
1

Application of Petri-Nets
in Object-Oriented Environment

Dávid Bedők
John von Neumann Faculty of Informatics

Óbuda University, Budapest, Hungary
e-mail: bedok.david@nik.uni-obuda.hu

Abstract—The Petri-net is an effective modeling tool, especially
in the area of the concurrent events, and it has a very intuitive
characteristic: the non-deterministic simulation. This behavior
is hard to be implemented in an imperative language, and its
parameters even more difficult to be changed. This was the reason
why this paper was selected the aim: embed Petri-nets into an
imperative high-level language and use its beneficial properties
as clean as it possible.

To reach that goal, first of all a well-formed description was
needed about Petri-nets, and its extensions, and also need a
new extension to model the object-oriented events inside the
simulation. We have to identify the moments of the transitions’
activation (transition firing), the token player movement and the
change of the token distribution.

When somebody wants to implement a state machine which
able to handle the transitions between the application’s states, a
Petri-net model creation may be needed to help the understanding
of the task. In that case the model should not be only kind of
static document of the product. With a new Petri-net extension
it can be highlight connections between the model and the real
source code events. If somebody changes the model it will take
effect ”immediately” in the product. In the agile world the IT
industry is also changing: the speed of the changes is faster than
the chance to generate a modified model of any applications.

Index Terms—Petri nets, object-oriented approach, simulation,
net extension, modeling

I. INTRODUCTION

Why is it an interesting area? It is essential to answer
this question. When a program can be created and used
an imperative language (like C# or Java), most of the time
instructions and commands are written in imperative mood to
define for the computer how to solve the problem. On the
other hand, at the world of the declarative thinking we try
to describe what we want to solve, and don’t care about the
”How-To’s”. Therefore the imperative languages often lost in
the details, and if we want to modify the whole background
logic, we have to dig deep inside the code. Perhaps a developer
generation has been already born, who only integrate pre-
prepared API in duty time, instead of implementing a nice
algorithm for the eight queen problem. For that generation a
declarative modification is more manageable, and it will be a
big plus if this modification immediately takes effect on the
running code.

Live visualization, live or generated documentations are
more and more important things nowadays. Currently a lot of
people are working in the information technology ecosystem,
and not all of them are engineers. The way how an IT issue

Figure 1: Sample Petri-net

be solved is changing. Not only technical skills are needed
but also it would be required to deliver quality, readable
and maintainable source code, nice graphical interfaces and
aim professional user experiments. An engineer is working
in that thing with a lot of people who has several soft skills
instead of/among of technical knowledge. The modeling was
always important and it helped the communication between the
different areas, but in an agile world the speed of the changes
are higher than the opportunity of generating or creating a
modified model between the groups. One solution could be a
live modeling toolset which helps for instance the managers
and the front-end developers/testers to understand the behavior
of the application in the current release.

II. PETRI-NETS

Today the Petri-nets are classified as a mathematical mod-
eling language which is a good primary for describing dis-
tributed and parallel systems [1]. It offers graphical and
mathematical description at the same time and it allows us
to quickly review complex systems, while it is able to find the
details as well. In today’s modern computer science it has a
key role in workflow-driven modeling/management. Perhaps
its significance is even more in terms of the non-deterministic
systems. In such systems the next state is cannot be known
even from another well-described state.

Essentially Petri-net (or Place/Transition net) is a directed
and weighted bipartite graph wherein two types of nodes
occur: position and transition (Fig. 1). Weighted directed edges
can be found between positions and transitions. A position is
called input place if directed edge binds it to a transition,
and output place if a directed edge binds a transition to that
position.

2

Each position can contain any number of tokens. The tokens
are commonly called players as well, the distribution of these
determines the actual state of the Petri-net (like the serializable
fields in an object-oriented environment). By definition a
transition fires when its all input places contain at least as
many tokens as the weight of the related edges. After firing
as many token players will appear in all the output places
of the transition as the weight of the related edges between
the transition and the output places. These two parts of the
firing process are entirely atomic operations, they cannot be
distributed and no process can be wedged here. It is worth
mentioning that the number of tokens is not a constant number
in a Petri-net.

