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Abstract 

The methodology based on the Particle Swarm Optimization (PSO) method, as a recent stochastic optimization 

technique to solve complex inverse heat transfer problems is outlined. Temporal and spatial dependent Heat Transfer 

coefficient obtained on the surfaces of a cylindrical work piece is recovered by solving the inverse heat conduction 

problem. The fitness function to be minimized by the PSO approach is defined by the deviation of the measurements 

and the calculated temperatures is minimized. The PSO algorithm has been parallelized and implemented on a GPU 

architecture. Numerical results are demonstrated that the determination of Heat Transfer Coefficient functions can be 

performed by using the PSO method, as well as, the GPU implementation; provide a less time consuming and 

accurate estimation.  
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1 Introduction 

Inverse heat conduction problems are known as “reverse engineering” problems, due to the 

reversal of a cause-effect sequence, in the field of heat transfer analysis. An inverse problem 

means that some of the initial, boundary conditions or material properties are not fully specified 

as determined from the measured temperature profiles at some specific locations. The inverse 

problems in most situations are likely to be ill-posed [Beck 1985]. Solutions of the inverse 

problem are very sensitive to measurement errors, i.e. small errors in the measured data values 

can produce very large errors in solutions. In general, the exclusivity and stability of an inverse 

problem solution is not guaranteed. In recent years, the inverse problems have been studied 

extensively due to their applications in various engineering disciplines. 

The most of the methods approach the inverse heat conduction problem, as an optimization 

problem, i.e. the problem is defined as the minimization of a cost function or a fitness function 

measuring the distance between measurements and predictions [Alifanov 1994, Özisik 2000]. 

With the improvement of computer capability, a variety of numerical techniques and 

computational methods have been developed to provide accurate solutions for inverse heat 

conduction problems (IHCP) in the last decade. Among these methods, stochastic optimization 

methods have become a popular means of solving inverse problems, due to their capability of 

finding the global optimal result without computing the complicated gradient of the objective 

function. 
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Genetic algorithms [Verma 2007, Kim 2004] are applied successfully for solving many types 

inverse heat transfer problem. The quantitative evaluation of different numerical optimization 

techniques showed [Felde 2012] that stochastic methods could serve more accurate results for 

IHCP than gradient approaches in recovering complex thermal boundary conditions. The Particle 

Swarm Optimization (PSO) algorithm became popular in the recent years due to its ability of 

maintaining a good balance between the convergence and diversity. Applications of PSO 

algorithms in the field of heat transfer are still limited. An inverse application of boundary 

elements method to estimate the thermal conductivity and the shape of an inclusion was 

implemented [Ardakani 2009]. Qi et al. [Qi 2008] applied the multi-phase PSO method to solve 

the inverse radiation problem. The proposed method applied the benefits of both two-group PSO 

and multi-start PSO algorithms. The effectiveness and efficiency of Particle Swarm Optimization 

technique in inverse heat conduction analysis were analysed by Vakili and Gadala [Vakili 2009]. 

Three variations of the PSO method, i.e. basic PSO, repulsive PSO, and complete repulsive PSO, 

were performed to solve the boundary inverse heat conduction problem, in one, two and three 

dimensions. The results showed that PSO can reduce the stability problems of the classical 

methods, for solving the inverse heat conduction problems.  

In this work, an inverse analysis for the reconstruction of local coordinate and a time-varying 

Heat Transfer Coefficient, in two-dimensional cylindrical coordinates is investigated. The 

inverse heat conduction analysis is based on the application of a PSO technique. Transient 

temperature measurements at multi-locations in the body of the work piece, obtained by the 

solution of the direct heat transfer problem, served as the virtual experimental data required to 

solve the inverse analysis. The fitness function which is defined by the quadratic residual 

between the measurements and the calculated temperatures is minimized. The PSO algorithm 

has been parallelized and implemented on a GPU architecture. Numerical results are 

demonstrated that the determination of Heat Transfer Coefficient functions can be performed by 

using the PSO method, as well as, the GPU implementation; provide a less time consuming and 

accurate estimation. 

