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Introduction

• uncertain processes 
• dynamic engineering system models
• fundamental of the decision making in fuzzy 

based real systems is the approximate 
reasoning, which is a rule-based system 



“Informally, by approximate or, equivalently, 
fuzzy reasoning, we mean the process or 
processes by which a possibly imprecise 

conclusion is deduced from a collection of 
imprecise premises. Such reasoning is, for the 
most part, qualitative rather than quantitative 

in nature and almost all of it falls outside of the 
domain of applicatibility of classical logic”

(Zadeh, L. A., (1979)). 



• fuzzy systems are very much application-
oriented 

• systems need to be integrated into the well-
known mathematical theories 

• although application-oriented fuzzy systems 
seek to be simple and comprehensible, it is 
obvious that they are heavily related to the 
fields of classical multi-valued logic, operation 
research and functional analysis 



Experts are confident in using special types of 
operations in fuzzy systems, such as 

t-norms, t-conorms, uninorms,
and more generally, 

aggregation operators, 
and researchers are more and more meticulous in 

providing exact mathematical definitions for 
those .



1. Real operations used in fuzzy set 
theory

Real semiring
– t-norms and t-conorms
– Aggregation operators
– Uninorms and nullnorms
– Many-valued logics
– Lattice ordered monoids and left 

continuous uninorms and  t-norms



Real semiring

Let [ ]b,a  be a closed subinterval of [ ]+∞∞− ,  (in some 

cases semi-closed subintervals will be considered) and let 

p  be a total order on [ ]b,a . A semiring is the structure 

( )⊗⊕,,p  if the following hold: 



§ ⊕  is pseudo-addition, i.e., a function 

[ ] [ ] [ ]b,ab,ab,a: →×⊕  which is commutative, non-

decreasing (with respect to p ), associative and with 

a zero element denoted by 0; 
§ ⊗  is pseudo-multiplication, i.e., a function 

[ ] [ ] [ ]b,ab,ab,a: →×⊗  which is commutative, 

positively non-decreasing ( yxp  implies 

yxzx ⊗⊗ p  where [ ] [ ]{ }z,b,azzb,az p0∈=∈ +

associative and for which there exists a unit element 

denoted by 1. 

§ 00 =⊗ z  

( ) ( ) ( )zxyxzyx ⊗⊕⊗=⊕⊗  



t-norm

Definition 1.2.1. A function [ ] [ ]1010 2 ,,:T →  is called triangular norm 

(t-norm) if and only if it fulfills the following properties for all 

[ ]10,z,y,x ∈  

(T1)  ( ) ( )x,yTy,xT = , i.e., the t-norm is commutative,  

(T2)  ( )( ) ( )( )z,yT,xTz,y,xTT = , i.e., the t-norm is associative,  

(T3)  ( ) ( )z,yTz,xTyx ≤⇒≤ , i.e., the t-norm is monotone, 

(T4)  ( ) x,xT =1 , i.e., a neutral element exists, which is 1. 

 



t-conorm

Definition 1.2.3. A function [ ] [ ]1010 2 ,,:S →  is called triangular conorm (t-

conorm) if and only if it fulfills the following properties for all [ ]10,z,y,x ∈ : 

(S1)  ( ) ( )x,ySy,xS = , i.e., the t-conorm is commutative, 

(S2)  ( )( ) ( )( )z,yS,xSz,y,xSS = , i.e., the t-conorm is associative,  

(S3)  ( ) ( )z,ySz,xSyx ≤⇒≤ , i.e., the t-conorm is monotone, 

(S4)  ( ) x,xS =0 , i.e., a neutral element exists, which is 0. 



Duality

A function [ ] [ ]1010 2 ,,:S →  is a t-conorm if and only if there exists such a 

t-norm T that for all ( ) [ ]210,y,x ∈ : 

( ) ( )y,xTy,xS −−−= 111 . 

This duality allows us to translate many properties of t-norms into 

corresponding properties of t-conorms.  



