

David2 Inverted Pendulum
P r o j e c t w o r k

Members: DÁVID BED�K
and DÁVID BRAUN

Tutors: TERJE AARSETH Associate Professor
and WEBJØRN REKDALSBAKKEN Associate Professor

College: Aalesund University College (AaUC)
N O R W A Y

Mother college: Budapest Tech John von Neumann (BMF-NIK)
H U N G A R Y

Datum: 02nd February 2005 – 26th April 2005

DAVID2 INVERTED PENDULUM

 i.

PREFACE
This documentation is a project work of two Hungarian students made at
Ålesund University College, Norway. It was an ERASMUS scholarship which
was a three months long work in the spring semester of 2005.

So far we principally wrote software applications. Approximately one year ago
both of us made an image processing application in Borland Delphi 7, after that
we have begun to work in a complex project which we have recently worked
with. One of us has dealt with music recognition1 and the other one has written a
navigation and map software for Pocket PC2. Beside these projects we became
acquainted with 3D programming (manipulator arm), genetic algorithm, etc.

This kind of work (Inverted Pendulum) was alien from us because we had no
experience in using these sorts of software and hardware. It was the first time we
had to use data-flow programming (LabView) so seriously. We generally use
Microsoft Visual Studio (.net, C++, C#) to write programs. Furthermore we could
know the efficiency of the MATLAB and its accessory Simulink.

This project work was a great experience where we have come to know the rules,
the application of control theory in practice, and we saw a problem from an
engineer approach too.

We thank our tutors for their kind help in the project and thank the schools that
gave us the opportunity to work here in Norway.

 Dávid Bed�k Dávid Braun

1 Hungarian webpage: http://roberta.obuda.kando.hu/braundavid/
2 Hungarian webpage: http://roberta.obuda.kando.hu/qwaevisz/

Date: January 21. 2005

 ii.

PROJECT PLAN
This is a project plan for the students
David Bed�k
David Braun
from Budapest Polytechnic College.

The two students are staying at Aalesund University College (AaUC) for the
period primo February to primo May 2005, altogether 12 weeks, in connection
with an Erasmus scholarship. They have a background of two years of education
in a Bachelor programme of Control Engineering. At AaUC they will be enrolled
in the Cybernetics program. Most of the time they will be working with a project
in control theory. This project will be evaluated in the same way as the final
projects of our 3rd year bachelor students, and it has the size of 15 ECT student
credits.

Project background
In the Cybernetics program at Aalesund University College the students have a
considerable amount of laboratory exercises and practical projects. In the third
year they are working with physical models of dynamic systems like motion
platforms, a heave-compensated lift, inverted pendulums and different kinds of
servo-systems. Much of the laboratory activity is in collaboration with the
nautical studies, and the development and construction of ship simulators have
become a speciality of AaUC. These simulators combine the competence from
several fields and represent an integration of graphical visualisation systems,
nautical instrumentation, ship manoeuvring models and control systems. At
AaUC there have been built two full-scale simulators in cooperation with local
maritime industry. Much of our laboratory activity is connected to this area. To
study unstable systems we also have built physical models for controlling an
inverted pendulum. These models are also included as part of our laboratory
education.
One quite demanding task is to make the pendulum balance with the aid of a
camera with a frame grabber card and the use of a servo motor. There are many
challenges in managing the control of such a system considering both hardware
and software, and there are many tools that can be used to provide a good
solution. We had thought our students from Budapest should get the
opportunity to work with this experiment, in particular to investigate the use of
software and equipment from National Instruments to solve the problem.

Project description
In short the project comprises the construction of a feedback control system that
will control the movements of the pendulum to make it remain in vertical

Date: January 21. 2005

 iii.

position. The pendulum is a steel rod placed on a cart. The cart is moved by a
servo motor through a rubber belt.
To get an understanding of the problem, the students will first be working with
the description of the dynamic response of the pendulum. They will work out a
mathematical model for the physical system, which will be the base for analyzing
the behaviour of the system. An important part of the project is to find a realistic
and well functioning mathematical model, as this will lay the ground for
deciding the right control strategy for the feedback loop. The input to the control
system will come from a camera which is monitoring the movement of the
pendulum. On basis of the camera input an image processing algorithm will
calculate the angle of the pendulum and the position of the cart. The speed of the
cart and the pendulum will be estimated as the derivatives of the position and
the angle respectively. These variables will be the state variables of the system
which are used in the control algorithm. The control algorithm calculates the
necessary input to the servo motor to drive the cart in the right direction.

Project equipment and software
In addition to the physical model of the pendulum the following equipment and
software tools will be used:

An industrial camera of type Jai CV-A50/A60.
A frame grabber card of type National Instruments PCI-1407 Single channel,
Analog, Monochrome.
A National Instruments I/O-card and the type PCI-6024 Daq card.

National Instruments LabView 7.1
National Instruments IMAQ Vision software.
National Instruments software driver for the PCI-6024 Daq card.

Control strategy
The control strategy will be based on modal control with a pole placement
algorithm.
The control loop will be as follows:

The camera together with the image processing algorithm measures the states of the

pendulum (x, xv != , θ , θω !=). These four states are fed back to the reference
position of the pendulum through a proper K-matrix. The error signal represents the
new position of the cart. The necessary manipulating signal to the servo drive is
generated to move the cart. The servo drive moves the cart (with the pendulum) to its
new position.

The control system have two reference signals, one for the x-position of the cart
and one for the angle (0=θ) of the pendulum. Both can be controlled by
choosing an appropriate model and using integrators in the loop.

Date: January 21. 2005

 iv.

Control theory
The control strategy used will be based on state space design. Lectures will be
given to help the students get the necessary background in mathematical
modelling of dynamic systems and state space theory. The students will be
introduced to the control law and how to derive the correct eigenvalues (poles)
of the closed system in agreement with the requirements posed on it. The
underlying system will be of an order from three to six depending on the model
to be chosen. Requirements to the system's response will be discussed with
regard to rise time, damping and settling time. The students will be introduced
to Matlab/Simulink and learn how to use these tools to model and test control
systems. Implementation of the control loop will be done with LabView 7.1.

Project schedule
The project will last for 12 weeks. This is a brief schedule of the work to be done
over these weeks.

Week Work to be done
1 Introduction to the project and working conditions.
2 Introduction to LabView and DAQ systems.
3-4 Studying National Instruments IMAQ Vision System and

installing necessary NI hardware and device drivers.
5-6 Introduction to Matlab/Simulink. Learning about State

Space models and State Space design. Introduction to
pole placement methods.

7-8 Building a mathematical model of the pendulum. Analysing
the system and designing the control loop.

9-10 Implementation of the control loop. Develop the image
processing algorithm and the pole placement algorithm.

11-12 Testing of system. Writing project report.

The students will meet with professors twice a week to discuss the project status
and to guide the students through new theory and methods. In agreement with
the students the meetings will be on Mondays and Fridays at 09.00.

 Webjørn Rekdalsbakken Terje Aarseth
 Assoc. Prof. Assoc. Prof.

Aalesund University College
6025 Aalesund
Norway
Tel. +47 70 16 12 00
Fax. +47 70 16 13 00
Email: wr@hials.no ta@hials.no

DAVID2 INVERTED PENDULUM

 v.

TABLE OF CONTENTS
PREFACE .. I
PROJECT PLAN .. II
TABLE OF CONTENTS ... V
ABSTRACT .. 2
1 – INTRODUCTION .. 3
2 – LITERATURE REVIEW .. 4

2.1 FULL DESCRIPTION ABOUT INVERTED PENDULUMS ... 4
2.2 TWO STAGE INVERTED PENDULUM .. 4
2.3 TRIPLE INVERTED PENDULUM ... 5
2.4 INVERTED PENDULUM CAR .. 5
2.5 MATHWORKS INVERTED PENDULUM ... 5
2.6 BALIBOT, AN INVERTED PENDULUM ROBOT ... 6

3 – MODELLING OF THE PHYSICAL SYSTEM .. 7
3.1 THE MODEL ... 7
3.2 PHYSICAL EQUATIONS ... 9
3.3 SIMPLIFICATION ... 10
3.4 COMPLETIONS ... 11

4 – STATE SPACE ANALYSIS AND STATE SPACE DESIGN .. 13
4.1 DEFINITION .. 13
4.2 BEGINNING .. 13
4.3 SYSTEM VARIABLES OF THE 4TH ORDER OPEN-LOOP SYSTEM .. 14
4.4 SYSTEM EQUATIONS OF THE 4TH ORDER OPEN-LOOP SYSTEM ... 14
4.5 IMPLEMENT THE 4TH ORDER OPEN-LOOP SYSTEM IN MATLAB SIMULINK .. 15
4.6 SIMPLIFICATION ... 16
4.7 SYSTEM VARIABLES OF THE 3RD ORDER OPEN-LOOP SYSTEM .. 17
4.8 SYSTEM EQUATIONS OF THE 3RD ORDER OPEN-LOOP SYSTEM ... 17
4.9 IMPLEMENT THE 3RD ORDER OPEN-LOOP SYSTEM IN MATLAB SIMULINK .. 18

5 – POLE-PLACEMENT CONTROL ... 20
5.1 CALCULATE THE NEW VECTOR-MATRIX FORMAT OF THE 3RD ORDER SYSTEM 21
5.2 CHARACTERISTIC EQUATION OF THE 3RD ORDER CLOSED-LOOP SYSTEM ... 22
5.3 EQUATIONS WITH K AND λ VALUES .. 23
5.4 THE CLOSED LOOP SYSTEM IN MATLAB SIMULINK .. 23
5.5 DETERMINE K VALUES WITH LQR DESIGN .. 24
5.6 IMPLEMENT THE CLOSED-LOOP SYSTEM WITH LQR DESIGN IN MATLAB ... 25
5.7 DETERMINE K VALUES WITH BUTTERWORTH FILTER ... 27
5.8 IMPLEMENT THE CLOSED-LOOP SYSTEM WITH BUTTERWORTH FILTERS .. 29
5.9 MATHEMATICAL CALCULATION USING MATLAB .. 31

6 – HARDWARE ... 32
6.1 CAMERA ... 32
6.2 FRAME GRABBER CARD .. 32
6.3 I/O CARD .. 33
6.4 SERVO DRIVE AND AC MOTOR ... 35

DAVID2 INVERTED PENDULUM

 vi.