2 The physical and mathematical models 

The determination of the Heat Transfer Coefficient is an important issue of the IHCP and has 

been extensively studied. Improvements and adaptations of the numerical algorithms on the 

applications are still an active area of research for obtaining stable and reliable results. A two-

dimensional axis-symmetrical heat conduction model is considered to estimate the temperature 

distribution in a cylindrical work piece (the radius and length of the cylinder is noted by R and 

Z). The cylinder is subjected to a longitudinal local coordinate and time varying Heat Transfer 

Coefficient HTC(z,t) on all its surfaces. Both the thermal conductivity and the heat capacity are 

varying with the temperature, k(T) and Cp(T). The dimensional mathematical formulation of this 

nonlinear transient heat conduction problem can be described as follows: 
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where r and z is the local coordinate, t is the time, ρ is the density, T0 is the initial temperature 

and Tq is the temperature of the cooling medium. In this work, the weighted Schmidt explicit 

finite difference method is used to discretize the Eqs. (1-3) and solve the direct problem. 
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3 The inverse heat transfer problem 

Assuming that the temperature inside the work piece and/or on its surface is measured during the 

heat transfer process, it is possible to solve the inverse heat conduction problem by determining 

the time/or temperature variations of the thermal boundary conditions [Beck 1985, Tikhonov 

1977, Alifanov 1994, Özisik 2000]. The temperature at different times is given by measurements 

at n points in the solid region, located at rk, (k=1…n). On calling Tk
m
, the measured 

temperatures, and Tk
c
, the calculated temperature at those points, the solution of the present 

inverse problem can be obtained by minimizing the following fitness function 
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where n is the total number of measured temperatures, i.e., the number of points multiplied the 

number of measurements at each point. The inverse problem is recast as an optimization 

problem. A variety of numerical and analytical techniques have been developed to solve the 

optimization problems. 

4 The particle swarm optimization algorithm 

The Particle Swarm Optimization (PSO) algorithm introduced by Kennedy and Eberhart 

[Kennedy 1995, Eberhart 1998] in 1995 is a stochastic optimization technique which draws 

inspiration from the social behavior of a flock of birds or the collective intelligence of a group of 

social insects with limited individual capabilities. The basic PSO model consists of a swarm of 

M particles moving in a problem search space. Each particle is a potential solution of the global 

optimum over a given domain D. For a N-dimensional search space, the position of the i
th
 

particle is represented as Xi = (xi1,xi2, . . . ,xiN). At each generation, the new particle position is 

found by adding a displacement to the current position where the displacement is the particle 

velocity multiplied by a time step of one as shown in Eq. (5) 

 

 Xi
n+1

 = Xi
n
 + Vi

n+1
  (5) 

 

In Eq. (5), Xi
n  

and Xi
n+1

 represent the current and previous positions of particle i, Vi
n+1 

i is the 

current velocity of particle i and is represented as Vi
n+1

= (vi1,vi2, . . . ,viN). The velocity of each 

particle is also updated at each generation and is given by: 

 

 Vi
n+1

 = Vi
n 
+c1r1(Pbest,i - Xi

n
) +c2r2(Gbest - Xi

n
)   (6) 

  

where Vi
n
 and Vi

n+1
 are the current and previous velocities of the particle i, respectively. Each 

particle maintains a memory of its previous best position, say Pbest,i = (pi1, pi2, . . . ,piN), where the 

position giving the best fitness function value. The best one among all the particles in the swarm 

is represented as the global best position, say Gbest = (pg1,pg2, . . . ,pgN). The new velocity in Eq. 

(6) can be seen as the sum of three parts. The first part of Eq. (6) represents the previous velocity 

and is called the momentum part. The second part of the Eq. (6) represents the tracking of best 

position for individual particle and is called the cognition part. The third part of the Eq. (6) 

represents the cooperation among particles in the swarm and is called the social component. The 

cognitive learning coefficient c1 and social learning coefficient c2 are known as accelerating 

factors, and r1 and r2 are two random numbers generated by the uniform distribution within 0 and 

1. The relative sizes of these components determine their contribution to the new particle 

velocity. The most common setting for c1 and c2 are 2.0 for the standard PSO algorithm. 
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One difficulty encountered in the standard PSO algorithm is that it could easily fall into local 

optimum in many optimization problems. Better selection of the inertial weight provides a 

balance between global and local exploration and exploitation. Therefore, less iteration is needed 

to find the optimal solution and improve the performance of the algorithm. A constriction factor 

was incorporated into the PSO algorithm by Clerc’s suggestion [Clerc 1999] to insure the 

convergence of the algorithm (PSOC). The velocity term was update as follows: 

 

 Vi
n+1

 = C3(Vi
n 
+c1r1(Pbest,i - Xi

n
) +c2r2(Gbest - Xi

n
))   (7) 

 

When Clerc’s constriction method is used, the constant multiplier C3 is approximately equal to 

0.7298 and the two coefficients c1 and c2 are 2.05. The Clerc’s approach has been used for the 

determination of Heat Transfer Coefficients. 