The basic t-norms and conorms

§ ( ) ( )y,xminy,xTM = , the minimum t-norm, 

§ ( ) ( ) [ [




 ∈=

otherwise
,y,xify,xTD

1
100 2

, the drastic product. 

§ ( ) ( )y,xmaxy,xS M = , the maximum t-conorm, 

§ ( ) ( ) ] ]
( )



 ∈=

otherwisey,xmax
,y,xify,xSD

2101 , the drastic sum. 

 

§ DMMD SSSTTT ≤≤≤≤≤ . 



Continuity
A t-norm T is lower semi-continuous (upper semi-continuous) if 

and only if it is left continuous (right continuous) in its first 

component, i.e. if for each [ ]10,y ∈  and for each sequence 

( ) [ ]N
Nnn ,x 10⊂∈  we have, respectively, 

( ) 







=

∈∈
nn

Nn
nn

Nn
y,xsupTy,xTsup , 

 ( ) 







=

∈∈
nn

Nn
nn

Nn
y,xinfTy,xTinf .  



Algebraic aspects
Let T be a t-norm.  

(i) An element [ ]10,a ∈  is called an idempotent element of T if 

( ) aa,aT = . Since 0 and 1 are idempotent elements for each t-

norm T they are called trivial idempotent elements of T, and each 

idempotent element in ] [10,   will be called a non-trivial

idempotent element of T. 

(ii) An element [ ]10,a ∈  is called a nilpotent element of T if there 

exist some Nn ∈  such that ( ) 0=n
Ta . 

(iii) An element [ ]10,a ∈  is called a zero divisor of T if there exist 

some ] [10,b ∈  such that ( ) 0=b,aT . 



For an arbitrary t-norm T we consider the following properties: 

(i) The t-norm T is said to be strictly monotone if  

  ( ) ( )z,xTy,xT <   whenever 0>x  and zy < .  

(ii) The t-norm T is said to be Archimedian if  

  ( ) ] [( )10,y,x ∈∀  there exists an Nn ∈  such that ( ) yx n
T < .  



Representation theorems for basic 
operations 

A t-norm T is continuous and Archimedian if and only if there exists a 

strictly decreasing and continuous function [ ] [ ]+∞→ ,,:t 010  with 

( ) 01 =t  such that  

( ) ( ) ( ) ( )( )ytxtty,xT += −1   

where ( )1−t  is the pseudoinverse of f defined by  

( ) ( ) ( ) ( )




 ≤=

−
−

otherwise
txifxtxt

0
01

1 . 

Moreover, representation (1.1.) is unique up to a positive multiplicative 

constant. 



Aggregation operators
An aggregation operator is a function [ ] [ ]U

Nn

n ,,:
∈

→ 1010A  such that: 

(i) ( ) ( )n,n, y...,y,yx...,x,x 2121 AA ≤  whenever ii yx ≤  for 

all { }n,...,,i 21∈  

(ii) ( ) xx =A  for all [ ]10,x ∈  

(iii) ( ) 0000 =,...,,A  and ( ) 1111 =...,,A .  

 

A  is an idempotent aggregation operator if and only if  

MM ST ≤≤ A . 



Uninorms 

A uninorm is a binary operation U on the unit interval, i.e., a function  

[ ] [ ]1010 2 ,,:U →   which satisfies the following properties for all [ ]10,z,y,x ∈  

(U1) ( ) ( )x,yUy,xU = , i.e. the uninorm is commutative, 

(U2) ( )( ) ( )( )z,yU,xUz,y,xUU = , i.e. the uninorm is associative,  

(U3) ( ) ( )z,yUz,xUyx ≤⇒≤ , i.e. the uninorm monotone, 

(U4) ( ) xx,eU = , i.e., a neutral element exists, which is [ ]10,e∈ . 