The firing order is fully non-deterministic. If two different
transitions can be ready to fire in one state, any transitions
may be activated and this selection process is random in the
general case. The system does not exclude additional rules
which influence the choosing process in that special case. This
aforementioned nature allows us to simulate the concurrent
behavior of a distributed system in a general and in a priority
case too.

There are two special transitions as well: the source and the
absorbing transitions. One of them has not got input places and
it can be firing at any time while the other one has not got
output places and when it fires it absorbs the token players.

A. Extensions

A huge problem has to be talked about Petri-nets. If
somebody wants to create a simpler but real Petri-net, a quite
big graph will be built and this reduces the transparency which
is something that we surely do not want when modelling a
product. To compensate this several Petri-net extensions can be
used. Some of them are entirely backward compatible with the
original nets, but there are some High-Level Petrinets which
were originally created for a specialized areas.

Reset arcs can be used in a net which is not a condition
of the firing but when the transition fires it will empty the
connected position (it removes the token players). It has only
one orientation, it goes from position to transition, and it has
not got weight. The capacity limit is another extension, it can
be set for a position. This defines the maximum number of
tokens in the related position, and it can prevent the firing
process because of limit violation. Something similar is the
inhibitor arc where the firing process will be disabled until
the position contains tokens. Inhibitor arc may have weight,
this marks the number of tokens where the blocking is active.

In the Prioritised Petri-nets a priority can be set for each
transition. This changes the token game, because a transition
can fire only when there is not any other higher priority ready-
to-fire transiton. The behavior of this type of Petri-nets remains
non-deterministic if there are ready-to-fire transitions which
have the same priority.

The Coloured Petri-nets belong to the group of High-Level
Petri-nets. Here the token players are not identical, each token
has a value and most of the time a type as well. It allows
executing complex operations inside the model. To support that
edge- and guard-expressions can be created. A transition will

not fire if the expression of the related edge is invalid, and the
output tokens are also be calculated based on the expressions
on the output side. From this perspective the Coloured Petri-
net is some kind of high-level programming language [2].

A very interesting area is the world of Algebraic Petri-nets
[3]. The token players have algebraic datatypes which are sim-
ilar to the Coloured Petri-nets, but here we get some predefined
operations/rules/calculations as well. Jacques Vautherin made
the first APN in 1985, later Wolfang Reisig improved it.

We can talk about Hierarchical Petri-nets which are the
parents of the Object Petri-nets. The embedded nets were
introduced here: multiple nets can communicate with each
other via synchronization. A good implementation of that is
the Concurrent OO Petri Nets [4] which are based on the
Algebraic Petri-nets.

III. MATHEMATICAL MODELS

Tadao Murata created a mathematical description of the
Petri-nets in 1989 [5].
Network Graph1: G = (P, T ,W) where

Places: p ∈ P
Transitions: t ∈ T
Weights of edges/arcs: w ∈ W where

W : (P × T) ∪ (T × P)→ N+

Directed edges/Arcs: a ∈ A where
any a ∈ A arc has a w(a) ∈ N+ weight

Furthermore P and T are disjoint sets.
A •t notation is defined for marking the input places of a

t ∈ T transition: •t = {p ∈ P|W (p, t) > 0}, and also t•
notation is defined for marking the output places of a t ∈ T
transition: t• = {p ∈ P|W (t, p) > 0}. Along the same rule •p
and p• notations are defined for marking a set of transitions
from where it may get (•p = {t ∈ T |W (t, p) > 0}) or to
whom it may give tokens (p• = {t ∈ T |W (p, t) > 0}).

mpi means a state of a pi ∈ P position which is the number
of tokens in that place. TheM marks a Marking vector which
contains all p ∈ P positions’ mp values in the whole G Petrinet
(M = [mp1

,mp2
..mpk

]T where G net has k positions). M
is a state of the G net.M0 marks the initial token distribution
vector.