5 Computation procedure for the Particle Swarm Optimization  

The aim of the inverse analysis is to iteratively estimate the unknown Heat Transfer Coefficients 

using the PSO procedure which results a negligible difference between measurements taken at 

the given locations of the work piece and temperatures computed from the numerical model. The 

fitness functions value of each particle at the nth iteration is given by the difference between the 

measured and calculated temperature curves, Eq (4) at the position Xi
n
. The computational steps 

of the PSOM algorithm described above are given as follows: 
 

 Step 1:  Generate the initial particles in a swarm by randomly generating the position and 

velocity for each particle. 

 Step 2: Evaluate the fitness function of each particle. 

 Step 3:  Update the Pbest,i for each particle, if its fitness is smaller than the fitness of its 

previous best position (Pbest,i). 

 Step 4:  Update the Gbest, if the fitness function of a particle is smaller than the fitness of 

the best position of all particles (Gbest). 

 Step 5:  Update each particle according to Eqs. (5) and (7). 

 Step 6:  Repeat the loop until the stopping criteria or a predefined number of generations 

is reached. 

It is strongly advised to parallelize the computational jobs in Step 2 due to the fact that there are 

no interferences between the iterations as well as there is no communication between the 

particles in a given iteration. Therefore, these parts are executable in a data parallel fashion, 

which is ideal for GPU implementation [Szénási 2015, Kirk 2010]. We used the following 

configurations for the tests: 

GPU configuration 

 Graphics accelerator: NVIDIA Tesla K40c 

 Architecture: Kepler (GK110B) 

 Number of shades: 2880 

 SMX Count: 15 

 Memory: 12GB GDDR5 
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6 Numerical examples and discussion 

In order to test the performance of the PSO algorithms on the estimation of the Heat Transfer 

Coefficients, numerical experiments have been performed. In the analysis, there was no physical 

set-up to directly measure the temperature Tk
m
. Instead, theoretical Heat Transfer Coefficient 

functions as function of local coordinate and time have been defined, HTC(z,t) and substitute 

them directly into the equations (1)–(3) to calculate the temperatures at each location for the 

thermocouples (TC). The results are used in the computed temperature Tk
m 

curves. Due to this 

concept the Tk
m 

curves have been assumed to be error-free samples. The following concepts have 

been used for the computational investigations: 

 The theoretical HTC(z,t) functions have been determined 

 The Tkm temperature signals have been generated by obtaining simulations on the basis of 

HTC(z,t) functions 

 Inverse computations have been carried out by applying PSO algorithm, in order to 

reconstruct the original HTC(z,t) functions 

 The computational results were evaluated 

The quenching process for a cylindrical work piece, mounted with 5 TC’s was investigated. A 

2D axis-symmetric heat transfer model was applied to calculate the temperature distribution 

during the cooling process. The physical properties of Inconel 600 alloy were assigned to the 

virtual work piece (Table 1). The thermocouples were assumed to be mounted at 1 mm below 

the side surface of the rod. The location of the TC’s (the distances from the bottom of the 

cylinder) and the parameters used for the calculations are summarized in Table 2. 

Temperature, T (C) 

Heat 

Conductivity,  

k (W/mK) 

Specific Heat, Cp 

(kJ/kgK) 

Density,  

ρ (kg/m3) 

27 14,8 0,444 8420 

95,45 15,8374 0,4801 8420 

195,95 17,3606 0,5038 8420 

205,15 17,5 0,5038 8420 

346,75 19,7721 0,5041 8420 

554,15 23,1 0,5453 8420 

596,15 23,8 0,5536 8420 

662,15 24,9 0,5958 8420 

796,45 27,1383 0,6817 8420 

Table 1: The material properties of ISO 9950 alloy 

The effect of wetting front kinematics that occurs during immersion quenching, is taken into 

consideration, by defining the heat transfer coefficient [Majorek 1994, Tensi 1992] HTC(z,t). 

