
School #gradle
Complex Persistence, JAX-RS RESTful, Mockito, Transactions, Rest Client

Óbuda University, Java Enterprise Edition
John von Neumann Faculty of Informatics
Lab 5

Dávid Bedők
2018-01-17
v1.3

Dávid Bedők (UNI-OBUDA) School (template.tex) 2018-01-17 v1.3 1 / 103

RESTful webservices
Introduction

Planning and creating a RESTful webservice is a very popular activity nowa-
days, so we may not miss a REST API from a new enterprise application.

. compared with the Remote EJB it is a very big jump for the elasticity
of the remote communication

. each reauest is tranfered over HTTP(s) as an HTTP request. This
technique is based and uses the structure parts of the HTTP request
and response (HTTP method, uri, header, payload, response code, etc.).

. this is a webservice, so cross-platform and the client and server side
development would not need to be in one hand

. this is not as type-safe as the Remote EJB calls (the applied libraries
will help us to handle the text content in a type-safe way)

. compared to the SOAP webservice it can be built faster but it is not as
general as the SOAP (a SOAP webservice always has a WSDL document
which define almost everything accurately)

Dávid Bedők (UNI-OBUDA) School (rest-services.tex) 2018-01-17 v1.3 2 / 103

RESTful webservices
Planning

A well-designed REST webservice has to be understandable and usable without docu-
mentation in most cases (or it can be describe itself). Because of that - in my opinion -
we can not be used for general purposes (or rather not force it under all circumstances).

Structure
[HTTP-METHOD] http(s)://{host}:{port}/

{context}/{rest-application}/{service}/{operation}

. context : webapplication context root
• In the previously presented way we can configure this via the application.xml

with the help of the applied build system.
. rest-application : root of the REST application (may be empty)

• it can be configured via the @ApplicationPath annotation
. service : root of the coherent business services (may be empty)

• it can be configured via the @Path annotation of the RESTful service class
. operation : path of the RESTful webservice (may be empty)

• it can be configured via the @Path annotation of the RESTful service method

The standard does not forbid to define multiple rest-application inside a single EAR, but
not all of the application servers support it. We have to consider that during the planning
(let the {context}/{rest-application}/ part of the URI be identical).
Dávid Bedők (UNI-OBUDA) School (rest-services-design.tex) 2018-01-17 v1.3 3 / 103

Java API for RESTful WebServices
JAX-RS

. It is part of the Java EE 6 since v1.1

. JSR 311: JAX-RS
• https://www.jcp.org/en/jsr/detail?id=311
• javax.ws.rs:jsr311-api:1.1

. JSR 339: JAX-RS 2.0
• javax.ws.rs:javax.ws.rs-api:2.0.1
• https://www.jcp.org/en/jsr/detail?id=339

◦ 2.2 "This specification is targeted for Java SE 6.0 or higher and Java EE
6 or higher platforms."

◦ 2.3 "Additionally, Java EE 6 products will be allowed to implement JAX-
RS 2.0 instead of JAX-RS 1.1."

• The javax:javaee-api:6.0 has already contained (but official only the v1.1
is supported)

. Representational State Transfer (REST) architecture

. Some implementations:
• Oracle Jersey (RI, Reference Implementation)
• JBoss RESTeasy

◦ org.jboss.resteasy:resteasy-jaxrs:2.3.10.Final (latest 2.x)
◦ org.jboss.resteasy:resteasy-jaxb-provider:2.3.10.Final

• Apache CXF
. Its ’pair’ library is the Java API for XML Web Services (JAX-WS) which

handles SOAP WebServices, later we are going to learn that. The origin of
the JAX-RS abbrevation comes from that.

Dávid Bedők (UNI-OBUDA) School (jax-rs.tex) 2018-01-17 v1.3 4 / 103

https://www.jcp.org/en/jsr/detail?id=311
https://www.jcp.org/en/jsr/detail?id=339

School
Handle grades of a school

Task : create an Enterprise Java application which can be store and
maintain any grades of the student in relation to many different subject.

. The students are identified by a unique neptun code, and beside that we
also store his/her names and institutes (e.g. : BANKI, KANDO, NEUMANN).

. Let the subjects have unique names, teachers (name and neptun code)
and descriptions.

. Store a note and an exact timestamp for each grade.

Dávid Bedők (UNI-OBUDA) School (school.tex) 2018-01-17 v1.3 5 / 103

Technology
school project

. We are going to use PostgreSQL RDBMS via JPA. We will introduce
the relations between entities.

. Amoung some special queries the addition and deletion of a record will
be presented in details.

. During creation of a RESTful service we will learn the basic of JAX-
RS both server- and client side.

. At the end of the tast we will create unit tests in the EJB service layer
(TestNG, Mockito).

. Finally we will touch the opportunities of the remote debug.

Dávid Bedők (UNI-OBUDA) School (technology.tex) 2018-01-17 v1.3 6 / 103

School
REST API

Build the following RESTful service layer over the realized data tier :
. GET http://localhost:8080/school/api/student/WI53085

• Get the data of the student which neptun code is WI53085.
. GET http://localhost:8080/school/api/student/list

• Get all student data.
. POST http://localhost:8080/school/api/mark/stat

• Payload: Sybase PowerBuilder
• For a given subject it generates an average-grade statistics by institutes

and by years.
. PUT http://localhost:8080/school/api/mark/add

• Payload: {"subject": "Sybase PowerBuilder","neptun":
"WI53085","grade": "WEAK","note": "Lorem ipsum"}

• It saves a new grade in the system.
. DELETE http://localhost:8080/school/api/student/WI53085

• If the student (which neptun code is WI53085) has not got any grades,
this service will delete that entity from the system.

Dávid Bedők (UNI-OBUDA) School (school-rest.tex) 2018-01-17 v1.3 7 / 103

http://localhost:8080/school/api/student/WI53085
http://localhost:8080/school/api/student/list
http://localhost:8080/school/api/mark/stat
http://localhost:8080/school/api/mark/add
http://localhost:8080/school/api/student/WI53085

Project stucture
Subprojects, modules

. school (root project)
• sch-webservice (EAR web module)

◦ Project of the RESTful webservices (presentation-tier).

• sch-weblayer (EAR web module)
◦ StudentPingServlet
◦ It contains only a test servlet (presentation-tier).

• sch-ejbservice (EAR ejb module)
◦ Business methods (service-tier)

• sch-persistence (EAR ejb module)
◦ ORM layer, JPA (data-tier)

• sch-restclient (standalone)
◦ Type-safe Java REST client application

There are no requirement for Remote EJB calls so the sch-ejbservice
will stay in one. Both the sch-webservice and the sch-weblayer project
use Local EJB calls to reach the sch-ejbservice layer.

Dávid Bedők (UNI-OBUDA) School (subprojects.tex) 2018-01-17 v1.3 8 / 103

In case of Mavan there is a
sch-ear project also.

Database side
School project

[gradle|maven]\jboss\school\database

Tables:
. institute
. student (FK: student_institute_id)
. teacher
. subject (FK: subject_teacher_id)
. mark (FK: mark_student_id, mark_subject_id)

Relations:
. 1-N: institute-student
. 1-N: teacher-subject
. N-M: student-subject

Dávid Bedők (UNI-OBUDA) School (database.tex) 2018-01-17 v1.3 9 / 103

Persistence layer
School project

Entities :
. Mark (table: mark)
. Student (table: student)
. Subject (table: subject)
. Teacher (table: teacher)

Enumeration types:
. Institute (table: institute)

EJB Services:
. MarkService

. StudentService

. SubjectService

Dávid Bedők (UNI-OBUDA) School (persistence.tex) 2018-01-17 v1.3 10 / 103

Subject-Teacher relation
1 subject has got exactly 1 teacher� �
1 package hu.qwaevisz.school.persistence.entity;
2 [..]
3 @Entity
4 @Table(name = "subject")
5 public class Subject implements Serializable {
6 [..]
7 @ManyToOne(fetch = FetchType.EAGER , optional = false)
8 @JoinColumn(name = "subject_teacher_id", referencedColumnName =

"teacher_id", nullable = false)
9 private Teacher teacher;

10 [..]
11 }� �

Subject.java

FetchType
. EAGER : during the retrieval of the entity the teacher relation will be attached automa-

tically (even if there is no direct reference), so the linked data will be availble (e.g. the
neptun code of the teacher) (this is the default in case of @ManyToOne and @OneToOne)

. LAZY : the relation will not be attached automatically only if the query asks it or it get
a direct reference while the entity is in attached state (more effective but requires careful
consideration) (this is the default in case of @OneToMany and @ManyToMany)

Dávid Bedők (UNI-OBUDA) School (subject-teacher-relation.tex) 2018-01-17 v1.3 11 / 103

The @JoinColumn annotation describes the rela-
tion in the database, so the values in it are table
related.

Student-Mark relation
1 student has several grades� �
1 package hu.qwaevisz.school.persistence.entity;
2 [..]
3 @Entity
4 @Table(name = "student")
5 public class Student implements Serializable {
6 [..]
7 @OneToMany(fetch = FetchType.LAZY , cascade = CascadeType.ALL ,

mappedBy = "student")
8 private final Set <Mark > marks;
9 [..]

10 }� �
Student.java

One of the most important (and most difficult) thing is configuring the EAGER and LAZY
relations properly. If there are oppsoite claims we can create multiple entities for the same table
and the involved relation is EAGER in one and LAZY in the other (in that case LAZY is a more
general solution). Using the @OneToMany annotation is not mandatory. We use it only if we would
like to bind these data from the source entity.
We can use List<> and non-generic types as well like Set/List interfaces. In the latter case we
will need to set the targetEntity=Mark.class attribute inside @OneToMany. Using a set is more
general, more versatile than an ordered list.

Dávid Bedők (UNI-OBUDA) School (student-mark-relation.tex) 2018-01-17 v1.3 12 / 103

The @OneToMany and the @ManyToOne annotations be-
long to the ORM model, the referenced fields are the
name of the entities’ fields (e.g. : student instead of
mark_student_id).

Subject-Mark relation
1 subject has got several grades� �
1 [..]
2 public class Subject implements Serializable {
3 [..]
4 @OneToMany(fetch = FetchType.LAZY , cascade = CascadeType.ALL ,

mappedBy = "subject")
5 private final Set <Mark > marks;
6 [..]
7 public Subject () {
8 this.marks = new HashSet <>();
9 }

10 [..]
11 }� �

Subject.java

CascadeType
The value of the cascade is a set of CascadeType enums (in case of ALL we do not
need to list all of them). These items define which entity manager operations will be
considered cascading. E.g. : cascade={PERSIST, MERGE, REMOVE, REFRESH, DETACH}.
The default is an empty set.

Dávid Bedők (UNI-OBUDA) School (subject-mark-relation.tex) 2018-01-17 v1.3 13 / 103

It is a business question to decide: we need to
bind the grades for a subject in the ORM, or not.
So this relation is optional. Listing the students’
grade is more common. You should initialize the
collections.

Mark’s relations
Student-Subject N-M relation table� �
1 package hu.qwaevisz.school.persistence.entity;
2 [..]
3 @Entity
4 @Table(name = "mark")
5 public class Mark implements Serializable {
6 [..]
7 @ManyToOne(fetch = FetchType.EAGER , optional = false)
8 @JoinColumn(name = "mark_student_id", referencedColumnName =

"student_id", nullable = false)
9 private Student student;

10
11 @ManyToOne(fetch = FetchType.EAGER , optional = false)
12 @JoinColumn(name = "mark_subject_id", referencedColumnName =

"subject_id", nullable = false)
13 private Subject subject;
14 [..]
15 @Temporal(TemporalType.TIMESTAMP)
16 @Column(name = "mark_date", nullable = false)
17 private Date date;
18 [..]
19 }� �

Mark.java
Dávid Bedők (UNI-OBUDA) School (mark-relations.tex) 2018-01-17 v1.3 14 / 103

The Date should store time, date and both of
them at the same time. The @Temporal annota-
tion controls this.