7 – IMAGE PROCESSING WITH IMAQ VISION .. 37
7.1 HARDWARE ... 37
7.2 SOFTWARE ... 37
7.3 PICTURES DATA IN MAX .. 38
7.4 WRITE A VI .. 39
7.5 IMAQ INIT ELEMENT .. 39
7.6 PROPERTY NODE ELEMENT: .. 40
7.7 IMAQ CONFIGURATION LIST ELEMENT: .. 40
7.8 IMAQ CONFIGURE BUFFER ELEMENT: ... 40
7.9 IMAQ CREATE ELEMENT: ... 40
7.10 IMAQ START ELEMENT: ... 40
7.11 IMAQ COPY ACQUIRED BUFFER ELEMENT: .. 41
7.12 IMAQ WINDDRAW ELEMENT: ... 41
7.13 IMAQ STOP ELEMENT: .. 41
7.14 IMAQ CLOSE ELEMENT: ... 41

8 – MANIPULATION OF SERVO DRIVE IN LABVIEW .. 42
8.1 WHAT IS THE NEXT STEP? .. 42
8.2 WRITE A VI .. 42
8.3 DAQ ASSISTANT ... 43

9 – CALIBRATION OF THE CAMERA ... 45
9.1 WHY NECESSARY TO USE CALIBRATION? .. 45
9.2 THEORY .. 45
9.3 WRITE A VI .. 48

10 – REALIZATION OF THE INVERTED PENDULUM ... 51
10.1 TASKS ... 51
10.2 MEASURE THE STATES ... 53

10.2.1 Angle of the pendulum ... 53
10.2.1.1 Mathematics background .. 53
10.2.1.2 Chosen lines .. 54
10.2.1.3 EdgeIndex element .. 55
10.2.1.4 Build this SubVI into our main VI ... 56
10.2.1.5 IMAQ GetRowCol element ... 56

10.2.2 Position of the cart ... 56
10.2.2.1 The same method ... 56
10.2.2.2 Chosen lines .. 57
10.2.2.3 Conversion from pixels to meters .. 57
10.2.2.4 We use a reference ... 57

10.2.3 A part of our main VI ... 58
10.3 THE WHOLE VI .. 58
10.4 REBUILD THE VI WITH FORMULA NODE .. 59

11 – RESULTS AND CONCLUSION ... 62
12 – APPLIED LITERATURE ... 63
ATTACHMENTS AND APPENDICES ... I

DAVID2 INVERTED PENDULUM

 2.

ABSTRACT
We have a physical model which consists of a cart on a rubber belt with a steel
rod standing on it. If we leave it, naturally the rod will fall down. Our task is to
affect the system in order to keep the rod in the upright.

We have a camera as input which is monitoring the movement of the pendulum.
The manipulating signal will control the servo drive that drives the AC motor.
When the rod is falling down on the right side, the car has to move quickly in the
same direction.

First of all we constructed the model of the physical system writing differential
equations. Using the calculated equations we made a mathematical model using
State Space Analysis and State Space Design.

Our first mathematical model was 4th order, but after some simplifications we got
a 3rd order system. We analysed these open-loop systems with Matlab Simulink.

In the end we used the 3rd order system to work with. To make a closed-loop
system we applied modern control theory and Pole Placement Control. With the
help of this technique we can change the original poles of the unstable system to
make it stable.

Beside the Pole Placement Control we have to apply the control law. This can be
written with an equation that is a linear function of the states. It produces the
manipulating signal that will take effect on the cart. In the above mentioned
equation we not only need the states but also some kind of coefficients for each
term. These coefficients will give the gains of the feedback. To calculate these
values we have to decide the wanted characteristic of the system. We used LQR
design (optimal calculation) and Butterworth filter, as well. However we made
the model of both systems we realized only the second mentioned. We did some
simulation of these systems using Simulink.

Since we had a realistic and well functioning model, we tried to implement it in
practice. We made our application in LabView and used its predefined
components to take the hardware. With NI IMAQ Vision we constructed an
image processing algorithms to measure all of the states and build the control
law.

By the result of the experimentations the rod is able to stay in balance for a few
minutes without external assistance.

DAVID2 INVERTED PENDULUM

 3.

 1 – INTRODUCTION
In this report we try to demonstrate the procedure of designing a feedback
control system.

After we review the similar projects all around the world in Chapter 3 and
Chapter 4 we present the whole physical model and the steps of the State Space
Design.

In Chapter 5 we discuss the manner of the Pole Placement Control in details.
Here you can come to know the two methods we used to find the values of the
feedback gains. Beside the calculations a lot of simulations can be found in this
chapter.

Chapter 6 introduces the hardware applications we used. We mention the
features of the camera the grabber card, the I/O car, the servo drive and the AC
motor.

In Chapter 7 the main image processing algorithm is presented in details, using
the components of LabView.

Chapter 8 and Chapter 9 introduce two important topic of the solution: the
manipulation of the servo drive and the calibration of the camera.

In Chapter 10 you can find the whole realization of the system. You can find how
we measure the states and how we calculate the manipulating signal.

There were two groups working with the same pendulum model. They both
managed to realize the system but one of them worked with higher order system.
However their model was more complicated they achieved more precise result in
their work.

DAVID2 INVERTED PENDULUM

 4.

2 – LITERATURE REVIEW
This topic, named Inverted Pendulum, is a very popular project in the whole
world. If we write these two magical words to any search engine on the web, we
will find several of information about Inverted Pendulum.

2.1 Full description about Inverted Pendulums
On most of the sites we can find
information about State Space Design,
open- or closed-loop representation,
transfer functions and/or LQR design (for
mentioned some examples). On
www.engin.umich.edu/ group/ ctm/
examples/ pend/ invpen.html we can read
an extremely detailed documentation about
the mentioned topics, and lots of other, as
well.
The owner of the site is the University of
Michigan.
Our project is almost the same that this one,
but several other projects exist (based inverted pendulum) which are quite
different.

Figure 1: Inverted Pendulum Model

2.2 Two Stage Inverted Pendulum
We are working with a
simple Inverted
Pendulum, which rod
consists of only one part.
But other groups construct
a more complicated rod,
with two stages. For
instance on

www.aptronix.com/
fuzzynet/ applnote/
twostage.htm.

Figure 2: Two stage Inverted

Pendulum

DAVID2 INVERTED PENDULUM

 5.

2.3 Triple inverted pendulum
If we saw a pendulum with two stages, we will not be surprised
hearing about the triple inverted pendulum on wwwa.mpi-
magdeburg.mpg.de/ research/ pendel/ index_e.html.
Its control algorithm is implemented in C on a PC running
under the operating system Realtime Linux with a Meilhaus
ME2600 I/O board.
The owner of the pendulum is Max-Planck-
Institut in Germany.

Figure 3: Triple Inverted Pendulum

2.4 Inverted Pendulum Car
An interesting way to design an inverted pendulum, when the cart not only can
move in two directions on a rail, but also it is able to move in any other directions

(of course in one plane). We add a bit
more freedom to the inverted
pendulum, if we equip the rod on a
“real” car.
Some examples for this topic:
www.obrador.com/ EE471Design/
EE471Design.htm and http://
4north.no-ip.com:8080/ pics/
pendulum/. Thanks for James R.
Weeks (Project Coordinator of EE471
Inverted Pendulum) and Josh Pieper
(4north.no-ip.com).

Figure 4: Inverted Pendulum Car

2.5 Mathworks Inverted Pendulum
MathWorks is a famous group of several Matlab programs, and accessories.
Naturally the Inverted Pendulum project is not an anon project for them:
www.mathworks.com/ matlabcentral/ fileexchange/ loadFile.do ?objectId=
3790&objectType=file.

DAVID2 INVERTED PENDULUM

 6.

2.6 BaliBot, An Inverted Pendulum Robot
The final project which we demonstrate is a robot, named
BaliBot. Its motion is based on an inverted pendulum
system: http:// home.earthlink.net/ ~botronics/ index/
balibot.html.

Figure 5: BaliBot

DAVID2 INVERTED PENDULUM

 7.

3 – MODELLING OF THE PHYSICAL SYSTEM
Designing a control system needs a well-thought-out mathematical and physical
description of the system. However we can know well the control theory and be
able to use the methods to design the correct system, if there is a wrong physical
model it won’t work properly.

3.1 The Model

First of all we represent the pure physical model in a co-ordinate system (Figure
6).

Figure 6: Pure physical model

Where M is the mass of the cart, m is the mass of the rod, and L is the length of it.
The rod can rotate around the P point. The cart and the pendulum itself can only
move in the x direction. The camera will show us similar frames about the cart
and its movement.
After we know the schematic draw of the system we can examine the forces
acting on the pendulum. Figure 7 shows us the coordinates of the centre of
gravity where the sum of the forces is acting.

DAVID2 INVERTED PENDULUM

 8.

Figure 7: Co-ordinates of the centre of gravity

Since the steel rod we model in this section is homogeneous the forces act on the
half of the length of it.