 



It is evident that, for an arbitrary uninorm U with the neutral 

element ] [10,e ∈ , the operations [ ] [ ]1010 2 ,,:S,T UU →  , which are 

defined by  

( ) ( )ey,exU
e

y,xTU
1

= , 

( ) ( ) ( )( )( )eyee,xeeU
e

y,xSU −−+−+
−

= 11
1

1 , 

are t-norms and t-conorms, respectively 



Structure of the uninorm

1

1

e

e

SU

TU
U

U



Representable uninorms

• The structure of the left-continuous conjunctive idempotent 
uninorm

minn

( ) ( ) 00110 == ,U,U



• The structure of the right-continuous disjunctive idempotent 
uninorm

max

( ) ( ) 10110 == ,U,U



If we suppose an unary operator g on set [0,1], then g is called  

(i) sub-involutive  if  ( )( ) xxgg ≤  for [ ]( )10,x ∈∀ , and 

(ii) super-involutive if  ( )( ) xxgg ≥  for [ ]( )10,x ∈∀ .  

A binary operator U is a conjunctive left-continuous idempotent 

uninorm with the neutral element ] ]10,e ∈  if and only if there exists

a super-involutive decreasing unary operator g with the fixpoint e

and ( ) 10 =g  such that U for any  ( ) [ ]210,y,x ∈∀  is given by  

( ) ( ) ( )
( )


 ≤

=
elsewherey,xmax

xgyify,xmin
y,xU . 

 



A binary operator U is a disjunctive right-continuous idempotent 

uninorm with the neutral element [ [10,e ∈  if and only if there exists

a sub-involutive decreasing unary operator g with the fixpoint e  and 

( ) 01 =g  such that U for any ( ) [ ]210,y,x ∈∀  is given by  

( ) ( ) ( )
( )


 ≥

=
elsewherey,xmin

xgyify,xmax
y,xU . 



Many-valued logics 

• Implications

• Definition

• Implications by t-norms, t-conorms and 
negations 



The modeling “if … then …” rules with fuzzy 
predicates is based on fuzzy implications

In fuzzy logic, the basic theory of connectives 
and, or, not is well developed and their 
functional models (t-norms, t-conorms and 
strong negations) are widely accepted (Weber, 
S.,(1983)). However, there is no such clear, 
and, in some sense, unique way of defining 
fuzzy implications. (Fodor, J., (1996))



Implication

An implication is a function [ ] [ ]1010 2 ,,:I →  with following properties  

(I1) if zx ≤  then ( ) ( )y,zIy,xI ≥  for [ ]10,y ∈∀ ,  

(I2) if ty ≤  then ( ) ( )t,xIy,xI ≤  for [ ]10,x ∈∀ ,  

(I3) ( ) 10 =x,I  for [ ]10,x ∈∀ ,  

(I4) ( ) 11 =,xI  for [ ]10,x ∈∀ ,  

(I5) ( ) 001 =,I  . 



R-implication
An R-implication associated with a t-norm T is defined by  

( ) ( ){ }yz,xTzsupy,xIT ≤=  

Theorem  (Fodor and Roubens (1994)) 

Assume that T is a continuous Archimedian t-norm with 

additive generator f. Then 

( ) ( ) ( ){ }( )01 ,xfyfmaxfy,xIT −= − =

( ) ( ) ( ) ( )( )



≤−
>

= − xyxfyff
xy

y,x 1
1

TI . 



“T-implication”

A very important class of implications is t-norm implications

group, defined by  

( ) ( )y,xTy,xI = .  

Although these implication do not verify the properties of the 

implications they are used as a model in many applications in 

fuzzy logic, for example as Mamdani “implication”. 



Implication? Relation? 
Fuzzy relation

A function [ ]10,YX:R →×  is called (binary) fuzzy relation of type 

( )Y,X . The value ( )y,xR  is interpreted as the degree to which Xx ∈  and 

Yy ∈ are in relation . If YX =  we say that R is a fuzzy relation on X.  

 

The membership function of the composition of a fuzzy set C and  fuzzy 

relation R is defined by  

( )( ) ( ) ( )( )y,xR,xCTsupyRC
Xx∈

=o  

for all Yy ∈ .  