Cascade

Cascading only makes sense only for parent–child associations (the parent
entity state transition being cascaded to its children entities). Cascading from
child to parent is not very useful and usually, it’s a mapping code smell (it
may not intentionally listed in the source code).

CascadeType.PERSIST
We only have to persist the parent entity and all the associated children
entities are persisted as well.

CascadeType.DELETE
When the parent entity is deleted, the associated children entities are
deleted as well (it is enough to delete the parent only).

Dávid Bedők (UNI-OBUDA) School (cascade.tex) 2018-01-17 v1.3 15 / 103

Summary of associations

. @OneToOne
• Task (task_id) → TaskDetail (taskdetail_task_id)
• Task has exactly one TaskDetail
• use cascade = CascadeType.ALL only in the Task entity
• useful the orphanRemoval = true attribute as well (in case of false when

you delete/rewrite (e.g. : batch update) the Task id the FK field of
TaskDetail will become null)

. @OneToMany és @ManyToOne
• Task (task_id) → SubTask (subtask_task_id)
• Task may have several SubTasks
• use the @OneToMany in the Task and the @ManyToOne annotation in the

SubTask class
. @ManyToMany

• Bank (bank_id)→ Account (account_bank_id, account_client_id) ←
Client (client_id)

• Bank may have several Clients and a Client may have several Accounts in
different Banks (but the Accounts cannot contain more fields (e.g. :
accountnumber...))

• Do not use CascadeType.ALL in that case (PERSIST + MERGE could be
enough)

• in that case the Account will not be an entity, a @JoinTable annotation will
be used instead

Dávid Bedők (UNI-OBUDA) School (associations.tex) 2018-01-17 v1.3 16 / 103

Hibernate best practice
Do not use exotic association mappings

Practical test cases for real many-to-many associations are rare. Most of
the time you need additional information stored in the link table. In this case,
it is much better to use two one-to-many associations to an intermediate link
class.

In fact, most associations are one-to-many and many-to-one (in data-
base level). For this reason, you should proceed cautiously when using any
other association style.

Source: http://docs.jboss.org/hibernate/orm/4.3/manual/en-US/html/ch26.html

Dávid Bedők (UNI-OBUDA) School (best-practice.tex) 2018-01-17 v1.3 17 / 103

http://docs.jboss.org/hibernate/orm/4.3/manual/en-US/html/ch26.html

Web application of the REST webservices
sch-webservice subproject� �
1 app l y p l u g i n : ’ war ’
2
3 war { archiveName webse rv i ceArch iveName }
4
5 dependenc i e s {
6 p rov i d edComp i l e p r o j e c t (’ : sch−e j b s e r v i c e ’)
7 // p rov i dedComp i l e group : ’ j a v a x . s e r v l e t ’ , name : ’ j a v a x . s e r v l e t −ap i ’ ,

v e r s i o n : s e r v l e t a p i V e r s i o n
8 // p rov i dedComp i l e group : ’ j a v a x . ws . r s ’ , name : ’ j a v a x . ws . r s−ap i ’ ,

v e r s i o n : j a x r s V e r s i o n
9 // p rov i dedComp i l e group : ’ j a v a x . ws . r s ’ , name : ’ j s r 311−ap i ’ , v e r s i o n :

’ 1 . 1 ’
10 p rov i d edComp i l e group : ’ j avax ’ , name : ’ j avaee−ap i ’ , v e r s i o n :

j e eV e r s i o n
11 }� �

build.gradle

Variables of the root project:
. webserviceArchiveName = ’sch-webservice.war’
. jaxrsVersion = ’2.0.1’

We have more options to set the dependency, one of the simplest way using the Java EE 6.0
API. In case of the JSR311 API we have to override the getClasses() method of the
SchoolRestApplication class (return null;).

Dávid Bedők (UNI-OBUDA) School (restservice-gradle.tex) 2018-01-17 v1.3 18 / 103

In the Root project during the com-
position of the application.xml we
set school as the context root of this
WEB module.

REST Application
child of the Application class

� �
1 package hu.qwaevisz.school.webservice.main;
2
3 import javax.ws.rs.ApplicationPath;
4 import javax.ws.rs.core.Application;
5
6 @ApplicationPath("/api")
7 public class SchoolRestApplication extends Application {
8
9 // @Override

10 // public Set <Class <?>> getClasses () {
11 // return null;
12 // }
13 }� �

SchoolRestApplication.java

Dávid Bedők (UNI-OBUDA) School (restapplication.tex) 2018-01-17 v1.3 19 / 103

With the help of the
@ApplicationPath annotation we
can set api as the URI of the REST
application.

Overrideing the getClasses() method is only neces-
sary if you use the JSR311 API dependency.

Student REST service

� �
1 package hu.qwaevisz.school.webservice;
2 [..]
3 @Path("/student")
4 public interface StudentRestService {
5 [..]
6
7 @GET
8 @Path("/list")
9 @Produces(MediaType.APPLICATION_JSON)

10 List <StudentStub > getAllStudents () throws AdaptorException;
11
12 [..]
13 }� �

StudentRestService.java

If we read together the URI parts we will get the following:
http://localhost:8080/school/api/student/list

Dávid Bedők (UNI-OBUDA) School (studentrestservice.tex) 2018-01-17 v1.3 20 / 103

With the help of the @Path annotati-
on we are able to set student as the
URI of the REST service.

Likewise we can use the @Path annotation to set the URI of the
REST operation, e.g. this will be list in the example.

http://localhost:8080/school/api/student/list

HTTP Method

The HTTP Methods are very important part of the REST services’ be-
havior. Very common usage that many REST API calls differ in the HTTP
Method only to entirely support CRUD operations.

. @POST → Create

. @GET → Read

. @PUT → Update

. @DELETE → Delete

. @HEAD

. @OPTIONS

Dávid Bedők (UNI-OBUDA) School (http-methods.tex) 2018-01-17 v1.3 21 / 103

Parameter passing in REST operations
. - (not marked with annotation)

• The data must be sent to the HTTP Request payload/body element.
. @QueryParam("ipsum")

• /lorem?ipsum=42&dolor=sit
. @PathParam("ipsum")

• /lorem/42/xyz
• In that case we have to use the @Path("/lorem/ipsum/xyz") annotation.

. @HeaderParam("ipsum")
• Among the keys of the HTTP Request Header there should be one which name is

ipsum.
• Special case when we would like to control the Content-Type with the @Consumes

annotation (the data in the payload is compatible with the given MIME type).
• Special case when we would like to control the Accept with the @Produces

annotation (the data in the Response is compatible with the given MIME type).
. @CookieParam("ipsum")

• HTTP Request Cookie (In case of browser it is a comfortable solution but the
REST services are not depend on the browsers, so it does not recommend to use
cookies in RESTful services)

. @FormParam("ipsum")
• Typically the user sends an application/x-www-form-urlencoded (MIME type)

POST request to the server.
• In that case the RESTful service will be strongly bound to a webpage. Do not use it

if we do not want this dependence.
. @MatrixParam("ipsum")

• /lorem;ipsum=42;dolor=sit
• It is similar to the @QueryParam, but it’s purpose is different. If the key-value pair

concerns only a part of the URI we should use that type of argument passing
(argument fine-tuning)

Dávid Bedők (UNI-OBUDA) School (rest-parameters.tex) 2018-01-17 v1.3 22 / 103

/lorem?ipsum=42&dolor=sit
/lorem/42/xyz
/lorem;ipsum=42;dolor=sit

Query and Path param

There are several mappers which support the type-safe argument
processing.

. We can use the String type (this is the original format of the content)

. All primitive types except char (because of the String)

. All wrapper classes of primitive types except Character

. Any class with a constructor that accepts a single String argument

. Any class with the static method named valueOf(..) that accepts a
single String argument (each enum meets this rule)

. List<T>, Set<T> or SortedSet<T>, where T matches the already listed
criteria

Default values
The parameter passing does not obligatory (but the calls should not be ambiguous).
If a parameter has not got a value than in case of primitive the value will be
the default (zero literal), in case of collection it will be an empty List/Set or
SortedSet, and any other cases it will be null. You can use a @DefaultValue
annotation as well, and we can redefine the default values.

Dávid Bedők (UNI-OBUDA) School (query-and-path.tex) 2018-01-17 v1.3 23 / 103

Process forms
Sample code

� �
1 @POST
2 @Consumes("application/x-www -form -urlencoded")
3 public void post(MultivaluedMap <String , String > formParams) {
4 [..]
5 }� �

Dávid Bedők (UNI-OBUDA) School (process-forms.tex) 2018-01-17 v1.3 24 / 103

For form prcessing a simple Servlet is enough in most
cases.

Free processing of an URL
@Context annotation

Entirely free processing of a given URL:� �
1 @GET
2 public String get(@Context UriInfo ui) {
3 MultivaluedMap <String , String > queryParams = ui.getQueryParameters ();
4 MultivaluedMap <String , String > pathParams = ui.getPathParameters ();
5 }� �
Free processing of the HTTP Header:� �
1 @GET
2 public String get(@Context HttpHeaders hh) {
3 MultivaluedMap <String , String > headerParams = hh.getRequestHeaders ();
4 Map <String , Cookie > pathParams = hh.getCookies ();
5 }� �
We can use in a very similar way the HttpServletRequest and
HttpServletContext instances, and all of them can be injected into the
implementation class as well (so we do not need to use these in the interface):� �
1 public class Sample {
2
3 @Context
4 private HttpHeaders headers;
5
6 @Context
7 private HttpServletRequest servletRequest;
8 [..]
9 }� �

Dávid Bedők (UNI-OBUDA) School (uri-free-processing.tex) 2018-01-17 v1.3 25 / 103

HTTP Response
Response builder

The return value of the REST method will be the HTTP Response’s payload
according to the adjusted MIME type. If we use the Response return type we will
have much more options to configure the HTTP Response (but the interface will
not be type-safe enough).� �
1 import javax.ws.rs.core.MediaType;
2 import javax.ws.rs.core.Response;
3 import javax.ws.rs.core.Response.Status;
4 [..]
5 Response.ok().build(); // 200 OK
6 Response.noContent ().build(); // 204 No Content
7 Response.status(Status.NOT_FOUND).entity ([..])
8 .type(MediaType.APPLICATION_JSON).build();� �

Dávid Bedők (UNI-OBUDA) School (response.tex) 2018-01-17 v1.3 26 / 103

Get student data
GET http://localhost:8080/school/api/student/{neptun}

Dávid Bedők (UNI-OBUDA) School (subtitle-get-student.tex) 2018-01-17 v1.3 27 / 103

http://localhost:8080/school/api/student/{neptun}

Stub vs. Entity

So far the Stubs and the Entities were almost the same, but this is not
necessarily the case. The customer needs (stubs) may contain some elements
which e.g. :
. Redundants: for obvious reasons we will not store redudant information

on database (and in the level of entities).
. A type of the field is different in the level of entities and stubs (may be

common covering the details of a type and use a String type instead
in the level of the stubs, but in that case we weaken the type-safe
behavior).

. We use localized constants in the level of the stubs, or we apply some
kind of business defined names (the localization might come from the
client side only, it is entirely independent from the database).

. A stub may contain some information which are independent from the
related entity, e.g. these information come from an other system. From
the client’s point of view this separation (the data comes from two
systems) are invisible and irrelevant.