Figure 8: Physical forces

Since we neglect the friction of the cart and the pivot point we didn’t note the
forces of them. In the real model we can’t dispense with the friction of course but
we can solve the problem by changing the control system we made.

DAVID2 INVERTED PENDULUM

 9.

Notation of the figures (Table 1).

Name of datum Description Value
M Mass of the cart 1 kg
m Mass of the rod 0.1 kg
L Length of the rod 0.74 m

CG Center of gravity (rod)
l l=L/2 0.37 m

FG Force of gravity (rod)
H Force in Horizontal direction
V Force in Vertical direction
� Angle of the rod measured from

vertical

O Orion (co-ordinate system)
F(t) Puller force

Table 1: Notation of the figures

3.2 Physical equations

The coordinates of the centre of the pendulum rod are (XG,YG).

XG = x + lsin(�) (M-1)
YG = lcos(�) (M-2)

The rotational motion of the pendulum rod about its centre of gravity can be
described by (M-3) where J is the moment of inertia of the rod.

JΘ!! = Vlsin(�) – Hlcos(�) (M-3)

The horizontal motion of centre of gravity of pendulum rod is given by ((M-4)-
(M-7)) where X! G is the velocity and X!! G is the acceleration of centre of gravity of
pendulum rod in horizontal direction.

H = m X!! G (M-4)

X! G = X! + lcos(�) Θ! (M-5)
X!! G = X!! + lcos(�) Θ!! - lsin(�) 2Θ! (M-6)
H = m X!! + mlcos(�)Θ!! - mlsin(�) 2Θ! (M-7)

The vertical motion of centre of gravity of pendulum rod is ((M-8)-(M-11)) where
Y! G is the velocity and Y!! G is the acceleration of centre of gravity of pendulum rod
in vertical direction.

V – mg = mY!! G (M-8)

Y! G = -lsin(�)Θ! (M-9)
Y!! G = -lsin(�)Θ!! - lcos(�) 2Θ! (M-10)
V = mg – mlsin(�)Θ!! - mlcos(�) 2Θ! (M-11)

The horizontal motion of the cart is described by (M-12).

DAVID2 INVERTED PENDULUM

 10.

M X!! = F(t) – H (M-12)

Now, we have four equations, which describe the physical model.

JΘ!! = Vlsin(�) – Hlcos(�) (M-3)
H = m X!! + mlcos(�)Θ!! - mlsin(�) 2Θ! (M-7)

V = mg – mlsin(�)Θ!! - mlcos(�) 2Θ! (M-11)
M X!! = F(t) – H (M-12)

If we substitute H from equation (M-7) for equation (M-12), we got a new
equation about F(t) (M-13).

M X!! = F(t) - m X!! + mlcos(�)Θ!! - mlsin(�) 2Θ!

X!! (M+m) + mlcos(�)Θ!! - mlsin(�) 2Θ! = F(t) (M-13)

Consume the other two equations [(M-3) and (M-11)] and the above used (M-7)
equation we got a new formula (M-14).

JΘ!! = (mg – mlsin(�) Θ!! - mlcos(�) 2Θ!)lsin(�) – (m X!! + mlcos(�) Θ!! -
mlsin(�) 2Θ!)lcos(�)
JΘ!! = mglsin(�) - m X!! lcos(�) - ml2 Θ!!
 (J + ml2) Θ!! - mglsin(�) + m X!! lcos(�) = 0 (M-14)

We got the two main equations of the system.

X!! (M+m) + mlcos(�) Θ!! - mlsin(�) 2Θ! = F(t) (M-13)
(J + ml2) Θ!! - mglsin(�) + m X!! lcos(�) = 0 (M-14)

3.3 Simplification

These are the equations we will use in the further design, but there is a little
problem about these correspondences. Since they involve sin(�) and cos(�) they
are nonlinear equations. To get an easier approach we have to linearize them, so
we neglect these elements. Of course we can’t just leave but we should substitute
them to get the linear form of the equations.

We suppose, that the angle of pendulum is a small angle, hence we use the
following simplification ((M-15)-(M-17)).

sin(�)≅ � (M-15)
cos(�)≅ 1 (M-16)

2Θ! ≅ 0 (M-17)

DAVID2 INVERTED PENDULUM

 11.

Figure 9: Explication about angles

Use the three simplifications mentioned above [(M-15), (M-16) and (M-17)], we
got these new equations (M-18 and M-19).

X!! (M+m) + ml Θ!! = F(t) (M-18)
(J + ml2) Θ!! - mgl� + m X!! l = 0 (M-19)

3.4 Completions
If we consider the friction, we have to add a new term to the (M-18) equation (M-
20) where b is the friction coefficient acting on the cart. But we suppose that b ≈ 0.

X!! (M+m) + ml Θ!! + b X! = F(t) (M-20)

The moment of inertia of the rod is (1/3)ml2. Use these data we get M-21.

X!! (M+m) + ml Θ!! = F(t) (M-18)

(
3
1

ml2 + ml2) Θ!! - mgl� + m X!! l = 0

3
4l Θ!! - g� + X!! = 0 (M-21)

Now, we denote Θ!! from equations (M-18) and (M-21).

3
4l

Θ!! - g� + X!! = 0 (M-21)

X!! = g � -
3
4l

Θ!!

(g� -
3
4l

Θ!!)(M+m) + mlΘ!! = F(t)

g�(M+m) – ()
3

4 mMl +Θ!! = F(t)

g�(M+m) - F(t) =
3
1

lΘ!! (4M+m)

DAVID2 INVERTED PENDULUM

 12.

)()4(
3

)4(
)(3

tFmMlmMl
mMg

+
−Θ

+

+
=Θ!! (M-22)

After that, we denote X!! from equations (M-18) and (M-21).

3
4l

Θ!! - g� + X!! = 0 (M-21)

Θ
−

Θ

Θ
= !!

!!
!! 4

3
4
3 Xgl

X!! (M+m) + ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Θ
−

Θ

Θ
!!
!!

!! 4
3

4
3 Xg mΘ!! = F(t)

)(4
4

4
3

tFmMmM
gmX

+
+Θ

+
−=!! (M-23)

DAVID2 INVERTED PENDULUM

 13.

4 – STATE SPACE ANALYSIS AND STATE SPACE DESIGN

The classical control theory is based on the relationship of the input and the
output, working with the transfer function. In modern approach of control
theory the main elements of the design are the system equations. They are
written in terms of n first order differential equation which is combined to first
order vector-matrix differential equations. The main advantage of this approach,
that the increasing number of inputs and outputs won’t increase the complexity
of the equations.

4.1 Definition
The state of a system at any time in t0 is the amount of information at t0 that,
together with all inputs for t0t ≥ uniquely determines the behaviour of the
system for all t0t ≥ .
The standard form of the state equation of a liner time-invariant system is given
by:

)()()(tButAXtX +=!

)()()(tDutCXty +=

where)(tX! is the time derivative of the vector)(tX .

In the equations:

)(tX vector of the states of an n-order system; size: n×1
A system matrix; size: n×n
B input matrix; size: n×r
u(t) input vector; size: r×1
C output matrix; size: p×1
D matrix to represent direct coupling between input and output. (In

most of the cases it is 0.)

If we describe the model by the system equations we can note the state equations
of the system. The general form of the state equations allows more than one
input and output. These systems are called: multivariable systems.

4.2 Beginning

From the physical model we have two equations which describe the system [(M-
22) and (M-23)].

)()4(
3

)4(
)(3

tFmMlmMl
mMg

+
−Θ

+

+
=Θ!! (M-22)

)(4
4

4
3

tFmMmM
gmX

+
+Θ

+
−=!! (M-23)

DAVID2 INVERTED PENDULUM

 14.

4.3 System variables of the 4th order open-loop system

The next step is to determine the system variables [(S-1)-(S-4)]! We chose the
displacement, its derivate (the velocity), the angle of the rod and its derivate (the
angular velocity), as well.

1X = X (S-1)

2X = X! (S-2)

3X = Θ (S-3)

4X = Θ! (S-4)

We affect on the system with F(t). Call its “input force” and denote it ‘u’ (S-5)!

F(t) = u (S-5)

4.4 System equations of the 4th order open-loop system
Then we prescribe the system equations (S-6)-(S-9).

1X! = 2X (S-6)

2X! =)(4
4

4
3

tFmMmM
gm

+
+Θ

+
− (S-7)

3X! = 4X (S-8)

4X! =)()4(
3

)4(
)(3

tFmMlmMl
mMg

+
−Θ

+

+ (S-9)

We can write it in vector-matrix format, as well:

u

mMl

mM

X
X
X
X

mMl
mMg

mM
gm

X
X
X
X

*

)4(
3
0

4
4
0

*

0
)4(
)(300
1000

0
4
300

0010

4

3

2

1

4

3

2

1

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
−

++

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+

+
−

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

!
!
!
!

[]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

4

3

2

1

*0101

X
X
X
X

y

So the state variables can be written in the next form [(S-10)-(S-13)].

1X! = 2X (S-10)

()ugmX
mM

X 43
4
1

32 +−
+

=! (S-11)

DAVID2 INVERTED PENDULUM

 15.

3X! = 4X (S-12)

()uXmMg
mMl

X −+
+

= 34)(
)4(

3! (S-13)

4.5 Implement the 4th order open-loop system in Matlab Simulink
The system given by the state equations can be also described with a simulation
diagram. It demonstrates the connection between the states and we can also
simulate the response of the system for one or more given inputs. We can edit the
simulation diagram in Matlab Simulink (Figure 10 and Figure 11).