In practice G = (P, T ,W,M0) form is used instead of
G = (P, T ,W) to describe a Petri-net.

IV. PETRI NET MARKUP LANGUAGE (PNML)

To describe a Petri-net in a clear and accurate form is
very important not only in mathematics but also in computer
science. For this purpose the Petri Net Markup Language [6]
was created. Originally it was the output format of the Petri
Net Kernel application [7], but later on it became kind of
standard XML based description of the Petri-nets. Three kinds
of nets can be described with PNML:
• Original Petri-nets (Place/Transition nets)
• High-Level Petri-nets (e.g.: Coloured Petri nets)
• Symmetric nets

1Notation: N+ the set of (positive) natural numbers

3

The PNML was designed openness, so additional properties
of the elements can be added. The supplementary information
is stored in a standalone Petri Net Type Definition (PNTD)
file.

V. RELATED WORKS

There are lots of Petri-net simulators on the Internet, but
Renew [8] a little bit different than the others and it has some
interesting objectives which are partly similar than the goals
of this paper. Renew looks the Petri-nets as object-oriented
classes, and before the token game it instantiates the nets to
play the simulation. Renew calls this type of net as Reference
net, and expressions can be set many points of it just like in
a Coloured Petri-net. The syntax of the expressions is kind
of simplified Java. A very interesting part of this application
that the Reference nets can be loaded in a Java application
(as an instance of the de.renew.net.NetInstance class), and the
simulation can be played via the API of this product. This
possibility is very similar than the main target of this work.

According to the above-mentioned concept the instances
of the simulated networks are all unique (like in the object
oriented environment) and its can be initialized during the
creation (some kind of constructors). In the token gameplay
Java objects can be reached and methods are able to be
called, etc. It is important to note that all operations, methods,
initializations have to be defined in advance inside the source
code of the Reference net.

In this network not only the tokens have the type but also
the positions as well. This type defines what kind of tokens
can be held in that place. If the position has an initialization
block, its result will be the initial number of tokens, but there
are global initialization blocks as well to set the initial token
distribution. These lines of code are executed before the token
gameplay only once. The edge expressions are also a parallel
thing with the Coloured Petri-nets. At the firing process of
a transition the expression defines the weight of the current
edge. Of course the guard expressions are also valid and these
must return a boolean value.

Inside the expressions method calls can be used which
compatible the type of the tokens, so in case they are
syntactically correct. The methods may run very often, so
performance would be a key factor while planning. To check
which transition will be the next firing one we all expressions
have to be executed in the entire network. That is why any
number of additional actions can be defined in the network as
well, and these actions execute only after a transition fires.

All of these great properties would not be so convincing,
because the Renew’s Reference net is only a type of Coloured
Petri nets so far, it is some kind of high level programming
language, moreover the Java language has advantages and
disadvantages too in that context. But in Renew synchro-
nized connections can be created between two independent
Reference nets. In order to achieve this downlink and uplink
properties have to be set. With these features two transitions
may be run at the very same time (but in two different
Reference nets).

VI. SYSTEM DESIGN

To goal of this paper to create a new Petri net extension
where Petri events are able to be set inside the net. With
that events connections will be created between the simulation
and a real application whatever program language is used. To
reach that purpose a few things have to be done. First of all
the properties of the Petri-nets have to be defined, e.g. which
compatible and already existing extensions will be used, and
how the network will be stored/persisted in a crossplatform
and language independent way.

In an object-oriented environment the possible number of
transitions are considered between object states as a finite
well-defined and closed set. The simplicity and transparency
are very important because the complex transitions may have
become unmanageable during implementation. If the non-
deterministic token gameplay is able to be wrapped in an
object-oriented application, manageable but complex (non-
deterministic) behavior will be got meanwhile the well-defined
boundaries of the objects will not be violated.