Dávid Bedők (UNI-OBUDA) School (stub-vs-entity.tex) 2018-01-17 v1.3 28 / 103

Get student’s data
GET http://localhost:8080/school/api/student/WI53085

We would like to show some kind of depth walk result of the Student.� �
1 {
2 "name": "Juanita A. Jenkins",
3 "neptun": "WI53085",
4 "institute": "BANKI",
5 "marks": [
6 {
7 "subject": {
8 "name": "Sybase PowerBuilder",
9 "teacher": {

10 "name": "Richard B. Cambra",
11 "neptun": "UT84113"
12 },
13 "description": "Donec rhoncus lacus quis est cursus aliquet ."
14 },
15 "grade": "WEAK",
16 "note": "Lorem ipsum",
17 "date": 1477902214713 ,
18 "gradeValue": 2
19 },
20 [..]
21],
22 "numberOfMarks": 3
23 }� �

Dávid Bedők (UNI-OBUDA) School (get-student.tex) 2018-01-17 v1.3 29 / 103

The numberOfMarks and the gradeValue are compu-
ted fields.

RESTful Endpoint (sch-webservice project)

� �
1 @Path("/student")
2 public interface StudentRestService {
3
4 @GET
5 @Path("/{ neptun}")
6 @Produces(MediaType.APPLICATION_JSON)
7 StudentStub getStudent(@PathParam("neptun") String neptun)

throws AdaptorException;
8
9 [..]

10 }� �
StudentRestService.java

Dávid Bedők (UNI-OBUDA) School (get-student-rest.tex) 2018-01-17 v1.3 30 / 103

Get student data
Top-Down approach

. sch-webservice
• StudentRestService
• StudentRestServiceBean SLSB

◦
◦ To be able to inject EJB into the class, the EJB context must be seen.

One of the option for that if we make an SLSB (you can also use CDI).
. sch-ejbservice

• StudentFacade Local interface
◦ StudentStub getStudent(String neptun) throws
AdaptorException;

• StudentRestServiceBean SLSB
. sch-persistence

• StudentService Local interface
◦ Student read(String neptun) throws
PersistenceServiceException;

• StudentServiceImpl SLSB
• Student entity

. sch-ejbservice
• StudentConverter Local interface
• StudentConverterImpl SLSB

◦ Create the accessor methods
of the computed fields

Dávid Bedők (UNI-OBUDA) School (get-student-top-down.tex) 2018-01-17 v1.3 31 / 103

� �
1 @GET
2 @Path("/{ neptun}")
3 @Produces(MediaType.APPLICATION_JSON)
4 StudentStub getStudent(@PathParam("neptun")

String neptun) throws AdaptorException;� �

� �
1 SELECT st
2 FROM Student st
3 LEFT JOIN FETCH st.marks m
4 LEFT JOIN FETCH m.subject su
5 LEFT JOIN FETCH su.teacher
6 WHERE st.neptun =: neptun� �� �

1 [..]
2 public class StudentStub {
3 [..]
4 public int getNumberOfMarks () {
5 return this.marks.size();
6 }
7 [..]
8 }� �

Generated native queries� �
1 SELECT
2 student0_.student_id AS student_1_2_0_ ,
3 marks1_.mark_id AS mark_id1_0_1_ ,
4 subject2_.subject_id AS subject_1_3_2_ ,
5 teacher3_.teacher_id AS teacher_1_4_3_ ,
6 student0_.student_institute_id AS student_2_2_0_ ,
7 student0_.student_name AS student_3_2_0_ ,
8 student0_.student_neptun AS student_4_2_0_ ,
9 marks1_.mark_date AS mark_dat2_0_1_ ,

10 marks1_.mark_grade AS mark_gra3_0_1_ ,
11 marks1_.mark_note AS mark_not4_0_1_ ,
12 marks1_.mark_student_id AS mark_stu5_0_1_ ,
13 marks1_.mark_subject_id AS mark_sub6_0_1_ ,
14 marks1_.mark_student_id AS mark_stu5_2_0__ ,
15 marks1_.mark_id AS mark_id1_0_0__ ,
16 subject2_.subject_description AS subject_2_3_2_ ,
17 subject2_.subject_name AS subject_3_3_2_ ,
18 subject2_.subject_teacher_id AS subject_4_3_2_ ,
19 teacher3_.teacher_name AS teacher_2_4_3_ ,
20 teacher3_.teacher_neptun AS teacher_3_4_3_
21 FROM
22 student student0_
23 LEFT OUTER JOIN mark marks1_ ON
24 student0_.student_id=marks1_.mark_student_id
25 LEFT OUTER JOIN subject subject2_ ON
26 marks1_.mark_subject_id=subject2_.subject_id
27 LEFT OUTER JOIN teacher teacher3_ ON
28 subject2_.subject_teacher_id=teacher3_.teacher_id
29 WHERE
30 student0_.student_neptun =?� �

Dávid Bedők (UNI-OBUDA) School (get-student-sql.tex) 2018-01-17 v1.3 32 / 103

The FETCH inside the JPQL
query will get (and fill) the
children entities’ data (SE-
LECT block).

The LEFT JOIN of the JPQL
query will wire the children en-
tites (FROM block). The LEFT
join is required because it may
occur that a student has not
got any grade, and without this
the student data would not be
fetched too.

Get all students’ data
GET http://localhost:8080/school/api/student/list

Dávid Bedők (UNI-OBUDA) School (subtitle-get-all-students.tex) 2018-01-17 v1.3 33 / 103

http://localhost:8080/school/api/student/list

RESTful Endpoint (sch-webservice project)

� �
1 @Path("/student")
2 public interface StudentRestService {
3
4 @GET
5 @Path("/list")
6 @Produces(MediaType.APPLICATION_JSON)
7 List <StudentStub > getAllStudent () throws AdaptorException;
8
9 [..]

10 }� �
StudentRestService.java

Dávid Bedők (UNI-OBUDA) School (get-all-students-rest.tex) 2018-01-17 v1.3 34 / 103

Fetch all students’ data

The entire operation can be done if we reuse the previous named query (of
course we have to take out the neptun filtering from the WHERE block). But
right now we are going to present a typical bad example, a quite simple
JPQL query and analyze the realized events/queries :� �
1 SELECT s
2 FROM Student s
3 ORDER BY s.name� �
Result : org.hibernate.LazyInitializationException at
StudentConverterImpl class. The entity which we read from the database
and send to the facade layer becomes detached, the entity manager cannot
perform any operations on it, it cannot supervise it. When the converter
service tries to call the getMarks() method of the Student, the container
’notices’ that if it simply give back a null, it causes a false/uncertain state
of the system (we did not fetch it, se we do not know that the student has
grades or not). This can only occur with LAZY fetchType.

Dávid Bedők (UNI-OBUDA) School (get-all-students-lazy.tex) 2018-01-17 v1.3 35 / 103

What could be the solution (workaround)?

. Rewrite the fetchType to EAGER : probably this is the most comfortable
solution and it will work immediately. Only one ’little’ issue here: the JPA will
generate 10 native queries to create the expected data (the number depends
how many different subject/teacher are affected). And do not forget that we
modify the entity so any other queries could be affected.

. Read some LAZY references (grades) on the entity during its attached state.
With this we ask the entity manager to ensure these data for us: it will
cause 10 additional queries again, but this time we will not influence other
operations at least.� �

1 [..]
2 public class StudentServiceImpl implements StudentService {
3 [..]
4 @Override
5 public List <Student > readAll () throws PersistenceServiceException {
6 [..]
7 result = this.entityManager.createNamedQuery(Student.GET_ALL ,

Student.class).getResultList ();
8 for (final Student student : result) {
9 student.getMarks ().size();

10 }
11 [..]
12 }
13 [..]
14 }� �

Dávid Bedők (UNI-OBUDA) School (get-all-students-workaround.tex) 2018-01-17 v1.3 36 / 103

Implement paging
In any case, is JOIN FETCH the ultimate solution?

In case of a list every time comes up the claim that we would not want to fetch all the
data, only N items (pageSize) from a K offset (page). In native queries there are the
LIMIT and the OFFSET keywords (it could be database dependent). In JPA we can achieve
the same on the TypedQuery/Query instance:� �
1 List <Student > result =

this.entityManager.createNamedQuery(Student.GET_ALL ,
Student.class).setFirstResult ((page - 1) *
pageSize).setMaxResults(pageSize).getResultList ();� �

Attention!
It will not put the LIMIT keyword into the native query automatically, but it will work
in all case. How can this be? If an entity fetch a child entity as well, the ’first K rows’
most likely will not be the expected K rows (so we cannot use the LIMIT keyword and the
ORM knows it). The first ’K’ rows probably will contain the first main entity and some
of its children entities (in RDBMS the main entity’s columns will be repeated). That is
why JPA will fetch all data and filter the records afterwards. In case of big tables it causes
serious performance and resource problems, and often the developer does not even know
about it.

Dávid Bedők (UNI-OBUDA) School (get-all-students-paging.tex) 2018-01-17 v1.3 37 / 103

RESTful Endpoint (sch-webservice project)

� �
1 @Path("/student")
2 public interface StudentRestService {
3
4 @GET
5 @Path("/list/{page}")
6 @Produces(MediaType.APPLICATION_JSON)
7 Response getStudents(@DefaultValue("3") @QueryParam("pagesize")

int pageSize , @PathParam("page") int page) throws
AdaptorException;

8
9 [..]

10 }� �
StudentRestService.java

Dávid Bedők (UNI-OBUDA) School (get-all-students-paging-rest.tex) 2018-01-17 v1.3 38 / 103

Effective implementation of paging
GET http://localhost:8080/school/api/student/list/2?pagesize=5

� �
1 public class StudentServiceImpl implements StudentService {
2 [..]
3 @Override
4 public List <Student > read(int pageSize , int page) throws PersistenceServiceException {
5 if (LOGGER.isDebugEnabled ()) {
6 LOGGER.debug("Get Students (pageSize: " + pageSize + ", page: " + page + ")");
7 }
8 List <Student > result = null;
9 try {

10 result = this.entityManager.createNamedQuery(Student.GET_ALL ,
Student.class).setFirstResult ((page - 1) * pageSize).setMaxResults(pageSize)

11 .getResultList ();
12 List <Long > studentIds =

result.stream ().map(Student :: getId).collect(Collectors.toList ());
13 result = this.entityManager.createNamedQuery(Student.GET_BY_IDS ,

Student.class).setParameter("ids", studentIds).getResultList ();
14 } catch (final Exception e) {
15 throw new PersistenceServiceException("Unknown error when fetching Students! " +

e.getLocalizedMessage (), e);
16 }
17 return result;
18 }
19 [..]
20 }� �

Dávid Bedők (UNI-OBUDA) School (paging-solution.tex) 2018-01-17 v1.3 39 / 103

� �
1 SELECT s
2 FROM Student s
3 ORDER BY s.name� �

� �
1 SELECT st
2 FROM Student st
3 LEFT JOIN FETCH st.marks m
4 LEFT JOIN FETCH m.subject su
5 LEFT JOIN FETCH su.teacher
6 WHERE st.id IN :ids� �

Generated queries� �
1 SELECT
2 student0_.student_id AS student_1_2_ ,
3 student0_.student_institute_id AS student_2_2_ ,
4 student0_.student_name AS student_3_2_ ,
5 student0_.student_neptun AS student_4_2_
6 FROM
7 student student0_
8 ORDER BY
9 student0_.student_name

10 LIMIT ?
11 OFFSET ?� �� �
1 SELECT
2 student0_.student_id AS student_1_2_0_ ,
3 marks1_.mark_id AS mark_id1_0_1_ ,
4 subject2_.subject_id AS subject_1_3_2_ ,
5 [..]
6 subject2_.subject_teacher_id AS subject_4_3_2_ ,
7 teacher3_.teacher_name AS teacher_2_4_3_ ,
8 teacher3_.teacher_neptun AS teacher_3_4_3_
9 FROM

10 student student0_
11 LEFT OUTER JOIN mark marks1_
12 ON student0_.student_id=marks1_.mark_student_id
13 LEFT OUTER JOIN subject subject2_
14 ON marks1_.mark_subject_id=subject2_.subject_id
15 LEFT OUTER JOIN teacher teacher3_
16 ON subject2_.subject_teacher_id=teacher3_.teacher_id
17 WHERE
18 student0_.student_id IN (? , ? , ? , ?)� �

Dávid Bedők (UNI-OBUDA) School (paging-solution-queries.tex) 2018-01-17 v1.3 40 / 103

Average grade statistics
POST http://localhost:8080/school/api/mark/stat

Dávid Bedők (UNI-OBUDA) School (subtitle-avg-grade-stat.tex) 2018-01-17 v1.3 41 / 103

http://localhost:8080/school/api/mark/stat

Postman
Testing REST API

. https://www.getpostman.com/

. Version: 5.3.2

. Free for individual users but there is a Pro version which supports team
work

. We can test a GET request with a simple browser, but in more comp-
licated cases we have to create small (X)HTML pages, and this could
be very cumbersome and difficult to maintain.