Script file name: DIP01_StateSpaceAnalysisM.m

Model file name: DIP01_StateSpaceAnalysisMDL.mdl
%David2 Inverted pendulum

%Constants
l=0.5; %(Length of pendulum)/2 [m]
m2=0.1; %Mass of pendulum [kg]
M1=1.0; %Mass of cart [kg]
g=9.81; %Gravitation [m/s^2]

F_step=1; %[s]
F0=0;
F1=0.1; %[N]

tstep=0.01;
tstart=0;
tstop=6;
tspan=[tstart tstop];
options=simset('solver','ode5','fixedstep',tstep);
%Start sim
sim('DIP01_StateSpaceAnalysisMDL',tspan,options);

figure(1);
clf;

%Plot the position of the cart and the angle of the pendulum
plot(t,y,t,teta)
axis([0 tstop -1.5 1.5])
title('David2 Inverted Pendulum')
xlabel('Time [s]')
ylabel('Position [m], Angle [rad]')
legend('Cart position','Angle of pendelum')

Figure 10: Matlab 7 Simulink Model

DAVID2 INVERTED PENDULUM

 16.

Figure 11: Response of the 4th order open-loop system

4.6 Simplification

In the design we endeavour to take the complication of the system as low as we
can. So that we get a simplification to get 3rd order system instead of the 4th order
system we have now. To achieve it we have to bring in some new data.
So we have two new equations [(S-14) and (S-15)] with the use of the new data.

� = Kpu (S-14)
X! = KpRu (S-15)

Name of data Description Value
Kp Motor constant 31.3 (radV)/s
R Radius of the shaft 0.015 m
� Velocity of the angle

Table 2:New data

DAVID2 INVERTED PENDULUM

 17.

We start the new calculation from an earlier equation (M-21).

3
4l Θ!! - g� + X!! = 0 (M-21)

()Xg
l

!!!! −Θ=Θ
4
3

()∫∫ Θ+−=Θ=Θ dtgX
l

dt !!!!
4
3

∫ Θ+−=Θ dtg
l

X
l 4

3
4
3 !! (S-16)

4.7 System variables of the 3rd order open-loop system

Our new state variables are (S-17), (S-18) and (S-19).

XX =1 (S-17)
Θ=2X (S-18)

∫ Θ= dtgX 3 (S-19)

4.8 System equations of the 3rd order open-loop system

Let us see the state equations [(S-20)-(S-22)].

RuKX p=1! (S-20)

3312 4
3

4
3

4
3

4
3 X

l
RuK

l
X
l

X
l

X p +−=+−= !! (S-21)

23 gXX =! (S-22)

Now we can write vector-matrix format too.

uRK
l

RK

X
X
X

g
l

X
X
X

p

p

*

0
4
3*

00
4
300
000

3

2

1

3

2

1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

!
!
!

[]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

3

2

1

*011
X
X
X

y

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

00
4
300
000

g
l

A

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−=

0
4
3 RK
l

RK

B p

p

[]011=C

Replacing the constants we get the following vector-matrix format.

DAVID2 INVERTED PENDULUM

 18.

u
X
X
X

X
X
X

*
0
951676.0
4695.0

*
081.90
027.200
000

3

2

1

3

2

1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

!
!
!

4.9 Implement the 3rd order open-loop system in Matlab Simulink
By the result of the simplification we have only three state variables, so our
system is now a 3rd order system. It makes our job easier. Because of the change
of the states our simulation diagram will also change. The modified diagram is
shown on Figure 12.

Script file name: DIP02_StateSpaceAnalysisM.m

Model file name: DIP02_StateSpaceAnalysisMDL.mdl
%David2 Inverted pendulum

%Constants
l=0.37; %(Length of pendulum)/2 [m]
g=9.81; %Gravitation [m/s^2]
R=0.015
Kp=31.3

F_step=1; %[s]
F0=0;
F1=0.1; %[N]

tstep=0.01;
tstart=0;
tstop=6;
tspan=[tstart tstop];
options=simset('solver','ode5','fixedstep',tstep);
%Start sim
sim('DIP02_StateSpaceAnalysisMDL',tspan,options);

figure(1);
clf;

%Plot the position of the cart and the angle of the pendulum
plot(t,x,t,theta)
axis([0 tstop -1.5 1.5])
title('David2 Inverted Pendulum')
xlabel('Time [s]')
ylabel('Position [m], Angle [rad]')
legend('Cart position','Angle of pendelum')

DAVID2 INVERTED PENDULUM

 19.

Figure 12: Simulation diagram of the 3rd order open-loop system

Figure 13: Response of the 3rd order open-loop system

DAVID2 INVERTED PENDULUM

 20.

5 – POLE-PLACEMENT CONTROL

Pole-placement design is part of the modern control theory. It is based on the
state-space model and the state equations. To be able to use the pole placement
we have to know the control law. In general, the plant input is u(t) is made of
function of the states.

u(t)=f[x(t)]

We have to use linear time-invariant analogue systems for pole-placement. We
have to write our model in the following form [(P-1) and (P-2)].

uBXAX +=! (P-1)
XCy = (P-2)

A = System matrix
B = Input matrix
C = Output matrix

In pole-placement design, the control law is specified as a linear function of the
states (P-3).

[] X*kkku 321−= (P-3)
To be able to change the poles of the system we should know the original poles.
To calculate it we need the matrices describe the system. With the help of Matlab
it is very easy to get the original poles.
From previous calculations we know that:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

00
4
300
000

g
l

A

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−=

0
4
3 RK
l

RK

B p

p

[]011=C 0=D

We shall use the “pole” command in Matlab which waits a State Space Object for
input. To get this object first we have to use the “ss” command, after that we can
use the above mentioned “pole” command.

Script file name: DIP03_PolePlacementM1.m
l=0.37;
m=0.1;
R=0.015;
g=9.81;
Kp=31.3;

A=[0, 0, 0;0, 0,3/(4*l);0, g, 0];
B=[Kp*R;-3*Kp*R/(4*l);0];
C=[1 1 0];
D=0;

psys=ss(A,B,C,D)

DAVID2 INVERTED PENDULUM

 21.

pole(psys)

Result:
a =
 x1 x2 x3
 x1 0 0 0
 x2 0 0 2.027
 x3 0 9.81 0

b =
 u1
 x1 0.4695
 x2 -0.9517
 x3 0

c =
 x1 x2 x3
 y1 1 1 0

d =
 u1
 y1 0

Continuous-time model.

ans =
 4.4593
 -4.4593
 0

We got the poles of the original system. We can see that the system is unstable in
this condition because there is a positive item in it. To make the system stable we
should place the poles to the left half of the s-plane.
From equation (P-1) and (P-3) we can get a new function about)(tX! .

uBXAX +=! (P-1)
XKu −= (P-3)

()XKBXAX −+=!

()BKAXX −=! (P-6)

5.1 Calculate the new vector-matrix format of the 3rd order system

Adopting the equations (P-6).

[]

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

000
4
3

4
3

4
3*

0
4
3

321

321

321 RK
l

kRK
l

kRK
l

k

RKkRKkRKk

kkkRK
l

RK

ppp

ppp

p

p

DAVID2 INVERTED PENDULUM

 22.

()BKAX
X
X
X

g

RK
l

k
l

RK
l

kRK
l

k

RKkRKkRKk

X
X
X

ppp

ppp

−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

−−−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3

2

1

321

321

3

2

1

*

00
4
3

4
3

4
3

4
3

!
!
!

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

−−−

=ʹ

00
4
3

4
3

4
3

4
3

321

321

g

RK
l

k
l

RK
l

kRK
l

k

RKkRKkRKk

A ppp

ppp

5.2 Characteristic equation of the 3rd order closed-loop system

Aʹ is the system matrix for the closed-loop system. The characteristic equation for
the closed-loop system is (P-7).

0=ʹ− AIλ (P-7)

Calculate this:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

λ

λ

λ

λ

00
00
00

100
010
001

*

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−−−−

+

=ʹ−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

λ

λ

λ

λ

λ

λ

g

RK
l

k
l

RK
l

kRK
l

k

RKkRKkRKk

A ppp

ppp

0
4
3

4
3

4
3

4
3

00
00
00

321

321

Replacing the constants we get the following matrix:

AIkkk
kkk

ʹ−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−−−−

+

λ

λ

λ

λ

81.90
951689.0027.2951689.0951689.0

4695.04695.04695.0

321

321

Let us calculate the equation (P-7).

0=ʹ− AIλ (P-7)

0
81.90

951689.0027.2951689.0951689.0
4695.04695.04695.0

321

321

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−−−−

+

λ

λ

λ

kkk
kkk

DAVID2 INVERTED PENDULUM

 23.

033606.9*4695.0
951689.0*4695.0)33606.988487.19951689.0)(4695.0(

13

1232
2

1

=+

++−−−+

kk
kkkkk λλλλ

038328.4446817.038328.4
335946.9446817.04695.033606.988487.19951689.0

312131

121
2

13
2

2
3

=++−

−−−+−−−

kkkkkk
kkkkkk

λ

λλλλλλ

0335946.9)33606.988487.19()4695.0951689.0(13
2

12
3 =−−−+−− kkkk λλλ

We will get three more simple equations, if we adopt the following common fact
(P-8).

0) -)(s -)(s -(s 321 =λλλ

0) -)(s --(s 32112
2 =+ λλλλλ ss

0s 3212131
2

132
2

2
2

3
3 =−++−+−− λλλλλλλλλλλλ ssssss

0)()(321323121
2

321
3 =−+++++− λλλλλλλλλλλλ sss (P-8)

5.3 Equations with K and λ values

Now we can denote the λ values with 1k , 2k and 3k that will be the loop-back
gains of the controlled system [(P-9)-(P-11)].

