
Application of Petri-Nets in
Object-Oriented Environment
17th International Symposium on
Computational Intelligence and Informatics
November 17-19, 2016 Budapest, Hungary

Dávid Bedők
Óbuda University
John von Neumann Faculty of Informatics
bedok.david@nik.uni-obuda.hu

mailto:bedok.david@nik.uni-obuda.hu
mailto:bedok.david@nik.uni-obuda.hu

Abstract

Petri nets
● Effective modeling tool

○ graphical and mathematical description at
the same time

○ quickly review complex systems

● Intuitive characteristics
○ nondeterministic simulations

This kind of behavior is hard to be implemented in an
imperative language.

Objective: embed Petri-nets into an imperative
high-level language and use its beneficial properties.

Why?

● Live visualization
● Live or generated documentations
Non or not-only technical skills
● Deliver quality
● Readable and maintainable source code
● Nice graphical user interfaces
● Professional user experiments

Change the model
and republish it.

Modeling tools and
models between
different areas.

Change /
Alteration

How often?

Petri nets or Place/Transition nets

● Mathematical modeling language for
describing distributed and parallel
systems

● Directed and weighted bipartite
graph
○ two types of nodes: position and transition
○ weighted directed edges between positions

and transitions

● Each position can contain any
number of tokens
○ the distribution of the tokens determines the

actual state of the Petri-net

Carl Adam Petri
(12 July 1926 – 2 July 2010)

● The firing order is fully nondeterministic

Petri nets or Place/Transition nets

● Mathematical modeling language for
describing distributed and parallel
systems

● Directed and weighted bipartite
graph
○ two types of nodes: position and transition
○ weighted directed edges between positions

and transitions

● Each position can contain any
number of tokens
○ the distribution of the tokens determines the

actual state of the Petri-net

● The firing order is fully nondeterministic

Extensions

Problem: simple but real system → quite big
graph → this reduces the transparency
Solution: Petri-net extensions / High-Level PNs
nets
● Reset arc
● Prioritised Petri-nets
● Coloured Petri-nets
● Algebraic Petri-nets
● Hierarchical Petri-nets
● Object Petri-nets
● etc.

Representation

Petri Net Markup Language (PNML)
● output format of the Petri Net Kernel

application
● standard XML based description

○ Original Petri-nets (Place/Transition nets)
○ High-Level Petri-nets (e.g.: Coloured Petri nets)
○ Symmetric nets

● openness, expandable
○ standalone Petri Net Type Definition (PNTD) file

Related works

Renew
● Petri-nets → object-oriented classes (Reference net)
● edge and guard expressions

○ like in a Coloured Petri-net
○ simplified Java syntax

● the Reference nets can be loaded in a Java application
○ the simulation can be played via the API

All operations, methods, initializations have to be
defined in advance inside the source code of the
Reference net.

System design

With that events connections will be created between the
simulation and a real application whatever program
language is used.

The following extensions will be used in the new model:
● reset arcs
● capacity limits
● inhibitor arcs
● prioritized Petri-nets
● Petri events (new)

Create a new Petri net extension where Petri events are
able to be set inside the net.

Preparations

● a well-formed description
● a new extension to model the object-oriented

events
● identify the Petri events

○ global events (e.g. cycle or deadlock situation)
○ moments of the transitions' activation (before/after a

transition fires)
○ token player movement (before/after a position

gets/loses token players)
○ change of the token distribution (before/after a

specified state is activated)

Portrayal of the network

● XML document
● well-defined hierarchy and a cross-platform behavior
● clear and detailed XSD schema files

<?xml version="1.0" encoding="utf-8"?>
<pn:PetriNetwork xmlns:pn="http://petrinetwork.hu">
 <pn:NetworkSettings>
 [..]
 </pn:NetworkSettings>
 <pn:Network>
 <neit:NetworkItems xmlns:neit="http://networkitem.petrinetwork.hu">

 [..]
 </neit:NetworkItems>
 <neit:Edges xmlns:neit="http://networkitem.petrinetwork.hu">