. For automatic tests there will be some scripts or source codes (it is not
a major challenge), but for ad-hoc testing, supporting the development,
a ready-to-use solution is always expedient. The Postman is such a tool
like this.

. The projects can be syncronized with Google account.

Dávid Bedők (UNI-OBUDA) School (postman.tex) 2018-01-17 v1.3 42 / 103

https://www.getpostman.com/

Average grade statistics
POST http://localhost:8080/school/api/mark/stat

Based on a given subject (payload) we want to create an average grade
statistics (average) which is grouped by institute (group-by) and year (group-
by).
HTTP Request payload (text):� �
1 Sybase PowerBuilder� �
HTTP Response (application/json):� �
1 [
2 {
3 "institute": "KANDO",
4 "year": 2012,
5 "averageGrade": 4
6 },
7 {
8 "institute": "KANDO",
9 "year": 2013,

10 "averageGrade": 4
11 },
12 {
13 "institute": "NEUMANN",
14 "year": 2014,
15 "averageGrade": 3.5
16 }
17]� �

Dávid Bedők (UNI-OBUDA) School (avg-grade-stat.tex) 2018-01-17 v1.3 43 / 103

RESTful Endpoint (sch-webservice project)

� �
1 @Path("/mark")
2 public interface MarkRestService {
3
4 @POST
5 @Path("/stat")
6 @Produces("application/json")
7 List <MarkDetailStub > getMarkDetails(String subject) throws

AdaptorException;
8
9 [..]

10 }� �
MarkRestService.java

Dávid Bedők (UNI-OBUDA) School (avg-grade-stat-rest.tex) 2018-01-17 v1.3 44 / 103

Is there any issue here?!

. We have to group the grades by years, but we do not have such data in that form.
Of course we have the information in the timestamp field and we are able to get the
necessary data with a PostgreSQL function (DATE_TRUNC(’year’, mark_date) or
EXTRACT(’year’ FROM mark_date)). But in JPA there is a few issues:

• There are various date functions in Hibernate and in Eclipselink, we can use
these in HQL/EQL queries, but these have not got standard form (or the
support is inadequate) (this issues is not related to the date functions: you
will face that issue when you have to use e.g. a custom DB function in JPQL).

• There is solution to register DB functions in JPA but this is also implementa-
tion dependent (JPA 2.0 supports DB function calls without supervision).

. At a given complexity point maintaining a query in JPQL can be cumbersome
• It is a fairy tale that somebody can create a query in JPQL but cannot do the

same in ANSI SQL. Always (always!) we build the query in ANSI SQL first
thereafter in JPQL (this may happen in head, but without this you cannot
create optimum queries in JPQL).

• The complex queries represent value in the product, these are part of the source
code (language inside a language), and the storage and the maintanance are
important → here comes (into view) the database side VIEWs.

Not always it is worth "to force" the purely Java/ORM solution. In the spirit of simplicity,
dare to disassemble the responsibility between ORM and RDBMS.

Dávid Bedők (UNI-OBUDA) School (avg-grade-stat-issues.tex) 2018-01-17 v1.3 45 / 103

Native query� �
1 SELECT
2 markdetail.student_institute_id ,
3 markdetail.mark_year ,
4 AVG(markdetail.mark_grade)
5 FROM
6 (
7 SELECT
8 mark_subject_id ,
9 student_institute_id ,

10 mark_grade ,
11 DATE_PART(’year’, mark_date) AS mark_year
12 FROM mark
13 INNER JOIN student ON (mark_student_id = student_id)
14 WHERE (1 = 1)
15) AS markdetail
16 WHERE (1 = 1)
17 AND (markdetail.mark_subject_id = 2)
18 GROUP BY
19 markdetail.student_institute_id ,
20 markdetail.mark_year
21 ORDER BY
22 markdetail.student_institute_id ,
23 markdetail.mark_year� �

Dávid Bedők (UNI-OBUDA) School (avg-grade-stat-native.tex) 2018-01-17 v1.3 46 / 103

The subject will be given
by name. In the example
the aggreagation (join) of
the subject table is mis-
sing.

Solution plan

Requirements:
. have to create a group-by query by institute and year
. have to prefilter the data by subject

Database VIEW creation:
. We produce the field where we have to use the database function (e.g. :
DATE_PART).

. we have to include all the fields to which one of the following is true:
• to which we have to prefilter the data (subject_id)
• to which we have to group the results (institute_id and mark_year

(computed field))
• to which we have to use in the aggregation function (e.g. AVG) later

(mark_grade)

Attention!
It is very rare that a database VIEW contains a group-by query, because we
cannot perform any additional filtering later.

Dávid Bedők (UNI-OBUDA) School (avg-grade-stat-plan.tex) 2018-01-17 v1.3 47 / 103

Database VIEW

� �
1 CREATE VIEW markdetail AS
2 SELECT
3 ROW_NUMBER () OVER() AS markdetail_id ,
4 mark_subject_id AS markdetail_subject_id ,
5 student_institute_id AS markdetail_institute_id ,
6 mark_grade AS markdetail_grade ,
7 DATE_PART(’year’, mark_date) AS markdetail_year
8 FROM mark
9 INNER JOIN student ON (mark_student_id = student_id)

10 WHERE (1 = 1);� �
VIREW becomes an entity in the ORM level, and each entities must have a
primary key. The ROW_NUMBER() suitables for it (we will not update or
delete any rows of the view, moreover we will use that VIEW in a group-by
query, so the individual rows are unimportant).

Dávid Bedők (UNI-OBUDA) School (markdetail-view.tex) 2018-01-17 v1.3 48 / 103

VIEW testing
We should create the following queries in ORM

� �
1 SELECT
2 markdetail_institute_id ,
3 markdetail_year ,
4 AVG(markdetail_grade)
5 FROM
6 markdetail
7 INNER JOIN subject ON
8 (markdetail_subject_id = subject_id)
9 WHERE (1 = 1)

10 AND (subject_name = ’Sybase PowerBuilder ’)
11 GROUP BY
12 markdetail_institute_id ,
13 markdetail_year
14 ORDER BY
15 markdetail_institute_id ,
16 markdetail_year;� �

Dávid Bedők (UNI-OBUDA) School (markdetail-view-test.tex) 2018-01-17 v1.3 49 / 103

VIEW in the ORM layer

� �
1 @Entity
2 @Table(name = "markdetail")
3 public class MarkDetail implements Serializable {
4
5 @Id
6 @Column(name = "markdetail_id", nullable = false)
7 private Long id;
8
9 @ManyToOne(fetch = FetchType.EAGER , cascade = CascadeType.ALL , optional = false)

10 @JoinColumn(name = "markdetail_subject_id", referencedColumnName = "subject_id",
nullable = false)

11 private Subject subject;
12
13 @Enumerated(EnumType.ORDINAL)
14 @Column(name = "markdetail_institute_id", nullable = false)
15 private Institute institute;
16
17 @Column(name = "markdetail_grade", nullable = false)
18 private Integer grade;
19
20 @Column(name = "markdetail_year")
21 private Integer year;
22
23 [..]
24 }� �

MarkDetail.java
Dávid Bedők (UNI-OBUDA) School (markdetail-entity.tex) 2018-01-17 v1.3 50 / 103

Each fields are handled like in a normal entity.
Do not use different programming ’rules’ between
VIEW and TABLE. Bind the subject and the
institute fields like in other entities.

JPQL and generated native queries
� �

1 SELECT new hu.qwaevisz.school.persistence.result.MarkDetailResult(
2 md.institute ,
3 md.year ,
4 AVG(md.grade))
5 FROM MarkDetail md
6 WHERE md.subject.name=: subject
7 GROUP BY md.institute , md.year
8 ORDER BY md.institute , md.year� �
� �

1 SELECT
2 markdetail0_.markdetail_institute_id AS col_0_0_ ,
3 markdetail0_.markdetail_year AS col_1_0_ ,
4 AVG(markdetail0_.markdetail_grade) AS col_2_0_
5 FROM
6 markdetail markdetail0_ CROSS JOIN subject subject1_
7 WHERE
8 markdetail0_.markdetail_subject_id=subject1_.subject_id
9 AND subject1_.subject_name =?

10 GROUP BY
11 markdetail0_.markdetail_institute_id ,
12 markdetail0_.markdetail_year
13 ORDER BY
14 markdetail0_.markdetail_institute_id ,
15 markdetail0_.markdetail_year� �

Dávid Bedők (UNI-OBUDA) School (avg-grade-stat-queries.tex) 2018-01-17 v1.3 51 / 103

The result of the JPQL query is a type/set,
and each field/items in this type/set is an
institute, a year and an real average grade
value. We do not have an entity like that
in the ORM layer, so we will create a result
type for that purpose (MarkDetailResult).

MarkDetailResult

� �
1 package hu.qwaevisz.school.persistence.result;
2 [..]
3 public class MarkDetailResult {
4
5 private final Institute institute;
6
7 private final Integer year;
8
9 private final double averageGrade;

10
11 public MarkDetailResult(Institute institute , Integer year ,

double averageGrade) {
12 this.institute = institute;
13 this.year = year;
14 this.averageGrade = averageGrade;
15 }
16
17 [..]
18 }� �

MarkDetailResult.java

Dávid Bedők (UNI-OBUDA) School (markdetailresult.tex) 2018-01-17 v1.3 52 / 103

This class is not an entity, just a
simple DTO. The constructor is
useful for business reasons, do not
need to create default ctor-s (this
is required in case of entities).

Add new grade
PUT http://localhost:8080/school/api/mark/add

Dávid Bedők (UNI-OBUDA) School (subtitle-add-new-grade.tex) 2018-01-17 v1.3 53 / 103

http://localhost:8080/school/api/mark/add

JPA - Entity states

Dávid Bedők (UNI-OBUDA) School (jpa-entity-states.tex) 2018-01-17 v1.3 54 / 103

Persistent/Managed : the entity has
been associated with a database table
row and it’s being managed by the cur-
rent running Persistence Context. Any
change made to such entity is going to
be detected and propagated to the da-
tabase (during the session flush-time).

Removed : an en-
tity which is mar-
ked to delete and
it is going to de-
lete during the
next session flush-
time.

New/Transient : a newly created
object instance.

Detached : an entity
which was managed
in the past.