12321 4695.0951689.0 kk −=++ λλλ (P-9)

3323121 33606.988487.19 k−−=++ λλλλλλ (P-10)

1321 335946.9 k=λλλ (P-11)

5.4 The closed loop system in Matlab SimuLink
Since we introduced the K values now we have a closed loop system. So we have
to modify the simulation diagram to build in the feedback loop. It is shown by
the Figure 14.

Model file name: DIP04_PolePlacementMDL.mdl

DAVID2 INVERTED PENDULUM

 24.

Figure 14: Closed loop of our 3rd order system

5.5 Determine K values with LQR Design

To get the correct k values we have to decide the characteristic of the response of
the system. We can use predefined characteristics or methods. For example using
Linear Quadratic Regulator (LQR) method we can calculate the optimal gain
matrix K we saw in the control law.
The substance of this method to minimize the J(u) cost function denoted here:

∫
∞

++=
0

)2()(dtNuxRuuQxxuJ TTT

for the continuous-time state-space model: uBXAX ** +=! .
In most of the cases N=0. We can calculate K values with LQR method using
Matlab. During the test we defined Q=I and R=1, where Q is a diagonal matrix
(where its rank equals to the number of the state variables), which defines the
weight of the state variables. I is the identity matrix. We got the under mentioned
values:
>> A
A =

DAVID2 INVERTED PENDULUM

 25.

 0 0 0
 0 0 2.0270
 0 9.8100 0

>> B
B =
 0.4695
 -0.9517
 0

>> I = eye(size(A))
I =
 1 0 0
 0 1 0
 0 0 1

>> [K,S,e] = LQR(A,B,I,1)
K =
 -1.0000 -10.6107 -4.9048

S =
 2.7749 2.4197 1.0816
 2.4197 12.3433 5.6874
 1.0816 5.6874 2.7547

e =
 -4.6021 + 0.9061i
 -4.6021 - 0.9061i
 -0.4244

Result:

9048.4
6107.10

1

3

2

1

−=

−=

−=

k
k
k

The LQR method gives us an optimum calculation of the K values. Since in the
testing phase, we can change our values according to the system behaviour. If we
use the K values calculated by LQR probably we can find better values changing
the weights of the variables in matrix Q.

5.6 Implement the closed-loop system with LQR Design in Matlab
Since we have the simulation diagram of the closed-loop system we just use the
K values calculated above. Running the modified version of the script we wrote
in Chapter STATE SPACE ANALYSIS AND STATE SPACE DESIGN we can see the
response of the relevant system. Using these values we got the response shown
on Figure 15.

DAVID2 INVERTED PENDULUM

 26.

Script file name: DIP04_PolePlacementM2.m

Model file name: DIP04_PolePlacementMDL.mdl
%David2 Inverted pendulum
%Constants
l=0.37; %(Length of pendulum)/2 [m]
g=9.81; %Gravitation [m/s^2]
R=0.015
Kp=31.3
%Loop-back
K1=-1;
K2=-10.6107;
K3=-4.9048;

F_step=1; %[s]
F0=0;
F1=0.1; %[N]

tstep=0.01;
tstart=0;
tstop=15;
tspan=[tstart tstop];
options=simset('solver','ode5','fixedstep',tstep);
%Start sim
sim('DIP04_PolePlacementMDL',tspan,options);

figure(1);
clf;

%Plot the position of the cart and the angle of the pendulum
plot(t,x,t,theta)
axis([0 tstop -1.5 1.5])
title('David2 Inverted Pendulum')
xlabel('Time [s]')
ylabel('Position [m], Angle [rad]')
legend('Cart position','Angle of pendelum')

DAVID2 INVERTED PENDULUM

 27.

Figure 15: Response of the closed-loop system with the K values calculated by the LQR

method

5.7 Determine K values with Butterworth filter

The other way we used to calculate the gain matrix K was the approximation of
the characteristic with the Butterworth polynom. Since we use the step function
to simulate the input we should examine the response of the Butterworth filter to
be proven it will be a good characteristic for our system. It is shown by Figure 16.

Figure 16: Response of a 3rd order normalized Butterworth polynom for a step input

DAVID2 INVERTED PENDULUM

 28.

So we can see the advantages of the filter: short response time and little
overshoot.
The Butterworth polynom has a general form:

...1... 1
2

2
1

1 +++++ −
− sasasas n
n

n

Where the an coefficients are shown on the Table 3.

n a1 a2 a3 a4 a5 a6 a7
2 1.414214

3 2.000000 2.000000

4 2.613126 3.414214 2.613126

5 3.236068 5.236068 5.236068 3.236068

6 3.863703 7.464102 9.141620 7.464102 3.863703

7 4.493959 10.097835 14.591794 14.591794 10.097835 4.493959

8 5.125831 13.137071 21.846151 25.688356 21.846151 13.137071 5.125831
9 5.758770 16.581719 31.163437 41.986386 41.986386 31.163437 16.581719
10 6.392453 20.431729 42.802061 64.882396 74.233429 64.882396 42.802061

Table 3: Coefficients for Butterworth polynom

In our case the Butterworth polynom is like (P-12).

122 23 +++ sss (P-12)

We want our system to have fast response so we can write the following
equation:

2
p

r

T
T =

where Tr is the time of the response and Tp is the process time.

We can denote Tr from the equation:

0ω
kTr ≅

where �0 is the cut-off frequency and k is a coefficient which is 1,5 rad for 2nd, 3rd,
and 4th order systems (it is equal 1 rad for 1st order systems).
If we assume that the process time is 1.5 second (Tp = 1.5) we can get the value of
�0.

⎥⎦

⎤
⎢⎣

⎡====
sec

2
75.0
5.1

2

5.1
0

rad
TT

k
pr

ω (P-13)

DAVID2 INVERTED PENDULUM

 29.

The Butterworth polynom given above is a normalized form. In that case �0 = 1.
In our case we have to use a substitution in the polynom:

0ω
ss =

Suit this expression to the polynom (P-12) will be (P-14).

0122

0
2
0

2

3
0

3

=+++
ωωω
sss (P-14)

If we simplify it we get (P-15).

0)22(1 3
0

2
0

2
0

3
3
0

=+++ ωωω
ω

sss (P-15)

Substitute the values given above (P-16).

0)884(
8
1 23 =+++ sss (P-16)

Use the equation (P-8) we get a new equation (P-17).

321323121
2

321
323)()(884 λλλλλλλλλλλλ −+++++−=+++ ssssss (P-17)

Use the equations (P-9)-(P-11) we get new equations:

44695.0951689.0 12321 −=−=++ kkλλλ (P-18)
833606.988487.19 3323121 =−−=++ kλλλλλλ (P-19)

8335946.9 1321 −== kλλλ (P-20)

Now we can calculate the K values:

9868.2
6258.4
8569.0

3

2

1

−=

−=

−=

k
k
k

5.8 Implement the closed-loop system with Butterworth filters
If we use these values in the feedback loop we get a new response function of the
system (Figure 17).

DAVID2 INVERTED PENDULUM

 30.

Script file name: DIP05_PolePlacementM3.m

Model file name: DIP04_PolePlacementMDL.mdl
%David2 Inverted pendulum
%Constants
l=0.37; %(Length of pendulum)/2 [m]
g=9.81; %Gravitation [m/s^2]
R=0.015
Kp=31.3
%Loop-back
K1=-0.8569;
K2=-4.6258;
K3=-2.9868;

F_step=1; %[s]
F0=0;
F1=0.1; %[N]

tstep=0.01;
tstart=0;
tstop=15;
tspan=[tstart tstop];
options=simset('solver','ode5','fixedstep',tstep);
%Start sim
sim('DIP04_PolePlacementMDL',tspan,options);

figure(1);
clf;

%Plot the position of the cart and the angle of the pendulum
plot(t,x,t,theta)
axis([0 tstop -2 2])
title('David2 Inverted Pendulum')
xlabel('Time [s]')
ylabel('Position [m], Angle [rad]')
legend('Cart position','Angle of pendelum')

DAVID2 INVERTED PENDULUM

 31.

Figure 17: Response of the closed-loop system with the K values calculated by the Butterworth

polynom

5.9 Mathematical calculation using Matlab
If we would like to compute the whole calculation with another A and B matrix
(for instance our motor constant has changed), and we use only a calculating
machine, we pay for this many time. There is an easier way using Matlab. Write
the following M-file, and let us see the result. It will be the same we got.

Script file name: DIP06_PolePlacementM4.m
l=0.37;
m=0.1;
R=0.015;
g=9.81;
Kp=31.3;
A=[0, 0, 0;0, 0,3/(4*l);0, g, 0];
B=[Kp*R;-3*Kp*R/(4*l);0];
w0=2;
a=conv([1 w0 w0^2],[1 w0]);
regulatedpoles=roots(a);

K = place(A,B,regulatedpoles)
Result:
K =

 -0.8569 -4.6258 -2.9868

DAVID2 INVERTED PENDULUM

 32.

6 – HARDWARE

6.1 Camera
We will grab the pictures with a JAI Compact Industrial Monochrome CCD
Camera CV-A50C (Figure 18). It has two different resolutions: CCIR [752x582]
and EIA [768x494]. We will use the first one (CCIR). Further information can be
read in Appendix F.

Figure 18: JAI CV-A50C

We use this camera with a Pentax C815B(C30811) lens. Its details can be found in
(Table 4).