Interpretation of connectives in fuzzy 
logic 

• A many valued propositional logic in which 
the class of truth values is modelled by the unit 
interval [0,1], and which forms an extension of 
the classical Boolean logic, i.e., the two valued 
logic with truth values {0,1}, is quite often 
called a fuzzy logic (Gottwald (2001)). In such 
a logic, the conjunction is usually interpreted 
by a t-norm. 



Residuum-based fuzzy logic

• All of conditions introduced in this section for 
the R-fuzzy logic RT and R-implication with 
continuous t-norm T are coherent with the 
conditions for R-implication. 

• In following investigations there is always 
strictly determined, is it a continuous or left 
continuous, Archimedian or general t-norm 
used by approximate reasoning. 
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Implication

An implication is a function [ ] [ ]1010 2 ,,:I →  with following properties  

(I1) if zx ≤  then ( ) ( )y,zIy,xI ≥  for [ ]10,y ∈∀ ,  

(I2) if ty ≤  then ( ) ( )t,xIy,xI ≤  for [ ]10,x ∈∀ ,  

(I3) ( ) 10 =x,I  for [ ]10,x ∈∀ ,  

(I4) ( ) 11 =,xI  for [ ]10,x ∈∀ ,  

(I5) ( ) 001 =,I  . 
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R-implication
An R-implication associated with a t-norm T is defined by  

( ) ( ){ }yz,xTzsupy,xIT ≤=  

Theorem  (Fodor and Roubens (1994)) 

Assume that T is a continuous Archimedian t-norm with 

additive generator f. Then 

( ) ( ) ( ){ }( )01 ,xfyfmaxfy,xIT −= − =

( ) ( ) ( ) ( )( )



≤−
>

= − xyxfyff
xy

y,x 1
1

TI . 
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“T-implication”

A very important class of implications is t-norm implications

group, defined by  

( ) ( )y,xTy,xI = .  

Although these implication do not verify the properties of the 

implications they are used as a model in many applications in 

fuzzy logic, for example as Mamdani “implication”. 
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Fuzzy relation

A function [ ]10,YX:R →×  is called (binary) fuzzy relation of type 

( )Y,X . The value ( )y,xR  is interpreted as the degree to which Xx ∈  and 

Yy ∈ are in relation . If YX =  we say that R is a fuzzy relation on X.  

 

The membership function of the composition of a fuzzy set C and  fuzzy 

relation R is defined by  

( )( ) ( ) ( )( )y,xR,xCTsupyRC
Xx∈

=o  

for all Yy ∈ .  
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4. Approximate reasoning -
közelítő következtetési rendszer

In fuzzy control system the system state is 
described by a fuzzy rule base, and the 

relationship between fuzzy rule base system, 
output of the system and input of the system is 
modeled by compositional rule of inference.

Fuzzy rule base
Ai→ B i

…Input (A’) Output (Bi’)…
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Fuzzyfied input
(A’)

FLC

System input
xin

Fuzzyfication and 
sliding of the sytem

input

Fuzzy rule base 
system

If Ai then Bi

Other system 
parameters

Fuzzy rule base  
output
B’out

Defuzzyfication method

Crisp FLC output 
yout



• Fuzzy systems are ready to be applied in 
control. However, the following issues have to 
be taken into account:

• Properties of the resulting control function fC
(e.g. smoothness)

• Stability
• Computational complexity (fuzzy controllers 

often have to be implemented on hardware 
with limited resources)



Fuzzyfied input
(A’)

FLC

System input
xin

Fuzzyfication and 
sliding of the sytem

input

Fuzzy rule base 
system

If Ai then Bi

Other system 
parameters

Fuzzy rule base  
output
B’out

Defuzzyfication method

Crisp FLC output 
yout



The rule system

Rule1:  IF 1Ax =  THEN 1By =  

Rule2:  IF 2Ax =  THEN 2By =  

… 

Rule n:  IF nAx =  THEN 1nBy =  

This is denoted as a single input, single output  (SISO) system. 