Add new grade
PUT http://localhost:8080/school/api/mark/add

HTTP Request payload (application/json):� �
1 {
2 "subject": "Sybase PowerBuilder",
3 "neptun": "WI53085",
4 "grade": "WEAK",
5 "note": "Lorem ipsum"
6 }� �
HTTP Response (application/json):� �
1 {
2 "subject": {
3 "name": "Sybase PowerBuilder",
4 "teacher": {
5 "name": "Richard B. Cambra",
6 "neptun": "UT84113"
7 },
8 "description": "Donec"
9 },

10 "grade": 2,
11 "note": "Lorem ipsum",
12 "date": 1443797867042
13 }� �

Dávid Bedők (UNI-OBUDA) School (add-new-grade.tex) 2018-01-17 v1.3 55 / 103

The grade in the request is a
business-defined constant (WEAK)
which is unknown for the persistence
layer.

RESTful Endpoint (sch-webservice project)

� �
1 @Path("/mark")
2 public interface MarkRestService {
3
4 @PUT
5 @Path("/add")
6 @Consumes("application/json")
7 @Produces("application/json")
8 MarkStub addMark(MarkInputStub stub) throws AdaptorException;
9

10 [..]
11 }� �

MarkRestService.java

Dávid Bedők (UNI-OBUDA) School (add-new-grade-rest.tex) 2018-01-17 v1.3 56 / 103

Problems arising from the lack of transaction management

So far we learned how to create queries and we could miss the transacti-
on handling with ease. But during data manipulation we cannot postpone
further.

. The subject that belongs a grade which the user would like to create just
now is deleted in an other transaction at the ’same time’, or it is renamed to
something else.

. The student is deleted from the system in a parallel transaction.

The transaction handling is much more important in some other business
related aspect as well :

. It can be imagine that the system acknowledges the grade creation, but when
the user retrieves the data of the student the entity does not exist anymore.
Both transactions were executed successfully, from the point of view of the
’program’ everything is good, but the user will not be satisfied, (s)he would
expect some notification.

. The user could retrieve the data of the user but when (s)he would like to
create a new grade the system send him/her a message that the student does
not exist. The state of the application is not inconsistent (because of the
normalized database schema), our user will not be satisfied even so.

Dávid Bedők (UNI-OBUDA) School (add-new-grade-issues.tex) 2018-01-17 v1.3 57 / 103

Transaction Management
Validation and rollback situation

In the first round the importance of the transaction management is determi-
ning which operations (queries + data manipulations) have to execute
in the same transaction :

. e.g. : before inserting a new grade we have to verify in the same transaction
that the student and the subject are exist and we can notify the user why
we cannot perform the recording (otherwise the INSERT will fail and the we
have mine the possible reason from the returned exception (e.g. foreign key
constrained failed, etc.)). If the validation is a meaningful business use case
we will do it before the data manipulation.

. We have to insert multiple records into different tables (e.g. : one row into a
parent table and N rows into its child table). If - even the last - one single
insert is failed in any reason, none of the rows may stay in the database
(rollback situation). The ORM layer joins these operations better then the
RDBMS, but regardless of that this situation is valid in the ORM as well.

Dávid Bedők (UNI-OBUDA) School (transaction-management.tex) 2018-01-17 v1.3 58 / 103

Successful operations in case of parallel executions

There are some happening where each transaction is performed successfully still it
will be formed a business wrong situatation, because the two separate transac-
tions do not mutually prevent each other.
One of the most common way when the same record are modified parallel, e.g. one
of the actor would like to change the amount to be paid field (value) meanwhile
an other actor would like to fulfill/approve the transfer of this amount and updates
a flag (done) to true.

From one side we can protect the UPDATE 1 operation with a validation (!done),
but we cannot do that in the other direction. For such situations the locking will
be the solution.

Dávid Bedők (UNI-OBUDA) School (locking.tex) 2018-01-17 v1.3 59 / 103

Lock strategies

Pessimistic Locking
Lock the database table row for the time of the transaction which is initiated the locking.
Until the transaction do not notify the termination, any other incomming request will
be queued. It may cause performance drops with ease, it could be the bottleneck of
the system). You have to be careful not to develop deadlock situation (two (or more)
transactions lock 1-1 records separately, none of them release it while each transaction
would like to use the other transaction’s locked record, so both of them will wait).

Optimistic Locking
In the previous mentioned example the issue of the UPDATE 2 is that it cannot able to
perform a validation/check before executes the done flag update to true. For the actor
point of view it would be important to see exactly the same record which (s)he is going to
be approved. One of the solution could be generate the hash of the columns and before
the update we compare the sent and the recalculated hashes. More effecient solution if
we use a version number or a timestamp for the same purpose (but in these cases we
need an additional column in the table). If this validation is failed, we say that the record
is dirty and the transaction will be rollbacked. In case of database pool, this strategy is
more than recommended.

Dávid Bedők (UNI-OBUDA) School (lock-strategies.tex) 2018-01-17 v1.3 60 / 103

XA Datasource
eXtended Architecture

The standard of the Distributed Transaction Processing (DTP) which descri-
bes the interface between the global and local transaction manager. Solving
the ACID1 operations is its essential purpose (e.g. : it can commit/rollback
transactions amoung multiple database, or between a database and a mes-
sage queue). The implementation of XA is mostly based on two-phase com-
mit.

Two-phase commit (2PC)
One of the type of the Atomic Commitment Protocol (ACP). The transactions must be
represent as an atomic item (it cannot be separated). Its name comes from the following:
each operation stands for a voting and a completion phase. In the first phase the related
components must be signal back to the ’coordinator’ (the component is ready to perform
the operation (the resource is free, available, the network is fine, etc.) or not). When
all the related components’ votes were ’true’, the coordinator asks the components the
actual execution in the second phase. The components will signal back the result again
(commit/rollback).

1 Atomicity, Consistency, Isolation, Durability
Dávid Bedők (UNI-OBUDA) School (xa-datasource.tex) 2018-01-17 v1.3 61 / 103

Transaction attributes
@TransactionAttribute annotation

If we call an EJB service through proxy from a Servlet, an EJB transaction may be started. We
can configure this EJB transaction via the @TransactionAttribute annotation which we put
onto the business method2 or the containing class.
You can only use it if the container handles the transactions (this is the default behavior, but if
we want we can put the
@TransactionManagement(TransactionManagementType.CONTAINER) annotation onto the be-
an).
The client side calls the ’remote’ business service. The annotation appears always on the ’remote’
business method:

. MANDATORY : If a client invokes the enterprise bean’s method while the client is associ-
ated with a transaction context, the container invokes the enterprise bean’s method in the
client’s transaction context (must use the transaction of the client).

. NEVER : The client is required to call without a transaction context, otherwise an exception
is thrown.

. NOT_SUPPORTED : The container invokes an enterprise bean method whose transac-
tion attribute NOT_SUPPORTED with an unspecified transaction context (do not need
transactions, may improve performance).

. REQUIRED (default) : If a client invokes the enterprise bean’s method while the client is
associated with a transaction context, the container invokes the enterprise bean’s method
in the client’s transaction context.

. REQUIRES_NEW : The container must invoke an enterprise bean method whose transac-
tion attribute is set to REQUIRES_NEW with a new transaction context.

. SUPPORTS : If the client calls with a transaction context, the container performs the
same steps as described in the REQUIRED case (you should use the Supports attribute
with caution).

2 in case of session bean or message driven bean
Dávid Bedők (UNI-OBUDA) School (transaction-attributes.tex) 2018-01-17 v1.3 62 / 103

Transaction attributes - Successful cases

Dávid Bedők (UNI-OBUDA) School (transaction-attributes-successful-cases.tex)2018-01-17 v1.3 63 / 103

Transaction attributes - Unsuccessful cases

Dávid Bedők (UNI-OBUDA) School (transaction-attributes-failures.tex) 2018-01-17 v1.3 64 / 103

MarkFacadeImpl SLSB (sch-ejbservice project)� �
1 package hu.qwaevisz.school.ejbservice.facade;
2 [..]
3 @Stateless(mappedName = "ejb/markFacade")
4 public class MarkFacadeImpl implements MarkFacade {
5
6 @EJB
7 private StudentService studentService;
8 @EJB
9 private SubjectService subjectService;

10 @EJB
11 private MarkService markService;
12 @EJB
13 private MarkConverter converter;
14
15 @Override
16 @TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
17 public MarkStub addMark(String subject , String neptun , int grade , String note) throws

AdaptorException {
18 try {
19 final Long subjectId = this.subjectService.read(subject).getId();
20 final Long studentId = this.studentService.read(neptun).getId ();
21 return this.converter.to(this.markService.create(studentId , subjectId , grade ,

note));
22 } catch (final PersistenceServiceException e) {
23 LOGGER.error(e, e);
24 throw new AdaptorException(ApplicationError.UNEXPECTED , e.getLocalizedMessage ());
25 }
26 }
27 [..]
28 }� �

MarkFacadeImpl.java
Dávid Bedők (UNI-OBUDA) School (markfacade-add.tex) 2018-01-17 v1.3 65 / 103

Because of the REQUIRES_NEW annota-
tion this business function will run in an
independent transaction (if we call this
from a Servlet this will be the result
too (def. REQUIRED)). Each business
methods are annotated with REQUIRED
which we use inside that method.

MarkServiceImpl SLSB (sch-persistent project)

� �
1 package hu.qwaevisz.school.persistence.service;
2 [..]
3 @Stateless(mappedName = "ejb/markService")
4 @TransactionManagement(TransactionManagementType.CONTAINER)
5 public class MarkServiceImpl implements MarkService {
6
7 @PersistenceContext(unitName = "sch -persistence -unit")
8 private EntityManager entityManager;
9

10 @Override
11 @TransactionAttribute(TransactionAttributeType.REQUIRED)
12 public Mark create(final Long studentId , final Long subjectId , final Integer grade ,

final String note) throws PersistenceServiceException {
13 try {
14 final Student student = this.entityManager.find(Student.class , studentId);
15 final Subject subject = this.entityManager.find(Subject.class , subjectId);
16 Mark mark = new Mark(student , subject , grade , note);
17 this.entityManager.persist(mark);
18 this.entityManager.flush ();
19 return mark;
20 } catch (final Exception e) {
21 throw new PersistenceServiceException("..." + e.getLocalizedMessage (), e);
22 }
23 }
24 [..]
25 }� �

MarkServiceImpl.java

Dávid Bedők (UNI-OBUDA) School (markservice-create.tex) 2018-01-17 v1.3 66 / 103

Only attached (managed) entity can
be saved (persist or merge). Knowing
the ID we can easily ’create’ attached
entities with the find() operation of
the entity manager (inside transaction
it will not generate new queries in this
case).

You have to pay attention not to detach the same entity twice. You
will get ’Multiple representations of the same entity are being mer-
ged.’ exception in that case and for instance you have to remove the
CascadeType.MERGE/CascadeType.PERSIST flag in some relations.

Generated native queries

Dávid Bedők (UNI-OBUDA) School (add-new-grade-native.tex) 2018-01-17 v1.3 67 / 103

� �
1 SELECT
2 subject0_.subject_id AS subject_1_3_ ,
3 [..]
4 subject0_.subject_teacher_id AS

subject_4_3_
5 FROM subject subject0_
6 WHERE subject0_.subject_name =?
7
8 SELECT
9 teacher0_.teacher_id AS teacher_1_4_0_ ,

10 teacher0_.teacher_name AS
teacher_2_4_0_ ,

11 teacher0_.teacher_neptun AS
teacher_3_4_0_

12 FROM teacher teacher0_
13 WHERE teacher0_.teacher_id =?� �

Validation of the Subject :
2 SELECT (Subject.teacher
EAGER).

� �
1 SELECT
2 student0_.student_id AS

student_1_2_0_ ,
3 marks1_.mark_id AS mark_id1_0_1_ ,
4 [..]
5 teacher3_.teacher_neptun AS

teacher_3_4_3_
6 FROM
7 student student0_
8 LEFT OUTER JOIN mark marks1_ ON
9 student0_.student_id=marks1_.mark_student_id

10 LEFT OUTER JOIN subject subject2_ ON
11 marks1_.mark_subject_id=subject2_.subject_id
12 LEFT OUTER JOIN teacher teacher3_ ON
13 subject2_.subject_teacher_id=teacher3_.teacher_id
14 WHERE student0_.student_neptun =?� �

Validation of the Stu-
dent :
1 SELECT (optimized).