Of course all of the extensions cannot be taken into account,
on the one hand it may have contradictions, on the other hand
it will not help to support the original goal. Nevertheless the
following extensions will be used in the new model:
• reset arcs
• capacity limits
• inhibitor arcs
• prioritized Petri-nets
Using the Petri Net Markup Language would be a very good

and elegant solution to persist the model, and a new Petri Net
Type Definition would be created to store the properties of the
new Petri-net extension, but it would take too much time to get
enough knowledge about PNML and PNTD, so these feature
remains in design phase.

There are some similarities between the new extension and
the Reference-net of the Renew application, but in fact the
purpose of the Renew is quite different. Renew creates a new
High-Level Petri-net, just like the Coloured Petri-nets. It can
be defined and modelled complex algorithms with these. It was
not a goal to create a High-Level Petri-net and hardcode any
complex algorithms, it is enough if the nets can be modelled
in lower levels (so it will have lots of junctions). A simpler
model will be used inside an object-oriented application for
instance as part of a state machine. The token gameplay can
be played and planned without the real business logic in a
Petri-net simulator, but the real advantages of that extension
that the same non-deterministic behavior can be used in an
application which conceals the entire Petri-net token game in
the background.

VII. PORTRAYAL OF THE NETWORK

One of the best choice to store a graph if its data is serialized
into an XML document (Src. 1). This causes a well-defined
hierarchy and a cross-platform behavior. The format of that
document is clear because of the XSD scheme files and XML
documents can be created with any simple text editor2. The lots

2The author of this project also created a unique full-featured graphical
editor for these kind of Petri-nets and its extensions, but this paper will not
cover this part of the project.

4

1<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =” u t f−8” ?>
2<p n : P e t r i N e t w o r k xmlns :pn =” h t t p : / / p e t r i n e t w o r k . hu ”>
3<p n : N e t w o r k S e t t i n g s>
4[. .]
5</ p n : N e t w o r k S e t t i n g s>
6<p n : E v e n t s>
7[. .]
8</ p n : E v e n t s>
9<p n : V i s u a l S e t t i n g s>
10[. .]
11</ p n : V i s u a l S e t t i n g s>
12<p n : V i s i b l e S e t t i n g s>
13[. .]
14</ p n : V i s i b l e S e t t i n g s>
15<pn:Network>
16<n e i t : N e t w o r k I t e m s x m l n s : n e i t =” h t t p : / / n e t w o r k i t e m . p e t r i n e t w o r k . hu ”>
17[. .]
18</ n e i t : N e t w o r k I t e m s>
19<n e i t : E d g e s x m l n s : n e i t =” h t t p : / / n e t w o r k i t e m . p e t r i n e t w o r k . hu ”>
20[. .]
21</ n e i t : E d g e s>
22<n e i t : N o t e s x m l n s : n e i t =” h t t p : / / n e t w o r k i t e m . p e t r i n e t w o r k . hu ”>
23[. .]
24</ n e i t : N o t e s>
25</ pn :Network>
26<p n : S t a t e H i e r a r c h y>
27<s h : S t a t e s x m l n s : s h =” h t t p : / / s t a t e h i e r a r c h y . p e t r i n e t w o r k . hu ”>
28[. .]
29</ s h : S t a t e s>
30<s h : E d g e s x m l n s : s h =” h t t p : / / s t a t e h i e r a r c h y . p e t r i n e t w o r k . hu ”>
31[. .]
32</ s h : E d g e s>
33</ p n : S t a t e H i e r a r c h y>
34<S i g n a t u r e xmlns=” h t t p : / /www. w3 . org / 2 0 0 0 / 0 9 / xmlds ig # ”>
35[. .]
36</ S i g n a t u r e>
37</ p n : P e t r i N e t w o r k>

Source 1: The frame of a *.pn.xml file

of unique XML namespaces and the separated XSD scheme
files help to integrate the Petri-nets to any programming
language. This is very important, because in that project the
Petri-net models will be used as part of a production code
(e.g.: the model is a real state machine in an application).