 [..]
 </neit:Edges>
 </pn:Network>
</pn:PetriNetwork>

PetriNetwork

Portrayal of the events

<i:Position bi:name="P1" bi:unid="1" bi:showannotation="True"
i:radius="20" pos:capacitylimit="0">

<pf:TopLeftPoint pf:x="92" pf:y="188" />
<pf:Origo pf:x="112" pf:y="208" />
<pf:LabelOffset pf:x="0" pf:y="0" />
<sf:Size sf:width="40" sf:height="40" />
<pos:Tokens>
 <tok:Token bi:name="1" bi:unid="26" bi:showannotation="True">

<c:TokenColor c:red="0" c:green="0"c:blue="0"c:alpha="5" />
 </tok:Token>
 [..]
</pos:Tokens>
<i:Events>
 <pe:ItemEvent pe:name="test" pe:type="PREACTIVATE"

xmlns:pe="http://event.petrinetwork.hu" />
 [..]
</i:Events>

</i:Position>

Position

Events

● Global events
○ DEADLOCK
○ CYCLE
○ TICK

● Topology items (Position/Transition)
○ Before activation (PREACTIVATE)
○ After activation (POSTACTIVATE)

● State hierarchy
○ Before activation (PREACTIVATE)
○ After activation (POSTACTIVATE)

Only the type and the name identifies an event, and the
name is not unique intentionally.

Application in OO environment

Steps
● The data of the network's topology have to be loaded

into the memory
● The visualization properties of the network can be

omitted
● The firing process of the opened network has to be

played in the application

All of these features are part of an API which is a key part
of the new Petri-net extension.

API of Petri-events

● the color of a token player
● the weight, type and junction points of an edge
● the text of any annotation (comment) and its owner
● the capacity and the list of tokens of a position
● the priority and the type of a transition
● the entire token distribution of a state vector
● the EventTrunk of any entity and the network
● the non-visual properties of the network
● list of all state's names in the network
● all unique (!) event's names in the network

Token gameplay

using PetriNetworkLibrary.Model.NetworkItem;
[..]
Random rand = new Random();
PetriNetwork network = PetriNetwork.openFromXml(rand,
@"networks\Demo.pn.xml");

Open

public delegate void PetriHandler(AbstractEventDrivenItem
item, EventType eventType);

Delegate

In order to build connections between the API and the application the
developer has to bind the event handlers via the PetriHandler
delegate.

Token gameplay

using PetriNetworkLibrary.Model.NetworkItem;
[..]
List<String> listOfEvents = network.EventsName;
foreach (String item in listOfEvents)
{

network.bindPetriEvent(item, new PetriHandler(eventHandler));
}

Bind Petri Events

using PetriNetworkLibrary.Model.NetworkItem;
[..]
private static void eventHandler(AbstractEventDrivenItem item, EventType
eventType)
{

StringBuilder sb = new StringBuilder(100);
sb.Append("eventHandler(item: " + item.Name + ", eventType:

"+eventType+")");
if (item is Position) {

sb.Append(" token count: " + ((Position)item).TokenCount);
}
System.Console.WriteLine(sb.ToString());

}

Event Handler

Token gameplay

using PetriNetworkLibrary.Model.NetworkItem;
[..]
FireEvent fireEvent = FireEvent.INITFIRE;
FireReturn current = null;
while (!FireEvent.DEADLOCK.Equals(fireEvent))
{

current = network.fire();
System.Console.WriteLine(current);
fireEvent = current.FireEvent;

}

Token Gameplay

Comparison and objectives

Another High-Level Petri-net (to model complex algorithms)
but in object-oriented environment like the Renew? NO

In a Petri-net simulator
● Play the token gameplay
● Set the Petri events
In a production code
● Use the non-deterministic behavior
● Part of the business logic

A simpler model will be used inside an object-oriented
application for instance as part of a state machine.

Results

When somebody wants to implement a state machine
which is able to handle the transitions between the
application's states, a Petri-net model creation may be
needed to help the understanding of the task. In that case
the model should not be only kind of static document of
the product.

If somebody changes the model it will take effect
"immediately" in the product.

With this new Petri-net extension it can be highlight
connections between the model and the real source code
events.

Q & A

Thank you