� �
1 SELECT
2 NEXTVAL (’mark_mark_id_seq ’)
3
4 INSERT INTO mark
5 (mark_date , mark_grade , mark_note , mark_student_id ,

mark_subject_id , mark_id)
6 VALUES
7 (?, ?, ?, ?, ?, ?)� �

Insertion of Mark : 1 SELECT + 1 INSERT.

Remove student
DELETE http://localhost:8080/school/api/student/{neptun}

Dávid Bedők (UNI-OBUDA) School (subtitle-remove-student.tex) 2018-01-17 v1.3 68 / 103

http://localhost:8080/school/api/student/{neptun}

Remove student
DELETE http://localhost:8080/school/api/student/{neptun}

http://localhost:8080/school/api/student/ABC123
Response status code: 400 Bad Request� �
1 {
2 "code": 40,
3 "message": "Resource not found",
4 "fields": "ABC123"
5 }� �
http://localhost:8080/school/api/student/WI53085
Response status code: 412 Precondition Failed� �
1 {
2 "code": 50,
3 "message": "Has dependency",
4 "fields": "WI53085"
5 }� �
http://localhost:8080/school/api/student/TX78476
Response status code: 204 No Content

Dávid Bedők (UNI-OBUDA) School (remove-student.tex) 2018-01-17 v1.3 69 / 103

http://localhost:8080/school/api/student/ABC123
http://localhost:8080/school/api/student/WI53085
http://localhost:8080/school/api/student/TX78476

RESTful Endpoint (sch-webservice project)

� �
1 @Path("/student")
2 public interface StudentRestService {
3
4 @DELETE
5 @Path("/{ neptun}")
6 void removeStudent(@PathParam("neptun") String neptun) throws

AdaptorException;
7
8 [..]
9 }� �

StudentRestService.java

Dávid Bedők (UNI-OBUDA) School (remove-student-rest.tex) 2018-01-17 v1.3 70 / 103

HTTP (response) status codes
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Successful 2xx
. 200 OK
. 201 Created
. 202 Accepted
. 204 No Content
. 206 Partial Content

Redirection 3xx
. 300 Multiple Choices
. 301 Moved Permanently
. 302 Found
. 303 See Other
. 304 Not Modified
. 307 Temporary Redirect

Client Error 4xx
. 400 Bad Request
. 401 Unauthorized
. 402 Payment Required
. 403 Forbidden
. 404 Not Found
. 405 Method Not Allowed
. 408 Request Timeout
. 412 Precondition Failed
. 413 Request Entity Too Large
. 414 Request-URI Too Long
. 415 Unsupported Media Type

Server Error 5xx
. 500 Internal Server Error
. 501 Not Implemented
. 503 Service Unavailable

Dávid Bedők (UNI-OBUDA) School (http-status-codes.tex) 2018-01-17 v1.3 71 / 103

Error handling on RESTful interface

. Based on the HTTP Response status code we may send back different ’pay-
loads’, because all receiving clients can easily differentiate that situation. In
case of error an ErrorStub instance will contain the business error code in
JSON format, possibly some other public information as well. There are not
exist standard solution like the SOAP Fault.

. In an object-oriented application the error cases of a business methods are
exceptions. We use this ’special’ return values to differentiate the failures. In
common when a business error occurs we throws a checked exception (instance
of AdaptorException) which contains some proected data (these are help
us to detect/prevent the error later) beside the public information. In JAX-RS
we can create an ExceptionMapper<T> class which transforms the business
error into an HTTP Response (AdaptorExceptionMapper).

It follows from the above that the AdaptorException will be the factory of the
ErrorStub. It would be redundant if we always add all ErrorStub fields when an
error occurs (it would be difficult to maintain if e.g. we have to change a business
error code). Avoid the above we are going to define an ApplicationError enum
which encapsulates the redundant parts of the ErrorStub. Thereby in case of an
error we just need to give an instance of this enum and the of course the changing
part(s) (e.g. fields).

Dávid Bedők (UNI-OBUDA) School (remove-student-issues.tex) 2018-01-17 v1.3 72 / 103

ErrorStub (sch-ejbservice project)

� �
1 package hu.qwaevisz.school.ejbservice.domain;
2
3 public class ErrorStub {
4
5 private int code;
6 private String message;
7 private String fields;
8
9 public ErrorStub(int code , String message , String fields) {

10 this.code = code;
11 this.message = message;
12 this.fields = fields;
13 }
14
15 [..]
16 }� �

ErrorStub.java

Dávid Bedők (UNI-OBUDA) School (errorstub.tex) 2018-01-17 v1.3 73 / 103

ApplicationError (sch-ejbservice project)� �
1 package hu.qwaevisz.school.ejbservice.util;
2 import javax.ws.rs.core.Response.Status;
3 import hu.qwaevisz.school.ejbservice.domain.ErrorStub;
4 public enum ApplicationError {
5
6 UNEXPECTED (10, Status.INTERNAL_SERVER_ERROR , "Unexpected error"),
7 NOT_EXISTS (40, Status.BAD_REQUEST , "Resource not found"),
8 HAS_DEPENDENCY (50, Status.PRECONDITION_FAILED , "Has dependency");
9

10 private final int code;
11 private final Status httpStatus;
12 private final String message;
13
14 private ApplicationError(int code , Status httpStatus , String message) {
15 this.code = code;
16 this.httpStatus = httpStatus;
17 this.message = message;
18 }
19
20 public Status getHttpStatus () {
21 return this.httpStatus;
22 }
23 public int getHttpStatusCode () {
24 return this.httpStatus.getStatusCode ();
25 }
26 public ErrorStub build(String field) {
27 return new ErrorStub(this.code , this.message , field);
28 }
29 }� �

ApplicationError.java
Dávid Bedők (UNI-OBUDA) School (applicationerror.tex) 2018-01-17 v1.3 74 / 103

The ApplicationError enum ins-
tance is the factory of the
ErrorStub, and it is able le get
(and store) the HTTP Status value
which is also correlated the type of
the error.

AdaptorException (sch-ejbservice project)� �
1 package hu.qwaevisz.school.ejbservice.exception;
2 import hu.qwaevisz.school.ejbservice.domain.ErrorStub;
3 import hu.qwaevisz.school.ejbservice.util.ApplicationError;
4 public class AdaptorException extends Exception {
5
6 private final ApplicationError error;
7 private final String fields;
8
9 public AdaptorException(ApplicationError error , String message ,

String fields) {
10 this(error , message , null , fields);
11 }
12 [..]
13 public Status getHttpStatus () {
14 return this.error.getHttpStatus ();
15 }
16
17 public ErrorStub build() {
18 return this.error.build(this.fields);
19 }
20 }� �

AdaptorException.java
Dávid Bedők (UNI-OBUDA) School (adaptorexception.tex) 2018-01-17 v1.3 75 / 103

The AdaptorException ins-
tance is the factory of
ErrorStub (it delegates the
task to the instance of
ApplicationError enum).

AdaptorExceptionMapper (sch-webservice project)

� �
1 package hu.qwaevisz.school.webservice.mapper;
2 import javax.ws.rs.core.MediaType;
3 import javax.ws.rs.core.Response;
4 import javax.ws.rs.ext.ExceptionMapper;
5 import javax.ws.rs.ext.Provider;
6 import hu.qwaevisz.school.ejbservice.exception.AdaptorException;
7
8 @Provider
9 public class AdaptorExceptionMapper implements

ExceptionMapper <AdaptorException > {
10
11 @Override
12 public Response toResponse(final AdaptorException e) {
13 return Response.status(e.getHttpStatus ())
14 .entity(e.build())
15 .type(MediaType.APPLICATION_JSON)
16 .build();
17 }
18
19 }� �

AdaptorExceptionMapper.java

Dávid Bedők (UNI-OBUDA) School (adaptorexceptionmapper.tex) 2018-01-17 v1.3 76 / 103

The @Provider classes offer configuration possibilities for the
JAX-RS. The implementation of this API already has several
providers (e.g. : object-XML/JSON two-way conversion).

StudentFacadeImpl (sch-ejbservice project)

� �
1 public class StudentFacadeImpl implements StudentFacade {
2 @EJB
3 private StudentService studentService;
4 @EJB
5 private MarkService markService;
6
7 @Override
8 @TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
9 public void removeStudent(final String neptun) throws AdaptorException {

10 try {
11 if (this.studentService.exists(neptun)) {
12 if (this.markService.count(neptun) == 0) {
13 this.studentService.delete(neptun);
14 } else {
15 throw new AdaptorException(ApplicationError.HAS_DEPENDENCY , "Student has

undeleted mark(s)", neptun);
16 }
17 } else {
18 throw new AdaptorException(ApplicationError.NOT_EXISTS , "Student doesn’t

exist", neptun);
19 }
20 } catch (final PersistenceServiceException e) {
21 LOGGER.error(e, e);
22 throw new AdaptorException(ApplicationError.UNEXPECTED , e.getLocalizedMessage ());
23 }
24 }
25 }� �

StudentFacadeImpl.java

Dávid Bedők (UNI-OBUDA) School (studentfacadeimpl-removestudent.tex) 2018-01-17 v1.3 77 / 103

The transaction attributes of all the three
persistent operations is REQUIRED, so the
queries and the delete will be executed in
the same transaction.

StudentServiceImpl (sch-persistence project)� �
1 public class StudentServiceImpl implements StudentService {
2 @PersistenceContext(unitName = "sch -persistence -unit")
3 private EntityManager entityManager;
4
5 @Override
6 @TransactionAttribute(TransactionAttributeType.REQUIRED)
7 public void delete(final String neptun) throws

PersistenceServiceException {
8 if (LOGGER.isDebugEnabled ()) {
9 LOGGER.debug("Remove Student by neptun (" + neptun + ")");

10 }
11 try {
12 this.entityManager.createNamedQuery(Student.REMOVE_BY_NEPTUN).setParameter(StudentParameter.NEPTUN ,

neptun).executeUpdate ();
13 } catch (final Exception e) {
14 throw new PersistenceServiceException("Unknown error when

removing Student by neptun (" + neptun + ")! " +
e.getLocalizedMessage (), e);

15 }
16 }
17 }� �

StudentServiceImpl.java
Dávid Bedők (UNI-OBUDA) School (studentserviceimpl-deletestudent.tex) 2018-01-17 v1.3 78 / 103

JPQL queries

Does the student exist?� �
1 SELECT COUNT(s)
2 FROM Student s
3 WHERE s.neptun =: neptun� �
If it exists, does (s)he got any grades?� �
1 SELECT COUNT(m)
2 FROM Mark m
3 WHERE m.student.neptun =: neptun� �
If not then perform the deletion:� �
1 DELETE FROM Student s
2 WHERE s.neptun =: neptun� �

Dávid Bedők (UNI-OBUDA) School (remove-student-queries.tex) 2018-01-17 v1.3 79 / 103

Cross-Origin Resource Sharing (CORS)

CORS is a technique that the browsers (user agent) ask permission to send
(and receive) HTTP requests from a service which locates in an other domain
(other means that it differs from the originally called domain).
In such case the browser sends an OPTION HTTP request to the server (with
the header (and url) data of the original request) to ask the permission. After
that the server side component’s responsibility processes this OPTION
request and decides that the requester’s IP address (client) may call
the service or not. Very common solution that the CORS filter at the server
side allows HTTP requests from everywhere. We are going to do that too.
If the server denies the request, the user agent will not send the original
request.

There are 3rd party solutions for the CORS filters, but we are not going to
use these right now.