The root of the document is the pn:PetriNetwork element. Its
children are the network’s global settings (pn:NetworkSettings,
pn:VisualSettings and pn:VisibleSettings), the global events
(pn:Events), the topology (pn:Network) and the state hierarchy
of the network (pn:StateHierarchy). The root element and all
of its children are protected by a digital signature (Signature
element is defined by the W3C standards’s XML digital
signature [9]).

1) Global events: According to the new extension of the
Petri-net global events can be defined for the network (Src.
2). All of the events belong to the http://event.petrinetwork.hu
namespace, but the names of the tags are different due to the
clarity of the XSD. The type of the global events is one of the
following:
• DEADLOCK
• CYCLE
• TICK
Only the name identifies an event (pe:name), and this is not

unique intentionally. If the same name is set for more than one
event, you the association can be simplified between the events
and the event-handler(s). For example if all of the Petri events
are handled in one single method, this feature might be a good

1<p n : E v e n t s>
2<p e : E v e n t pe:name=” s a m p l e e v e n t ” p e : t y p e =”DEADLOCK” x m l n s : p e =” h t t p : / / e v e n t .

p e t r i n e t w o r k . hu ” />
3[. .]
4</ p n : E v e n t s>

Source 2: Global Petri events

1<pn:Network>
2<n e i t : N e t w o r k I t e m s x m l n s : n e i t =” h t t p : / / n e t w o r k i t e m . p e t r i n e t w o r k . hu ”>
3<i : P o s i t i o n . . . x m l n s : i =” h t t p : / / i t em . p e t r i n e t w o r k . hu ”>
4[. .]
5</ i : P o s i t i o n>
6<i : T r a n s i t i o n . . . x m l n s : i =” h t t p : / / i t em . p e t r i n e t w o r k . hu ”>
7[. .]
8</ i : T r a n s i t i o n>
9[. .]
10</ n e i t : N e t w o r k I t e m s>
11<n e i t : E d g e s x m l n s : n e i t =” h t t p : / / n e t w o r k i t e m . p e t r i n e t w o r k . hu ”>
12<edg:Edge . . . xmlns : edg =” h t t p : / / edge . p e t r i n e t w o r k . hu ”>
13[. .]
14</ edg :Edge>
15[. .]
16</ n e i t : E d g e s>
17<n e i t : N o t e s x m l n s : n e i t =” h t t p : / / n e t w o r k i t e m . p e t r i n e t w o r k . hu ”>
18<i : N o t e . . . x m l n s : i =” h t t p : / / i t em . p e t r i n e t w o r k . hu ”>
19[. .]
20</ i : N o t e>
21[. .]
22</ n e i t : N o t e s>
23</ pn :Network>

Source 3: XML model of network topology

option.

2) Topology: The children of the pn:Network element de-
fine the fundamental parts of the Petri network (Scr. 3) and
the related annotations (i:Note).

Each position can have some Petri events (pe:ItemEvent),
which type could be the followings:

• Before activation (PREACTIVATE)
• After activation (POSTACTIVATE)

3) State hierarchy: In the Petri-net’s XML file the entire
state hierarchy guided graph can be stored. This is a separate
network where each junction is a state of the original Petri-
net, and two junctions are connected if the target state can
be reachable from the source state, while exactly one of
the transitions of the Petri-network fires. Petri events can
be defined to any states (pe:StateEvent element), which type
could be the followings:

• Before activation (PREACTIVATE)
• After activation (POSTACTIVATE)

