown terrain

Navigation

Navigation and obstacle avoidance

- Rule based
 - Modified rule based (additional memory)
 - Neural based
 - Self learning
- Wavefront propagation
- Modified wavefront propagation (unknown terrain)
- GVD (safest)