Dávid Bedők (UNI-OBUDA) School (cors.tex) 2018-01-17 v1.3 80 / 103

CORS - Process OPTION requests

� �
1 @Path("/student")
2 public interface StudentRestService {
3 [..]
4
5 @OPTIONS
6 @Path("{path :.*}")
7 Response optionsAll(@PathParam("path") String path);
8 }� �

StudentRestService.java� �
1 public class StudentRestServiceBean implements StudentRestService

{
2 [..]
3 @Override
4 public Response optionsAll(final String path) {
5 return Response.status(Response.Status.NO_CONTENT).build ();
6 }
7 }� �

StudentRestServiceBean.java

Dávid Bedők (UNI-OBUDA) School (cors-option-request.tex) 2018-01-17 v1.3 81 / 103

CORS Filter
� �

1 package hu.qwaevisz.school.webservice.filter;
2 [..]
3 @WebFilter(filterName = "SchoolCrossOriginResourceSharingFilter", urlPatterns = { "/*"

})
4 public class SchoolCORSFilter implements Filter {
5
6 public static final String ALLOW_ORIGIN = "Access -Control -Allow -Origin";
7 public static final String ALLOW_CREDENTIALS = "Access -Control -Allow -Credentials";
8 public static final String ALLOW_METHODS = "Access -Control -Allow -Methods";
9 public static final String ALLOW_HEADERS = "Access -Control -Allow -Headers";

10 public static final String MAX_AGE = "Access -Control -Max -Age";
11
12 @Override
13 public void doFilter(ServletRequest servletRequest , ServletResponse servletResponse ,

FilterChain chain)
14 throws IOException , ServletException {
15 final HttpServletResponse response = (HttpServletResponse) servletResponse;
16 response.setHeader(ALLOW_ORIGIN , "*");
17 response.setHeader(ALLOW_METHODS , "GET , POST , PUT , DELETE , OPTIONS , HEAD");
18 response.setHeader(MAX_AGE , "1209600");
19 response.setHeader(ALLOW_HEADERS , "x-requested -with , origin , content -type , accept ,

X-Codingpedia , authorization");
20 response.setHeader(ALLOW_CREDENTIALS , "true");
21 response.setHeader("Cache -Control", "no-cache");
22 chain.doFilter(servletRequest , servletResponse);
23 }
24 [..]
25 }� �

SchoolCORSFilter.java

Dávid Bedők (UNI-OBUDA) School (cors-filter.tex) 2018-01-17 v1.3 82 / 103

JBoss debug
Remote JVM debug options

� �
1 > [JBOSS_HOME]/bin/standalone .[bat|sh] --debug
2 > [JBOSS_HOME]/bin/standalone .[bat|sh] --debug [DEBUG -PORT]� �
Default debug port : 8787� �
[..]
Listening for transport dt_socket at address: 8787
[..]� �

server.log

You can remote debug any JVM (if you have permission to reach that
process), you only need to add the following arguments to the java starter
command (the -Xdebug is the older version but the newer JVMs recognize
it) :� �
1 -Xdebug -Xrunjdwp:transport=dt_socket ,server=y,suspend=n,address =[DEBUG -PORT]
2 -agentlib:jdwp=transport=dt_socket ,server=y,suspend=n,address =[DEBUG -PORT]� �

Dávid Bedők (UNI-OBUDA) School (jboss-debug.tex) 2018-01-17 v1.3 83 / 103

WebLogic debug
Remote JVM debug options

[WL-HOME] | user_projects | domains | mydomain | startWebLogic.cmd� �
1 set JAVA_OPTIONS=-Xdebug -Xnoagent

-Xrunjdwp:transport=dt_socket ,address =4000, server=y,suspend=n� �
startWebLogic.cmd

Debug port : 4000
. -XDebug → enable debug
. -Xnoagent → turn off the default sun.tools.debug debug agent
. -Xrunjdwp → load the a JDWP3’s JPDA4 reference implementation

3 Java™ Debug Wire Protocol
4 Java™ Platform Debugger Architecture

Dávid Bedők (UNI-OBUDA) School (weblogic-debug.tex) 2018-01-17 v1.3 84 / 103

Eclipse debug
Debug remote JVM

Run | Debug Configurations |
. Remote Java Application

• Local menu: New
• Project: Browse.. (otherwise this is irrelevant)
• Connection Type: Standard (Socket Attach)

◦ Host: localhost
◦ Port: 8787

• Apply and Debug
. Switch to Debug Perspective

• In the Debug view we have to see the threads
• At the same place, local menu: Edit source lookup

◦ Add Java Project(s)

Dávid Bedők (UNI-OBUDA) School (eclipse-debug.tex) 2018-01-17 v1.3 85 / 103

Creating unit tests

Unit testing
Dávid Bedők: Programozási feladatok megoldási módszertana
(Óbudai Egyetem, 2015, Hungarian)
Chapter 5.2: Unit testing

http://users.nik.uni-obuda.hu/bedok.david/progi-felok-megoldasi-moda-latest.pdf

The purpose of the unit test creation is not scope of this lab. The TestNG
3rd party library was introduced earlier (in a very superficial way). The focus
is now on the unit testing of the EJB services. How do we test classes which
resources (the proxies of other EJB/CDI beans) were injected by a container
or framework at runtime? We are going to get to know the Mockito 3rd

party library.

Dávid Bedők (UNI-OBUDA) School (unit-testing.tex) 2018-01-17 v1.3 86 / 103

http://users.nik.uni-obuda.hu/bedok.david/progi-felok-megoldasi-moda-latest.pdf

Mockito
Mocking/Faking 3rd party library

http://site.mockito.org/
Version: 2.12 (2017.11)
Artifact: org.mockito:mockito-core:2.12.0

Why should I use mock techniques?
Firstly this is important because if you use the real implementation of the
other class and this class has a bug, more than one test cases will failed
because of the same issue.
Secondly there are exceptions where some cases you will use the real imple-
mentation and not a mock of the class. But you always have to give reasons
in these situations.

Dávid Bedők (UNI-OBUDA) School (mockito.tex) 2018-01-17 v1.3 87 / 103

http://site.mockito.org/

Unit testing of average grade statistics
sch-ejbservice project� �
1 List <MarkDetailStub > getMarkDetails(String subject) throws

AdaptorException;� �
What are the responsibilities of that method in that layer (whitebox
testing5)?

. With a given subject’s name the method produces the list of
MarkDetailStub output.

. With the subject’s name the method asks the statistics data from the
persistence layer (list of MarkDetailResult)

. Ask the transformation/conversion of the list from the persistence layer to
get the list of MarkDetailStub which can be interpretable by the user

. When something goes wrong in the persistence layer the method has to
notify the unexpected event (ApplicationError.UNEXPECTED).

. If the subject does not exist, the method should return an empty list.
There is no any other responsibilities for that business method (e.g. : it
does not care the details of the conversion or which named query should be
performed in the persistence layer (there is a database side VIEW or not),
etc.).

5we know the internal operation details
Dávid Bedők (UNI-OBUDA) School (avg-grade-stat-test.tex) 2018-01-17 v1.3 88 / 103

MarkFacadeImplTest (sch-ejbservice project)
Test setup� �
1 package hu.qwaevisz.school.ejbservice.facade;
2 [..]
3 public class MarkFacadeImplTest {
4
5 @InjectMocks
6 private MarkFacadeImpl facade;
7
8 @Mock
9 private MarkService markService;

10
11 @Mock
12 private MarkConverter markConverter;
13
14 @BeforeMethod
15 public void setup() {
16 MockitoAnnotations.initMocks(this);
17 }
18
19 [..]
20 }� �

MarkFacadeImplTest.java
Dávid Bedők (UNI-OBUDA) School (markfacadeimpltest-init.tex) 2018-01-17 v1.3 89 / 103

The tested class has the @InjectMocks
annotation. The framework will inject
the mocks into this class. Do not
instantiate the MarkFacadeImpl ins-
tance!

The classes which have the
@Mock annotation will be the
mock objects. These mocks will
be injected into the tested class.
The mocks have to be prepared
before usage mostly (in contrast
the fakes will be created as a
ready-to-use instances).

To call the MockitoAnnotataions.initMocks(this) method is very
important. This method does the injection (we can put this line into a
parent class).

MarkFacadeImplTest (sch-ejbservice project)
There are no statistical data

� �
1 public class MarkFacadeImplTest {
2 [..]
3 private static final String SUBJECT_NAME = "LoremIpsumSubject";
4
5 @Test
6 public void returnAnEmptyListWhenTheSubjectIsNotExistsOrHasntGotAnyGrades () throws

AdaptorException , PersistenceServiceException {
7 final List <MarkDetailResult > results = new ArrayList <>();
8 Mockito.when(this.markService.read(SUBJECT_NAME)).thenReturn(results);
9 final List <MarkDetailStub > stubs = new ArrayList <>();

10 Mockito.when(this.markConverter.to(results)).thenReturn(stubs);
11
12 final List <MarkDetailStub > markDetailStubs =

this.facade.getMarkDetails(SUBJECT_NAME);
13
14 Assert.assertEquals(markDetailStubs.size(), 0);
15 }
16 [..]
17 }� �

MarkFacadeImplTest.java

It have to be a requirement that the markService.read() method returns an empty list
if there are no grades for the subject, or the subject is not even exist. The test verifies
that the getMarkDetails() method does not failed in that case.

Dávid Bedők (UNI-OBUDA) School (markfacadeimpltest-empty.tex) 2018-01-17 v1.3 90 / 103

MarkFacadeImplTest (sch-ejbservice project)
Successful case� �
1 public class MarkFacadeImplTest {
2 @Test
3 public void createListOfMarkDetailsFromSubjectName () throws AdaptorException ,

PersistenceServiceException {
4 final List <MarkDetailResult > results = new ArrayList <>();
5 results.add(new MarkDetailResult(Institute.NEUMANN , 2000, 0));
6 results.add(new MarkDetailResult(Institute.KANDO , 2000, 0));
7 Mockito.when(this.markService.read(SUBJECT_NAME)).thenReturn(results);
8 final List <MarkDetailStub > stubs = new ArrayList <>();
9 final MarkDetailStub neumannStub = Mockito.mock(MarkDetailStub.class);

10 stubs.add(neumannStub);
11 final int yearKando = 2014;
12 final double averageGradeKando = 2.4142;
13 stubs.add(new MarkDetailStub(Institute.KANDO.toString (), yearKando ,

averageGradeKando));
14 Mockito.when(this.markConverter.to(results)).thenReturn(stubs);
15
16 final List <MarkDetailStub > markDetailStubs =

this.facade.getMarkDetails(SUBJECT_NAME);
17
18 Assert.assertEquals(markDetailStubs.size(), 2);
19 Assert.assertEquals(markDetailStubs.get(0), neumannStub);
20 Assert.assertEquals(markDetailStubs.get(1).getInstitute (),

Institute.KANDO.toString ());
21 Assert.assertEquals(markDetailStubs.get(1).getYear (), yearKando);
22 Assert.assertEquals(markDetailStubs.get(1).getAverageGrade (), averageGradeKando);
23 }
24 }� �

MarkFacadeImplTest.java
Dávid Bedők (UNI-OBUDA) School (markfacadeimpltest-successful.tex) 2018-01-17 v1.3 91 / 103

MarkFacadeImplTest (sch-ejbservice project)
Unsuccessful case

� �
1 public class MarkFacadeImplTest {
2 [..]
3
4 @Test(expectedExceptions = AdaptorException.class)
5 public void

throwUnexpectedApplicarionErrorIfSomethingErrorOccoursInThePersistenceLayer ()
throws PersistenceServiceException , AdaptorException {

6 Mockito.when(this.markService.read(SUBJECT_NAME)).thenThrow(PersistenceServiceException.class);
7 this.facade.getMarkDetails(SUBJECT_NAME);
8 Assert.fail();
9 }

10
11 [..]
12 }� �

MarkFacadeImplTest.java

One of the field (ApplicationError enum) of the thrown AdaptorException contains
javax.ws.rs.core.Response.Status instances. That is why we have to add the e.g. the
org.jboss.spec:jboss-javaee-6.0 artifact to the test classpath (in Gradle we may use
the compileOnly dependency configuration instead of the compile in case of the JavaEE
API).