1<p n : S t a t e H i e r a r c h y>
2<s h : S t a t e s x m l n s : s h =” h t t p : / / s t a t e h i e r a r c h y . p e t r i n e t w o r k . hu ”>
3<s v : S t a t e V e c t o r sv :name =”m0” s v : u n i d =” 31 ” s v : r a d i u s =” 20 ” x m l n s : s v =” h t t p : / /

s t a t e v e c t o r . p e t r i n e t w o r k . hu ”>
4<p f : S t a t e O r i g o p f : x =” 26 ” p f : y =” 27 ” x m l n s : p f =” h t t p : / / p o i n t f . p e t r i n e t w o r k . hu ” />
5<s v : T o k e n D i s t r i b u t i o n s>
6<s v : P o s i t i o n s v : u n i d =” 0 ”>
7<sv :Token s v : u n i d =” 26 ” />
8[. .]
9</ s v : P o s i t i o n>
10[. .]
11</ s v : T o k e n D i s t r i b u t i o n s>
12<s v : E v e n t s>
13<p e : S t a t e E v e n t pe:name=” s t a t e e v e n t ” p e : t y p e =”PREACTIVATE” x m l n s : p e =” h t t p : / /

e v e n t . p e t r i n e t w o r k . hu ” />
14[. .]
15</ s v : E v e n t s>
16</ s v : S t a t e V e c t o r>
17</ s h : S t a t e s>
18<s h : E d g e s x m l n s : s h =” h t t p : / / s t a t e h i e r a r c h y . p e t r i n e t w o r k . hu ”>
19<s e : S t a t e E d g e x m l n s : s e =” h t t p : / / s t a t e e d g e . p e t r i n e t w o r k . hu ”>
20<s e : S t a r t S t a t e>31</ s e : S t a r t S t a t e>
21<s e : E n d S t a t e>28</ s e : E n d S t a t e>
22</ s e : S t a t e E d g e>
23[. .]
24</ s h : E d g e s>
25</ p n : S t a t e H i e r a r c h y>

Source 4: State hierarchy

5

1p u b l i c d e l e g a t e vo id P e t r i H a n d l e r (A b s t r a c t E v e n t D r i v e n I t e m
item , EventType even tType) ;

Source 5: PetriHandler

VIII. APPLICATION OF MODEL IN OO ENVIRONMENT

Without the Petri events the created Petri-net can be used
for simulation or educational usage3 With the Petri events the
model can be used in production environment, for example as
the engine of a state machine. In that case the Petri-net with
the new Petri events works in the background according to the
rules of the Petri-networks, but it stays hidden for the user of
the application.

In order to use the Petri-network in any object-oriented
environment the following steps are necessary:
• The data of the network’s topology have to be loaded into

the memory (open PN.XML file)
• The visualization properties of the network can be omit-

ted
• The firing process of the opened network has to be played

in the application
All of these features are part of an API which is a key part
of the new Petri-net extension.

IX. API OF PETRI-EVENTS

All the entities which can be held Petri-events (Position,
Transition and StateVector) have a common base class, called
AbstractEventDrivenItem, because there are some common
responsibilities.

With the API the developer can be read the following
properties of the network:
• the color of a token player
• the weight, type and junction points of an edge
• the text of any annotation (comment) and its owner
• the capacity and the list of tokens of a position
• the priority and the type of a transition
• the entire token distribution of a state vector
• the EventTrunk of any AbstractEventDrivenItem entity
• the non-visual properties of the network (CertificateSub-

ject, Description, FileName, FireRule, LastModification-
Data and Name)

• the EventTrunk of the network
• list of all state’s names in the network (StatesName)
• all unique (!) event’s names in the network
With the EventTrunk instance the developer can regis-

ter/bind new events. With this option the same model can be
used in different applications if the model is general enough.
The network has a fire() method. If this is performed exactly
one transition of the network will be fired. It returns an
instance of FireReturn which contains a FireEvent enum value.
With this value the developer can find out the necessity of
the next firing (possible values are the followings: INITFIRE,
NORMALFIRE, RESETFIRE or DEADLOCK). In the case

3There is a unique Petri-net editor which can open the *.pn.xml files, but
this is not the scope of this paper.