Type C815B(C30811)
Format Size 2/3
Focal length 8.5mm
Max. Aperture Ratio 1:1.5
Horizontal 1/4
Angel of View 1/3
(Degrees) 1/2

24.02
31.87
42.09

Min. Object Distance 0.2m
Back Focal Length 10.9mm
Filter Size 40.5mm P=0.5mm
Mount (Flange back) C (17.526mm)
Weight 120g
Remarks Lock Screw Extra

Table 4: Pentax C815B(C30811)

6.2 Frame grabber card
We have to connect the camera to the PC with an adequate grabber card. We use
for this purpose a National Instruments IMAQ PCI-1407 / PXI-1407
monochrome analog framegrabber (Figure 19).
The National Instruments 1407 devices are ideal for machine vision and scientific
imaging end users and OEM developers. An NI 1407 has a single high-accuracy

DAVID2 INVERTED PENDULUM

 33.

monochrome video input, external triggering capabilities, and easy-to-use image
acquisition driver software. NI 1407 advanced features include partial image
scanning, programmable gain and offset, and onboard decimation and LUT
processing. For easy configuration of both RS-170 and CCIR monochrome
cameras, NI 1407 devices include NI-IMAQ image acquisition driver software
and the NI Measurement & Automation Explorer configuration utility.
Details:

Ø Synchronization for multiple camera acquisition
Ø Partial image acquisition; 256-byte look-up (LUT) table
Ø Programmable gain and offset
Ø Pixel jitter less than 2 ns
Ø NI-IMAQ software for Windows 2000/NT/XP
Ø 1-channel monochrome image acquisition board for standard video (RS-

170 and CCIR VGA)

Figure 19: National Instruments IMAQ PCI-1407 / PXI-1407

6.3 I/O card
If we want to control our Servo Drive with a computer we have to use an I/O
card, for instance: National Instruments PCI-6024E (Figure 21). It is a 200 kb/s,
12-Bit, 16 Analog Input Multifunction DAQ.
NI low-cost E Series multifunction data acquisition devices provide full
functionality at a price to meet the needs of the budget-conscious user. They are
ideal for applications ranging from continuous high-speed data logging to

DAVID2 INVERTED PENDULUM

 34.

control applications to high-voltage signal or sensor measurements when used
with NI signal conditioning. Synchronize the operations of multiple devices
using the RTSI bus or PXI trigger bus to easily integrate other hardware such as
motion control and machine vision to create an entire measurement and control
system.

Figure 20: National Instrument Logo

Details:
Ø Two 12-bit analog outputs; 8 digital I/O lines; two 24-bit counters
Ø FREE award-winning global services and support --

www.ni.com/support
Ø NI-DAQ Measurement Services to simplify configuration and

measurements
Ø For new designs, NI recommends using the M Series PCI-6221
Ø NIST-traceable calibration certificate and more than 70 signal

conditioning options
Ø Superior integration – LabVIEW, CVI, and Measurement Studio for

Visual Basic and Visual Studio .NET

Figure 21: National Instruments PCI-6024E

National Instruments DAQ 6024E card has 2 analog output and 16 analog input
channels. To control the servo drive we will use one analog output (21 [Analog
Output 1] and 54 [Analog Output Ground])(Table 5).

DAVID2 INVERTED PENDULUM

 35.

Table 5: Pinout NI DAQ 6024E

6.4 Servo drive and AC Motor
To be able to move the cart we need a servomotor which is driven by a servo
drive. We will use an OMRON AC servomotor type: R88M-WP40030H-S1-D.
This is a flat style servomotor. Its maximum revolution is 3000 rpm and the
maximum moment of it is 1.27 Nm.
The servo drive is an OMRON AC servo drive type: R88D-WT04H. With the help
of it we can specify the mode of the control of the motor. There are two ways to
control this drive: speed control and torque control.
To set the speed control we have to use the Pn300 parameter. Here we can
specify the speed command reference voltage. (The interval the servo drive can
get voltage.)
If we use the Pn400 parameter we can use the torque control that means we will
control the torque of the motor when we put a voltage on it.

DAVID2 INVERTED PENDULUM

 36.

We use speed control, because in this case we can handle the friction easier. The
features of the speed control can be found in the Appendix E.
There is one of the more important things to set properly the offset of the servo
drive. If we add zero voltage through the I/O card to the servo drive, the cart
must stay in its original position.

Figure 22: Servo drive and AC Motor

DAVID2 INVERTED PENDULUM

 37.

7 – IMAGE PROCESSING WITH IMAQ VISION
To implement the solution of the main problem first we have to realize the parts
of the system. We use LabView to achieve our goal. LabView was made by
National Instruments. It differs from the other “common” programming
languages, because it is a codeless, graphical, block-diagram oriented
developmental environment. It has a lot of useful pre-defined components called
VI-s (Virtual Instrument). IMAQ is a component of LabView too. It is an
abbreviation of Image Acquisition. With the help of it, it is easy to process a
simple image from file or from the camera also.

7.1 Hardware
In real life the human eye can easily observe a process to give some useful
information to the brain. The eye of a computer is a camera, which we connected
properly.
We put the camera into a grabber card (Figure 23, National Instruments - IMAQ
PCI-1407/PXI-1407), and we will use LabView to work its grabbed pictures.

Figure 23: Grabber card

7.2 Software
We can examine which devices and software are available in LabView with
National Instruments Measurement & Automation Explorer (MAX)(Figure 24).

Figure 24: Measurement & Automation Explorer

DAVID2 INVERTED PENDULUM

 38.

As we see in (Figure 25), we connected our camera, and here we can also see its
grabbed pictures in real time. We can read some information about picture size,
etc.

Figure 25: Camera in MAX

7.3 Pictures data in MAX
Camera Description
 Manufacturer: Standard
 Model: N/A
 Channel: 0
Acquisition Window
 Left: 150
 Top: 22
 Width: 768
 Height: 576
Reference Level (Volt)
 White: 0.817
 Black: 0.488
Field/Frame
 Mode: Frame
 First Field: Odd

DAVID2 INVERTED PENDULUM

 39.

Frame Timeout: 100 ms
Video Lock Mode: Standard
CSYNC Direction: Input
PCLK Source: Internal 1x
Aspect Ratio
 Pixels Per Line: 944
Lock Speed: Slow
Clamp
 Start: 90
 Stop: 130
Lookup Table: Normal

7.4 Write a VI
After that, we write a VI in LabView 7.1, where we initialize, set, visualize and
close the grabbed pictures (Figure 26). This VI is presented as an attachment
named IMAQPCI_1407.vi.

Figure 26: IMAQPCI_1407.vi

7.5 IMAQ Init element

The Interface Name must match the configuration file name used in
Measurement & Automation Explorer. The device name of our camera is “img0”.
If we set the Interface Name, we will get the IMAQ Session Out, which identifies
the initialized device.
During the whole VI we guide an error signal.

DAVID2 INVERTED PENDULUM

 40.

7.6 Property Node element:

With this element we can set several properties, but we need to set the White and
the Black Reference values. We took these values from National Instruments
Measurement & Automation Explorer.

7.7 IMAQ Configuration List element:

We adjusted the Continuous input to continuous with a Ring (its label is
Grabbing), and the Number of buffers to one. The “continuous” specifies
whether the acquisition is continuous or one-shot.

7.8 IMAQ Configure Buffer element:

We wire into this element the Buffer Number and the Image In, which is the
reference to the image that receives the captured pixel data. We take this Image
In from IMAQ Create.

7.9 IMAQ Create element:

We add an Image Name (each image created must have a unique name), and get
a New Image.

7.10 IMAQ Start element:

It starts an asynchronous image acquisition.

DAVID2 INVERTED PENDULUM

 41.

7.11 IMAQ Copy Acquired Buffer element:

It returns a copy of an acquired image. IMAQ Copy allows you to copy an image
from onboard memory to system memory or from system memory to system
memory. We add an image (Image In) and set the Buffer Number to zero.

7.12 IMAQ WindDraw element:

Now, we have all settings and preparation to visualize a grabbed image. With
IMAQ WindDraw we display an image in an image window. The image window
appears automatically when the VI is executed.

7.13 IMAQ Stop element:

It stops the currently executing acquisition on the IMAQ device.

7.14 IMAQ Close element:

Finally IMAQ Close stops the acquisition if one is in progress, releases resources
associated with the acquisition, and closes the specified IMAQ session.

DAVID2 INVERTED PENDULUM

 42.

8 – MANIPULATION OF SERVO DRIVE IN LABVIEW

8.1 What is the next step?
We have already analysed how to grab picture from the camera, now we have to
deal with the servo drive and the AC motor. The camera was our input, and the
servo drive will be our output hardware.

8.2 Write a VI

We write a VI in LabView 7.1 where we will give a value for the Servo Drive, and
the cart will be moving accordingly.

Figure 27: Servo Drive Front Panel

We use a Pointer Slide to set an optional value. The front panel is very simple, let
us see the block diagram (Figure 28).

Figure 28: Servo Drive Block Diagram

DAVID2 INVERTED PENDULUM

 43.

We put our program in a while loop, so we can follow the events in real time,
and we use a delay element.

With this we reach that the servo gets a new value only in every 10 milliseconds.

8.3 DAQ Assistant

The most important thing to set the DAQ Assistant properly (Figure 29). We
have to set the Output Range: Max will be +10 Volts, and Min will be minus -10
Volts. The sign will determinate the direction.

Figure 29: DAQ Assistant properties

DAVID2 INVERTED PENDULUM

 44.

The I/O card has several analog input and output channels. Now, we are using
the Number 1 Analog OutPut physical channel (ao1). We must adjust this
physical channel in the adequate window (Figure 30).

Figure 30: Physical channels

DAVID2 INVERTED PENDULUM

 45.

9 – CALIBRATION OF THE CAMERA

9.1 Why necessary to use calibration?
Before we begin to build our main VI, we have to put the camera in a right
position. It is very important, because when we use up the grabbed picture we
will suppose the following things:

Ø The analysed lines are clear (we will get back this event).
Ø If the angle of the pendulum is zero, the rod is parallel with the left and

right side of the picture.
Ø The track of the car is perpendicular with the left and right side of the

picture.