Dávid Bedők (UNI-OBUDA) School (markfacadeimpltest-failure.tex) 2018-01-17 v1.3 92 / 103

Typical scenario

Subject subject = Mockito.mock(Subject.class);
It creates a Subject mock (the @Mock annotation creates a mock like this
too, but with the annotation the library injects the mock into the tested
class, if we ask it and it is possible).

Mockito.when(this.markService.read(SUBJECT_NAME))
.thenReturn(results);

It prepares a mock. In this case when the read() method is called with the
given String value, the mock will return a results (which is a list of
mocks, but it can be real instance/literal as well).

Mockito.verify(this.markService).read(SUBJECT_NAME);
It verifies the accurate method call of a mock (does the read() method is
called with the given String literal). If the call is missing, the test will be
failed.

Dávid Bedők (UNI-OBUDA) School (unit-testing-scenario.tex) 2018-01-17 v1.3 93 / 103

Mockito additional possibilities

. It can be an option to throw an exception in case of when() (and we can do
that with the method which has not got return value (void)).

. With the help of the Matchers we could avoid to set the accurate values, we
only need to add e.g. the type of the argument (we can combine the options
if the method has more than one arguments).

. We can catch mock’s inner arguments (and after that we are able to write an
Assert with that value).

. We can define how many times we would like to verify() a method call.

. We can set multiple return values in order in case of when() if the same mock
will be called multiple times.

. etc.

Do not overengineering
If you test your class too deep it will be very sensitive for any tiny changes as well
and you cannot refactor your production code easily. Because of this try to avoid
the usage of the verify() (for instance in the presented example these verifies are
totally unnecessary).

Dávid Bedők (UNI-OBUDA) School (advanced-mockito.tex) 2018-01-17 v1.3 94 / 103

List of filtered student’s grades
POST http://localhost:8080/school/api/mark/get/{neptun}

Dávid Bedők (UNI-OBUDA) School (subtitle-filtered-student-grades.tex) 2018-01-17 v1.3 95 / 103

http://localhost:8080/school/api/mark/get/{neptun}

Filtered grades of student
POST http://localhost:8080/school/api/student/marks/{neptun}

HTTP Request payload (application/xml):� �
1 <markcriteria >
2 <subject >Programming </subject >
3 <minimumgrade >1</ minimumgrade >
4 <maximumgrade >3</ maximumgrade >
5 </markcriteria >� �
HTTP Response (application/xml):� �
1 <?xml version="1.0" encoding="UTF -8" standalone="yes"?>
2 <marks >
3 <mark >
4 <date >2014 -09 -29 T04:15:34+02:00 </ date >
5 <grade >MEDIUM </grade >
6 <gradeValue >3</gradeValue >
7 <note >Phasellus </note >
8 <subject >
9 <description >Fusce [..] purus.</description >

10 <name >Python Programming </name >
11 <teacher >
12 <name >Christine W. Culp </name >
13 <neptun >OK73109 </neptun >
14 </teacher >
15 </subject >
16 </mark >
17 [..]
18 </marks >� �

Dávid Bedők (UNI-OBUDA) School (filtered-student-grades.tex) 2018-01-17 v1.3 96 / 103

With that service we are able to
list the student’s (neptun) gra-
des which meet the given con-
ditions: part/term of the sub-
ject’s name (subject), the lo-
wer (minimumgrade) and up-
per (maximumgrade) limit of the
grade.

RESTful Endpoint (sch-webservice project)
� �

1 @Path("/student")
2 public interface StudentRestService {
3 [..]
4 @POST
5 @Consumes("application/xml")
6 @Produces("application/xml")
7 @Path("/marks /{ neptun}")
8 @Wrapped(element = "marks")
9 List <MarkStub > getMarks(@PathParam("neptun") String neptun ,

MarkCriteria criteria) throws AdaptorException;
10 [..]
11 }� �

StudentRestService.java

@Wrapped
With the help of org.jboss.resteasy.annotations.providers.jaxb.Wrapped
annotation we can wrap the parent element of the List<T> type (in case of XML
it is useful, but in JSON it does not). Because of that annotation we have to add
the org.jboss.resteasy:resteasy-jaxb-provider compile time artifact to
the classpath.

Dávid Bedők (UNI-OBUDA) School (filtered-student-grades-rest.tex) 2018-01-17 v1.3 97 / 103

JPQL and generated native queries

� �
1 SELECT m
2 FROM Mark m
3 JOIN FETCH m.student
4 JOIN FETCH m.subject s
5 JOIN FETCH s.teacher
6 WHERE m.student.neptun =: studentNeptun
7 AND m.grade BETWEEN :minGrade AND :maxGrade
8 AND m.subject.name LIKE CONCAT(’%’,:subjectNameTerm ,’%’)� �
� �

1 SELECT
2 mark0_.mark_id as mark_id1_0_0_ ,
3 student1_.student_id as student_1_2_1_ ,
4 subject2_.subject_id as subject_1_3_2_ ,
5 teacher3_.teacher_id as teacher_1_4_3_ ,
6 [..]
7 teacher3_.teacher_neptun as teacher_3_4_3_
8 FROM mark mark0_
9 INNER JOIN student student1_ ON mark0_.mark_student_id=student1_.student_id

10 INNER JOIN subject subject2_ ON mark0_.mark_subject_id=subject2_.subject_id
11 INNER JOIN teacher teacher3_ ON subject2_.subject_teacher_id=teacher3_.teacher_id
12 WHERE student1_.student_neptun =?
13 AND (mark0_.mark_grade BETWEEN ? AND ?)
14 AND (subject2_.subject_name LIKE (’%’||?||’%’))� �

Dávid Bedők (UNI-OBUDA) School (filtered-student-grades-queries.tex) 2018-01-17 v1.3 98 / 103

REST Client application

� �
1 private static final String REQUEST_PAYLOAD = "" //
2 + "<markcriteria >" //
3 + " <subject >Programming </subject >" //
4 + " <minimumgrade >1</ minimumgrade >" //
5 + " <maximumgrade >3</ maximumgrade >" //
6 + "</markcriteria >";
7 public static void main(String [] args) throws IOException {
8 URL url = new URL("http :// localhost :8080/ school/api/student/marks/WI53085");
9 HttpURLConnection connection = (HttpURLConnection) url.openConnection ();

10 connection.setRequestMethod("POST");
11 connection.setRequestProperty("Content -Type", "application/xml");
12 connection.setUseCaches(false);
13 connection.setDoOutput(true);
14 DataOutputStream outputStream = new DataOutputStream(connection.getOutputStream ());
15 outputStream.writeBytes(REQUEST_PAYLOAD);
16 outputStream.close();
17
18 InputStream inputStream = connection.getInputStream ();
19 BufferedReader reader = new BufferedReader(new InputStreamReader(inputStream));
20 StringBuilder response = new StringBuilder ();
21 String line;
22 while ((line = reader.readLine ()) != null) {
23 response.append(line);
24 }
25 reader.close ();
26
27 System.out.println(response);
28 }� �

Dávid Bedők (UNI-OBUDA) School (rest-client.tex) 2018-01-17 v1.3 99 / 103

Calling a RESTful service is entirely language indepen-
dent, we only need to build HTTP Requests, we can do
that ’almost’ from any programming languages. The pre-
sented Java sample creates a POST request and processes
the response. Of course the XML payload is available in
plain text format.

REST Client application
type-safe solution

Using the java.net package there are some issues: it is not provide us type-
safe solution and it causes lots of boilerplate source codes. Of course there
are some 3rd party libraries with are tring to correct these but luckily the
popular implementations of JAX-RS are also support the client side opera-
tions, so we can use them on the REST client side as well, even in a Java
SE application (JBoss RESTeasy and Oracle Jersey).

Do we use it in couple?
It does not matter which library we are using on the server and client sides.
When we use RESTeasy on the server we should use Jersey on the client. It
does also not matter which stub you are using, the only thing that matters
is the content will be serialized based on the adjusted MIME type (the client
side should be able to product the appropriate XML/JSON content).

Dávid Bedők (UNI-OBUDA) School (rest-client-type-safe.tex) 2018-01-17 v1.3 100 / 103

REST Client
sch-restclient project

JAXB
The JAXB Provider (Java Architecture for XML Binding) is good for
serialization and deserialization of XML(s).� �
1 jar { archiveName ’sch -restclient.jar ’ }
2
3 dependencies {
4 compile group: ’org.jboss.spec ’, name: ’jboss -javaee -6.0’,

version: jbossjee6Version
5 compile group: ’org.jboss.resteasy ’, name:’resteasy -jaxrs ’,

version: resteasyVersion
6 compile group: ’org.jboss.resteasy ’,

name:’resteasy -jaxb -provider ’, version: resteasyVersion
7 compile group: ’commons -logging ’, name: ’commons -logging ’,

version: commonsloggingVersion
8 }� �

build.gradle

Dávid Bedők (UNI-OBUDA) School (rest-client-gradle.tex) 2018-01-17 v1.3 101 / 103

� �
1 ex t {
2 j b o s s j e e 6V e r s i o n = ’ 3 . 0 . 3 . F i na l ’
3 r e s t e a s yV e r s i o n = ’ 2 . 3 . 7 . F i na l ’
4 commons logg ingVers ion = ’ 1 . 2 ’
5 }� �

RESTful Remote Endpoint (sch-restclient project)� �
1 package hu.qwaevisz.school.restclient;
2 [..]
3 @Path("/student")
4 public interface StudentRemoteRestService {
5
6 @POST
7 @Consumes("application/xml")
8 @Produces("application/xml")
9 @Path("/marks /{ student}")

10 @Wrapped(element = "marks")
11 ClientResponse <List <MarkStub >>

getFilteredMarks(@PathParam("student") String neptun ,
MarkConditions conditions);

12 }� �
StudentRemoteRestService.java

The StudentRemoteRestService differs at some points intentionally (for presen-
tation purpose) from the server side StudentRestService (e.g. : in the path we
use student key, the name of the MarkCriteria class is something else). Usage
of the ClientResponse<T> is practical because we can handle the header and the
response code of the HTTP Response, not only the entity.

Dávid Bedők (UNI-OBUDA) School (filtered-student-grades-remote-rest.tex) 2018-01-17 v1.3 102 / 103

Sample code (sch-ejbservice project)

� �
1 public List <MarkStub > process(String studentNeptun ,

MarkConditions conditions) {
2 URI serviceUri =

UriBuilder.fromUri("http :// localhost :8080/ school/api").build();
3 ClientRequestFactory crf = new ClientRequestFactory(serviceUri);
4
5 StudentRemoteRestService api =

crf.createProxy(StudentRemoteRestService.class);
6 ClientResponse <List <MarkStub >> response =

api.getFilteredMarks(studentNeptun , conditions);
7
8 LOGGER.info("Response status: " + response.getStatus ());
9 MultivaluedMap <String , Object > header = response.getMetadata ();

10 for (final String key : header.keySet ()) {
11 LOGGER.info("HEADER - key: " + key + ", value: " +

header.get(key));
12 }
13 List <MarkStub > marks = response.getEntity ();
14 return marks;
15 }� �

SchoolRestClient.java

Dávid Bedők (UNI-OBUDA) School (schoolrestclient.tex) 2018-01-17 v1.3 103 / 103