1u s i n g P e t r i N e t w o r k L i b r a r y . Model . NetworkI tem ;
2[. .]
3Random rand = new Random () ;
4P e t r i N e t w o r k ne twork = P e t r i N e t w o r k . openFromXml (rand , @”

n e t w o r k s\Demo . pn . xml ”) ;

Source 6: Open a Petri-network

of DEADLOCK the application can be stopped calling the
fire() method, but this might be the developer’s decision if
RESETFIRE is gotten. In that case the network reached a
state which has already happened (so this implies a kind of
cycle, but because of the non-deterministic behavior this is not
inevitable).

In order to build connections between the API and the
application the developer has to bind the event handlers via
the PetriHandler delegate (Src. 6). The class of the network
keeps a dictionary of Dictionary¡String, PetriHandler¿ where
the unique Petri-event names are the keys. With the instance
of Petri network the user can register any event handlers via
the bindPetriEvent() method (or remove the connection via the
unbindPetriEvent() method). The signature of the PetriHandler
delegate contains an AbstractEventDrivenItem instance (event
source) and the type of the event, so the developer might use
that information in the event handler’s code.

The Petri-network has to be loaded into the memory before
usage. This step as simple as it is (Src. 6). This static method
will throw validation exception if the XML cannot be validated
by the official XSD, but it will not throw anything if the
integrity of the network is inadequate4.

With the instance of the network and the name of the Petri
event the event handlers can be registered (Src. 7). If the names
of the events are unknown, the EventsName property of the
network may be used to get a list of all available event names.
In that case a general event handler has to be written or some
conditional statements have to be used to separate the different
use cases.

After the network is opened and the event handlers are
bounded the token game has been ready to play (Src. 8).

X. RESULTS AND TESTING

At the end let us check out a lifelike but fictional example.
Create a horserace game, where the accidental events which
may happen at the court are driven by the Petri-net engine. If a
simple random simulation is used for the game, the connection
would be lost between the reality. Using a Petri-net (Fig. 2)
can simulate lifelike events which are connected to each other.
In the simplified race game the following rules are valid:

4This is an intentional behavior, the usage of the application is not wanted
to restrict because of the validity of the network’s certificate. But of course
the network cannot be modified with the official simulator application if the
validation unguaranteed.

1ne twork . b i n d P e t r i E v e n t (”dummy” , new P e t r i H a n d l e r (
e v e n t H a n d l e r)) ;

Source 7: Register named event

6

Figure 2: Horserace’s Petri-net

• after the first curve a random order is going to be formed
• any horse can get stuck in anytime at the court
• there are outruns/overtakings where the tracks cross each

other
The end transition has three input positions (goal1, goal2

and goal3). All of these have a POSTACTIVATE Petri event,
and the name of these events are goal in all cases. The final
sequence will be formed by the ordered occurrence of the goal
Petri events.

After the model was built in a simulator and it was tested
with several running branches, a game has been ready to
be created and the API of that Petri-net and its Petri event
extension will be used (Src. 9). What was the original objective
of this horserace example? Create something which is clean
and declarative enough to simulate a horserace, and of course
a random horse ordering is got as well.

XI. CONCLUSION

The following steps describe a typical scenario of the usage
of the new Petri-net extension:
• create a low level Petri-net with the above mentioned

standard extensions
• define Petri events in several parts of the network
• persist the Petri-net in a cross-platform and well-defined

XML document
• load the persisted Petri-net in an object-oriented applica-

tion via the API of the new extension
• associate the tokens and the object instances if needed
• create event handlers for the Petri-events which can be

obtained from the model via the API of the new extension
• execute the token gameplay (typically in a background

thread)