9.2 Theory
If these come true, we have to calculate a ration between pixels and meter. To
specify this, we have to know how many meters is one pixel on the picture.

Figure 31: The model

In the future we will analyse approximately the labelled three lines (Figure 32).
What means, that these line will be clear? We are working with a grey-scale
picture (8 bit), and we will want to detect where are the black pixels in the
labelled lines (we will see, why is it good for us). It is possibly only that case, if
nothing disturbs the observed points in the mentioned lines.

DAVID2 INVERTED PENDULUM

 46.

Figure 32: Labeled lines

To set the grabbed picture in an adequate position, we pasted up four black
strips on the wall (Figure 33).

Figure 33: Four black strips

DAVID2 INVERTED PENDULUM

 47.

We measured the distance in meters between the two pairs of strips (Figure 34).

Figure 34: Distances

Now, we are working in this situation, and calculate several positions in pixels
(Figure 35).

Figure 35: Calibration

The labelled lines nominate where we try to find black points (Table 6).

O1 We begin finding from the top side of the picture to the first black point in the 40th
column.

O2 We begin finding from the 100th row to the first black point in the 40th column.
S1 We begin finding from the left side of the picture to the first black point in the 40th

row.
S2 We begin finding from the 200th column to the first black point in the 40th row.
P1 We begin finding from the top side of the picture to the first black point in the 150th

column.
P2 We begin finding from the top side of the picture to the first black point in the 600th

column.
Table 6: Observed points

DAVID2 INVERTED PENDULUM

 48.

If P1 equals to P2, our track is perpendicular with the left and right side of the
picture. After that, we are able to calculate the ration between pixels and meter
(C-1 and C-2).

Ratio1 = 0.44/(O2-O1) (C-1)
Ratio2 =1.235/(S2-S1) (C-2)

Ration1 and Ration2 should be equal, but in real measurement it cannot be
materialized. Therefore we use in our program the average of the above
mentioned rations.

9.3 Write a VI
After all of that, let us see the Calibration.vi in the running phase (Figure 36).

Figure 36: Calibration.VI Front Panel

If we put the grabbed picture and our result in one edited picture, we will get a
graphical result (Figure 37).

DAVID2 INVERTED PENDULUM

 49.

Figure 37: Graphical result

We will analyse the Calibartion.vi elements in a latter chapter, but the LabView
Block Diagram is available in the Figure 38 and Figure 39.

Figure 38: Calibration.VI - Part I

DAVID2 INVERTED PENDULUM

 50.

Figure 39: Calibration.VI - Part II

DAVID2 INVERTED PENDULUM

 51.

10 – REALIZATION OF THE INVERTED PENDULUM

10.1 Tasks
During Pole-Placement design we used the following linear function as control-
law (P-3).

[] X*kkku 321−= (P-3)

Then we have calculated the K values (k1, k2, k3) in two different ways.

a) with LQR Design

9048.4
6107.10

1

3

2

1

−=

−=

−=

k
k
k

b) with Butterworth polynom

9868.2
6258.4
8569.0

3

2

1

−=

−=

−=

k
k
k

This K values include the whole physical model and the property of the servo
drive.
Write the (P-3) equation in other format (R-1).

332211 xkxkxku −−−= (R-1)

The AC motor and the servo drive needs input signal, to move either direction.
This signal is positive or negative value which represents positive or negative
voltage. The result of the control law will be the adequate voltage.

After that, our task in LabView 7.1 is quite simple.

Ø Firstly we grab pictures from the camera.
Ø Then we measure the system state variables (X).
Ø We know the K values, so we realize the control law.
Ø We add the result of the control law for the servo drive.

We work with our 3rd order system [(S-17)-(S-19)].

XX =1 (S-17)
Θ=2X (S-18)

∫ Θ= dtgX 3 (S-19)

So we have to measure the displacement of the cart and the angle of the rod, then
we have to calculate the 3rd state variables.

Let us see our tasks graphically (Figure 40).

DAVID2 INVERTED PENDULUM

 52.

Figure 40: Tasks

DAVID2 INVERTED PENDULUM

 53.

10.2 Measure the states
We have to measure our state variables first. Let us start the angle of the
pendulum, after that the position of the cart.

10.2.1 Angle of the pendulum

10.2.1.1 Mathematical background
The most important question is that, how we measure an angle in a picture? The
method will be fast enough, because it runs in every cycle (and there are lots of
cycles per second)!

Figure 41: The angle of pendulum

Because of the requirement (agility), we cannot analyze the whole picture (Figure
41). One of the best methods, in that case we analyze only two rows, and find
two special points. After that, we use mathematical rules to get the adequate
angle.
If we write a SubVI which can calculate a special column index of any rows we
are closer to the result. What does “special column index” mean? Our grabbed
picture is a gray-scale 8-bits picture, and most of the pixels are white, or almost
white (In 8-bits white is 255 (a computer stores any data as a number), or
approximately between 200 and 255). If we find a black or an almost black pixel
(In 8-bits black is 0, or approximately between 0 and 50), we have found a special
one! Our SubVI will find these blacks, or almost blacks pixels in a row.

DAVID2 INVERTED PENDULUM

 54.

Figure 42: Mathematics background

After that, we have two “EdgeIndex”: LineRod1EdgeIndex and
LineRod2EdgeIndex, and we know the difference between LineRod1 and
LindRod2 (Figure 42)! From these values we will know enough information of
the ABC triangle (Figure 43) to calculate any data into this two dimension figure
(but we want to know the CAB angle only).

Figure 43: ABC Triangle

The correct mathematical formula is (M-1).

⎟
⎠

⎞
⎜
⎝

⎛
−

−
=Θ

12
21

LineRodLineRod
EdgeIndexLineRodEdgeIndexLineRodArcTan (M-1)

10.2.1.2 Chosen lines
Our chosen lines are the following:

LineRod1 = 150
LineRod2 = 450

We have to choose our lines as far as we can, because this distance determinates
what is the minimal angle that we can measure. For the above mentioned data it
is:

Minimal angle that we can measure: ~0.19°

DAVID2 INVERTED PENDULUM

 55.

To calculate the (M-1) equation, we have to write a SubVI, called EdgeIndex.vi,
to get LineRod1EdgeIndex and LineRod2EdgeIndex.

10.2.1.3 EdgeIndex element

We add Line as a vector to this SubVI, because we have an other element which
can read any rows or columns of the picture into a vector (one dimension array).
We add a StartPos, as well, because we use this VI in the Calibartion.vi too, and
there we not only find edge from the side of the picture, but also from any other
rows or columns (this process, where we find black pixels, is named edge
detection).

Figure 44: EdgeIndex.vi Front Panel

The lighting can be very changeable, so we have not got pure black (0) and pure
white (255) value most of the time. We use a Threshold value to solve this
problem. If we find a value between (0) and (0+Treshold), we analyze that as
black pixel (so we found an edge).
We have only one output, the special index of our input vector. It means the edge
distance from the border of the picture in pixels.

Figure 45: EdgeIndex.vi Block Diagram

DAVID2 INVERTED PENDULUM

 56.

10.2.1.4 Build this SubVI into our main VI

Figure 46: An example

The visible example (Figure 46) is looking for an edge in the 40th column. It starts
finding from the 5th pixel and use 10 as Threshold.

10.2.1.5 IMAQ GetRowCol element

When we add an image as input into to this element, it gives us a vector which
can be used in our EdgeIndex.vi.
Row / Column (Row) defines Number as a row number when FALSE and as a
column number when TRUE.

10.2.2 Position of the cart

10.2.2.1 The same method
Now we are able to calculate the position of the cart in the same way. We choose
an adequate line (CasPosLine), and our EdgeIndex.vi can determine
CarPosEdgeIndex (Figure 47).

Figure 47: Position of the cart

DAVID2 INVERTED PENDULUM

 57.

10.2.2.2 Chosen lines

CarPosLine = 540

10.2.2.3 Conversion from pixels to meters
Our first state variable is the position of the cart, but not in pixels, because it
depends on the resolution of the camera! We have to convert the
CarPosEdgeIndex values from pixels to meters. We will apply our Calibration.vi,
to determine the ration number (M-2).

CarPosMeter = CarPosLine * AVGMeter (M-2)

In Calibration.vi we called AVGMeter as Ration Meter-Pixel. For instance we
measured, that one pixel in the picture is 0.00169764 meters (but it is different in
every occasion).

10.2.2.4 We use a reference
Our purpose is that our cart should stay in the middle of the track. Hence we use
a reference position, and we count it the zero position of the cart. When the cart
moves, the position is changing in negative or positive direction (Figure 48).

Figure 48: Reference and directions

Our reference position is not a concrete value, but we use the first grabbed
picture in the main VI, and the current CarPosEdgeIndex will be our reference.

DAVID2 INVERTED PENDULUM

 58.