The Heat Transfer coefficient function is assumed to be dependent on time and the vertical local 

coordinate (z). The theoretical HTC(z,t) as predefined, is represented at Fig. 1a., while the 

cooling curves obtained at the TC locations are shown at Fig. 1b. These curves have been applied 

as Tm(t) temperature samples to calculate the fitness values for each particle in the swarm at each 

iteration. The HTC(z,t) is used for all the surfaces of the work piece, including the top and the 

bottom faces. 
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Parameter Value 

Radius, R 10 mm 

Length, L 225 mm 

Initial temperature, T0 850 C 

Ambient temperature, Tam 20 C 

Locations of TC 1-5 below the surface r=R-1 

TC 1 z = 5 mm 

TC 2 z = 55 mm 

TC 3 z = 112.5 mm 

TC 4 z = 167 mm 

TC 5 z = 220 mm 

Table 2: Parameters applied for the computational example 

  

a b 

Figure 1: The theoretical HTC(z,t) applied (a) and the cooling curves (b) obtained at given distance 

measured from the bottom of the probe 

The swarm size used to reconstruct the Heat Transfer Coefficient function was chosen to 

M=1000 and the number of generations computed was defined in 500. We defined 45 parameters 

of the HTC(z,t) (15 time instances in 3 distances from the bottom of the probe) to be estimated, 

the particles were moving in a D=45 dimensional search space.  

The predicted Heat Transfer Coefficient function obtained by the PSO technique is shown in Fig. 

2. The calculated values of HTC(z,t) show a good agreement with the original (predefined) 

function at the time domain 0-40 s. The fluctuation of the results can be observed in the time 

period 40-180 s (when the original HTC function was determined on constant value). The 

temperature signals, Tm(t) were calculated by using the HTCorig(z,t) and the estimated cooling 

curves Tc(t) were obtained by HTCPSO(z,t) at the positions regarding Table 2. are presented in 

Fig 3. Satisfactory agreement of original and predicted cooling curves can be observed. The 

difference between the measured and estimated samples as a function of time for each TC 

positions is shown in Fig. 4. In order to quantify the magnitude of deviation between the 

preliminary defined and the recovered signals the mean and maximum value of the difference of 

cooling curves in each positions were calculated (Fig. 4).  
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Figure 2: The original (HTCorig) and estimated (HTCPSO) Heat Transfer Coefficient functions 

 

Figure 3: The original, Tm(t) and estimated Tc(t) cooling curves at given positions (z) of the probe 
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Figure 4: Difference between measured and calculated cooling curves at given positions (z) as a function 

of time as well as mean and maximum of the cooling curves 

The highest value of temperature difference (13.33 C) was given close to the top surface of the 

cylinder (z = 220 mm) at 17.03 s. The maximum of differences at the further locations were 

approximately 6 C. The mean value of the differences were given between 1.25 and 2.59. Due to 

the low value of differences the PSO method applied to estimate the complex Heat Transfer 

Coefficient in a two dimensional axis-symmetrical model seems to be a feasible approach 

providing the proper accuracy. 

It is important to report the results of the computational time required for PSO based estimation. 

The calculations have been made in: 

1. Sequential processing (the fitness value of each particle has been estimated one after 

another in the swarm in one generation) 

2. Multi-tier processing (8 parallel computation of particles at the same time)  

3. Full parallelization on GPU architecture 

The implementation of version 1 and 2 a PC hardware setup (Processor: Intelr CoreTM i7-2600, 

Architecture: Sandy Bridge, Number of cores: 4, Memory: 16GB DDR2) has been applied while 

for version 3 the GPU setup is used mentioned earlier. The time measured during performing the 

inverse estimations are summarized in Table 3. The parameters show the solution performed on 

the GPU architecture provides a significant acceleration of calculation time. 

PSO Implementation Calculation time 

Sequential processing 22.47 

Multi-tier processing 6.08 

GPU processing 0.56 

Table 3: The calculation times (in hours) required for HTC estimations 
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7 Conclusions 

An inverse analysis using a Particle Swarm Optimization algorithm suggested by Clerc has been 

presented to identify Heat Transfer Coefficient in a two dimensional heat conduction problem. 

The Heat Transfer Coefficient obtained on the surfaces of a cylindrical probe was considered as 

functions of local coordinates and time. The obtained results underline the feasibility of the 

procedure and the capabilities for the PSO technique to reconstruct a complex surface Heat 

Transfer Coefficient without using any prior information of the unknown transient functions. The 

PSO algorithm has been carried out in high performance GPU configuration using the CUDA 

environment. The GPU implementation of the inverse heat conduction problem provides 

significant acceleration of the prediction compared to sequential or multi-tier computation used 

on a personal computer.  
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