1u s i n g P e t r i N e t w o r k L i b r a r y . Model . NetworkI tem ;
2[. .]
3F i r e E v e n t f i r e E v e n t = F i r e E v e n t . INITFIRE ;
4F i r e R e t u r n f i r e R e t u r n = n u l l ;
5w h i l e (! F i r e E v e n t .DEADLOCK. Eq ua l s (f i r e E v e n t))
6{
7f i r e R e t u r n = ne twork . f i r e () ;
8System . Conso le . W r i t e L i n e (f i r e R e t u r n) ;
9f i r e E v e n t = f i r e R e t u r n . F i r e E v e n t ;
10}

Source 8: Token game

1u s i n g P e t r i N e t w o r k L i b r a r y . Model . NetworkI tem ;
2[. .]
3p r i v a t e P e t r i N e t w o r k ne twork ;
4p r i v a t e L i s t<Token> r e s u l t ;
5[. .]
6t h i s . ne twork = P e t r i N e t w o r k . openFromXml (t h i s . rand , @”

ne twork\H o r s e r a c e . pn . xml ”) ;
7t h i s . ne twork . b i n d P e t r i E v e n t (” g o a l ” , new P e t r i H a n d l e r (

e v e n t H a n d l e r)) ;
8[. .]
9p r i v a t e vo id e v e n t H a n d l e r (A b s t r a c t E v e n t D r i v e n I t e m item ,

EventType even tType) {
10i f (i t em i s P o s i t i o n) {
11P o s i t i o n p o s i t i o n = (P o s i t i o n) i t em ;
12L i s t<Token> t o k e n s = p o s i t i o n . Tokens ;
13i f ((t o k e n s != n u l l) && (t o k e n s . Count == 1)) {
14t h i s . r e s u l t . Add (t o k e n s [0]) ;
15}
16}
17}
18[. .]
19p r i v a t e vo id s t a r t ()
20{
21t h i s . r e s u l t . C l e a r () ;
22t h i s . ne twork . s e t S t a r t S t a t e (” s t a r t ”) ;
23F i r e E v e n t f i r e E v e n t = F i r e E v e n t . INITFIRE ;
24F i r e R e t u r n f i r e R e t u r n = n u l l ;
25w h i l e (! F i r e E v e n t .DEADLOCK. Eq ua l s (f i r e E v e n t))
26{
27f i r e R e t u r n = t h i s . ne twork . f i r e () ;
28f i r e E v e n t = f i r e R e t u r n . F i r e E v e n t ;
29}
30}

Source 9: Horserace code example

After while the steps are performed (or a loop is created
in a background thread) the event handlers will be activated
and our application’s state will be changed according to the
Petri-net rules.

REFERENCES

[1] Wolfgang Reisig: Understanding Petri Nets: Modeling Techniques, Anal-
ysis Methods, Case Studies (Springer) July 2013

[2] Kurt Jensen, Lars Michael Kristensen: Coloured Petri Nets (Springer-
Verlag Berlin Heidelberg) July 2009

[3] Eike Best, Raymond Devillers, Maciej Koutny: Petri Net Algebra
(Springer-Verlag Berlin Heidelberg) 2001

[4] Gul A. Agha, Fiorella De Cindio, Grzegorz Rozenberg: Concurrent
Object-Oriented Programming and Petri Nets (Springer-Verlag Berlin
Heidelberg) 2001

[5] Tadao Murata: Petri Nets Properties, Analysis and Applications (Proceed-
ing of the IEEE, vol. 77, no. 4)
http://www.di.univaq.it/adimarco/teaching/bioinfo15/paper.pdf April 1989

[6] Petri Net Markup Language
http://www.pnml.org (last visit September 2015)

[7] Erik Fischer: Petri Net Kernel
http://www2.informatik.hu-berlin.de/top/pnk (last update May 2002)

[8] Renew (University of Hamburg)
http://www.renew.de (last update June 2016)

[9] W3C XML Signature Syntax and Processing (Second Edition).
http://www.w3.org/TR/xmldsig-core/ (2008)