10.2.3 A part of our main VI

Figure 49: Measuring the states

10.3 The whole VI
We realized all parts of the system but now we have to connect them to get the
full system in practice. The figure of the full program can be found in the
Appendix G. We append some comment on it. The functions we made has to be
repeated all the time to give the correct values move the cart. We solve this with
a while loop which runs until the user push the Stop button placed on the screen.
In every cycle of the loop we need the three state variables. (We also need the K
values but they are always the same if the system works properly.) The only
procedure we can place out of the loop is the calculation of the start position of
the cart. It is not too complicated because we only have to examine the first frame

DAVID2 INVERTED PENDULUM

 59.

the camera gives us and find the cart on it. Then we use the edge detection
algorithm and store the pixel index it gives. This will be the start position of the
cart. We will need this value in every cycle but since it is always the same we will
only calculate it at once. We can name this index as the reference point of the
position. (In the case of the angle, the reference value is the 0 rad.)
On the figure of the program we can see that we use constant values for the edge
detection. It means that we are always looking for the rod or the cart in the same
line of the grabbed picture. That’s why we need to calibrate the camera properly.
If something change in the environment and we can not calibrate the camera we
can also change the lines.
When the program has calculated all the states we need to use the control law we
mentioned above. We multiply these values by the negative corresponding K
values and then we have to sum them. This value will be the output of the
program and it will be added to the I/O card as input. Actually this is a voltage
value which will pass through the I/O card and “drive” the servo motor through
the servo drive. It is important to save the card from the invalid voltage values.
The card and the servo drive was configured that the voltage value it can get has
to be in the interval of [-10;+10]. In the right side of the figure we can see this
protection function. We always calculate the current output value and if it is out
of the interval we send 0 instead. We note that if the functions work properly it
can not happen to get these critical values.
The other important thing is to choose the update time of the control loop. It can
affect the system because this interval can be different depend on the other
processes running on the computer. To solve this problem we should choose a
proper interval which is big enough to finish all the calculation and small enough
to be able to control the cart. It is possible to use a time delay in the while loop. If
we don’t use this timer, the loop will repeat itself when all the procedures have
finished inside the loop. Our camera can get pictures with 25 fps (frame per
second). It means that it gives pictures in 40 ms intervals, so we decide to choose
this value for the timer.
The other point we have to note is the use of the integrator. This component
calculates the integral of the angle. We made a lot of experiment on the
pendulum in the final phase and we found the factor which effects most of the
trouble is the integrator component. The problem was that it increased too fast
and was not be able to decrease its value in a proper time. We found that we
have to divide the input of the integral by an adequate value to get the result we
want. During the experimentation we found this value to be 25.
We can note one more thing on the figure. This is the AVGMeter constant. This
constant is calculated by the VI that makes the calibration of the camera. This
gives the ratio of pixels and meters.

10.4 Rebuild the VI with Formula Node
The main advantage of LabView is that we can use a lot of predefined VIs. In a
simple program we can easily follow the dataflow if we use the „Highlight

DAVID2 INVERTED PENDULUM

 60.

Execution” option on the block diagram. If we have complicated task to do,
which needs a lot of components we had better to use some faster methods.
Fortunately LabView gives us this opportunity by „Formula Node”. This
component can be found on the Functions Palette/All Functions/Structures. The
main feature of the formula node is that we can use C code to realize an
algorithm. The only thing we have to do is to wire the inputs and outputs we
want to use. It is practical to rewrite the methods we use many times in a loop. If
we take a look to the whole system we can find that the edge detection function
runs in every cycle of the main loop. So first we try to realize this with formula
node. The original SubVI can be found in the 10.2.1 chapter.
In this algorithm the main task is to look for the first pixel in a line which has a
greater difference from the white colour pixel than the predefined threshold
value. The searching method begins from the element we define. Our three
inputs are the line of the picture, the threshold value and the start position of the
search. The output is only the index of the element we are looking for.

Figure 50: The edge detector function realized by formula node

We can see that this form is more simply than the other was (Figure 50). We only
need a while loop which compares the current pixel with the difference of the
white value and the threshold value. If it is greater it will stop and we get the
right index we are looking for.
The next step: calculation of the state variables. We saw in the 10.2 chapter how
we can calculate the state variables in every loop. Now we will show the
calculation of the states by formula node (Figure 51).

DAVID2 INVERTED PENDULUM

 61.

Figure 51: Calculation of the state variables with formula node

We can see that we need six inputs to get the correct output values. This function
will be repeated in every cycle in the main loop. As we mentioned, calculating
the angle of the rod needs two different lines. If we take a look at the code we
notice an unknown element.
We can see the whole VI rewritten with formula nodes in the Appendix H. The
matter of the program is the same only the realization is different. We substitute
the SubVIs written in the other application with the above mentioned codes
using formula nodes.

DAVID2 INVERTED PENDULUM

 62.

11 – RESULTS AND CONCLUSION
During the three month we got familiar with the different concepts of modern
control theory, we came to know the methods can be used in this subject. With
the basis of this we tried to realize a physical system in practice. Our task was to
make an adequate model first. The next step was to choose the state variables of
the system. To a first approximation we used four variables. To make the model
simpler we took a simplification to reduce the 4th order system to a 3rd order
system. It is not always the best way since our system will be more simply but it
is more difficult to make so “sensitive” application. In the end we chose the
simply way instead of the “perfect”. After we got the state variables we used the
vector-matrix form to write the system with differential equations. We used
Matlab and Simulink to model the open and the closed loop system later. To
make the closed loop system we used the control law and pole placement design.
In this method we try to change the poles of the original system to be stable. To
achieve it we had to decide the wanted “characteristic” of the system. This gave
us how the system should behave. We approach this from two sides. We used
the Butterworth-filter and an optimal approximation with LQR (Linear
Quadratic Regulator). These methods help us to find the correct feedback gains
called “K values” according to the control law. After these calculations we
examined the response of the “new” closed loop system. Since we found that the
feedback gains calculated by the Butterworth-filter were better, we decided to
use these results.
In the final phase we “only” had to build the application use our calculations. We
used LabView to make the final application. We wrote several VI-s to get familiar
with all parts of the system for example reading frames from the camera, moving
the cart, use the I/O card. From these parts we were able to make the whole
system.
During the realization we found that the most important thing to calibrate the
camera properly because every state variables are measured by it. If it gives
wrong value the system will not work however the model and the application
are adequate. The first thing which caused problem was the measurement of the
angle. It has to be the most precise value. The minimum angle we could measure
first was approximately 0.5°. We found it was too large to get an adequate result
in the application. So we changed the parameters of the measurement by
increasing the distance between the two lines we were looking for pixels in.
In the end we achieved our goal and our program was able to keep the
pendulum in balance.
However we are rather adept in structured and object oriented programming
languages we found that it is an easy way to realize problems in LabView.
During this scholarship we came to know control theory from a different view
and we saw how usable it is nowadays.

DAVID2 INVERTED PENDULUM

 63.

12 – APPLIED LITERATURE

Charles L. Phillips, Royce D. Harbor: Feedback Control Systems
Prentice Hall, USA, 2000

Katsuhiko Ogata: Modern Control Engineering
Prentice Hall, USA, 1997

Richard C. Dorf, Robert H. Bishop: Modern Control Systems
Prentice Hall, USA, 2005

Thomas Klinger: Image Processing with LabView and IMAQ Vision
Prentice Hall, USA, 2003

National Instruments: LabView7 Express – User Manual
National Instruments: IMAQ PCI/PXI – 1407 – User Manual
National Instruments: LabView7 Express – Measurement Manual

Ingolf-Martin Salen, Thor-Arne Voldsund: Regulering av Invertert Pendel
Rapport

Ålesund University College, Norway, 2004
Vidar Øverås, Øystein Undertun: Regulering av Invertert Pendel Rapport

Ålesund University College, Norway, 2003

URL-s in LITERATURE REVIEW:

http://www.engin.umich.edu/group/ctm/examples/pend/invpen.html
http://www.aptronix.com/fuzzynet/applnote/twostage.htm
http://wwwa.mpi-magdeburg.mpg.de/research/pendel/index_e.html
http://www.obrador.com/EE471Design/EE471Design.htm
http://4north.no-ip.com:8080/pics/pendulum/
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId
=3790&objectType=file
http://home.earthlink.net/~botronics/index/balibot.html

DAVID2 INVERTED PENDULUM – ATTACHMENTS AND APPENDICES Contents

 I.

ATTACHMENTS AND APPENDICES

 A – Matlab M-files
 B – Matlab SimuLink Model files
 C – LabView programs
 D – I/O card
 E – Servo drive
 F – JAI AV50/60 CCD Camera
 G – LabView program: David2InvertedPendulum.vi
 H – LabView program: David2InvertedPendulumFormulaNode.vi

DAVID2 INVERTED PENDULUM – ATTACHMENTS AND APPENDICES A, B and C Appendices

 II.

A – Matlab M-files

These files are available on the CD in the Attachement/Matlab directory.
Ø DIP01_StateSpaceAnalysisM.m
Ø DIP02_StateSpaceAnalysisM.m
Ø DIP03_PolePlacementM1.m
Ø DIP04_PolePlacementM2.m
Ø DIP05_PolePlacementM3.m
Ø DIP06_PolePlacementM4.m

B – Matlab SimuLink Model files
These files are available on the CD in the Attachement/SimuLink directory.

Ø DIP01_StateSpaceAnalysisMDL.mdl
Ø DIP02_StateSpaceAnalysisMDL.mdl
Ø DIP04_PolePlacementMDL.mdl

C – LabView programs

These files are available on the CD in the Attachement/LabView directory.
Ø IMAQPCI_1407.vi
Ø ServoDrive.vi
Ø EdgeIndex.vi
Ø Calibration.vi
Ø David2InvertedPendulum.vi
Ø David2InvertedPendulumFormulaNode.vi

DAVID2 INVERTED PENDULUM – ATTACHMENTS AND APPENDICES D Appendix

 III.

DAVID2 INVERTED PENDULUM – ATTACHMENTS AND APPENDICES E Appendix

 IV.

DAVID2 INVERTED PENDULUM – ATTACHMENTS AND APPENDICES F Appendix

 V.

DAVID2 INVERTED PENDULUM – ATTACHMENTS AND APPENDICES F Appendix

 VI.