• Generalized Modus Ponens (GMP)
A → B
A’

________________

B’



The model of the rules

Let be A∈F (X) and B∈F (Y), for arbitrary X and Y crisp sets, T a t-norm 

and 

R a fuzzy relation on YX × . The membership function of the fuzzy 

subset  

RA To  

of universe Y is given by  

( ) ( ) ( )( ){ }y,x,xTsupy RA
Xx

RA T
µµµ

∈
=o , 

and it is called compositional rule of inference. 



( )BAT R'A'B →= o  

is called a fuzzy relational equation 

The geometrical interpretation of compositional rule of inference and the 

interpretations using extensions and projections on fuzzy sets show their effect  

( ) ( ) ( )( ) ( ) ( )( )y,x,xTsupy,xTsupy R'A
Xx

RTY'A
Xx

RT'A µµµµ
∈

∩×
∈

==o . 



Mamdani

The Mamdani type controller is based on Generalized 
Modus Ponens (GMP)

inference rule, and the rule output is given with a fuzzy 
set, which is derived from rule consequence, as a cut 
of them. This cut is the generalized degree of firing 
level of the rule, considering actual rule base input, 

and usually it is the supremum of the minimum of the 
rule premise and rule input (calculating with their 

membership functions, of course). 



If then rules

• In Mamadani-based sources it was suggested to 
represent an 

if x is A then y is B
simply as a connection 

(for example as a t-norm, T(A,B) or as min)
between the so called 

rule premise: x is A and rule consequence: y is B.
The most significant differences between the models of 

FLC-s lie in the definition of this connection, relation 
or implication.
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The rule base

Rule1:  IF 1Ax =  THEN 1By =  

Rule2:  IF 2Ax =  THEN 2By =  

… 

Rule n:  IF nAx =  THEN 1nBy =  

This is denoted as a single input, single output  (SISO) system. 
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The model of the rules

Let be A∈F (X) and B∈F (Y), for arbitrary X and Y crisp sets, T a t-norm 

and 

R a fuzzy relation on YX × . The membership function of the fuzzy 

subset  

RA To  

of universe Y is given by  

( ) ( ) ( )( ){ }y,x,xTsupy RA
Xx

RA T
µµµ

∈
=o , 

and it is called compositional rule of inference. 
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( )BAT R'A'B →= o  

is called a fuzzy relational equation 

The geometrical interpretation of compositional rule of inference and the 

interpretations using extensions and projections on fuzzy sets show their effect  

( ) ( ) ( )( ) ( ) ( )( )y,x,xTsupy,xTsupy R'A
Xx

RTY'A
Xx

RT'A µµµµ
∈

∩×
∈

==o . 



If then rules

• In Mamadani-based sources it was suggested to 
represent an 

if x is A then y is B
simply as a connection 

(for example as a t-norm, T(A,B) or as min)
between the so called 

rule premise: x is A and rule consequence: y is B.
The most significant differences between the models 

of FLC-s lie in the definition of this connection, 
relation or implication.



The Generalized Modus Ponens sees the real influences 
of the implication or connection choice on the 

inference mechanisms in fuzzy systems. Usually the 
general rule consequence for ith rule from a rule 

system is obtained by

B’i(y)=supx∈X(T(A’(x),Imp(Ai(x),Bi(y)))
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• B’(y) = supx∈X (T(A’(x),T(A(x),B(y)))
• B’(y) = T(supx∈X (T(A’(x),A(x)),B(y))
• B’(y) = min(supx∈X (min(A’(x),A(x)),B(y))
• DOF-degree of firing
• B’(y) = min(DOF,B(y))

min(A’(x),A(x)),



The rule system

Rule1:  IF 1Ax =  THEN 1By =  

Rule2:  IF 2Ax =  THEN 2By =  

… 

Rule n:  IF nAx =  THEN 1nBy =  

This is denoted as a single input, single output  (SISO) system. 

x = A’

B1’

B2’

B3’

AND

AND

OR

OR

Bout



A1 A’
B1
B1’

A2 A’ B2

B’

Yout

B2’



MATLAB exercise

• Build up a simple rule base! 

• see 
http://www.aptronix.com/fide/howfuzzy.htm

http://www.aptronix.com/fide/howfuzzy.htm


Further sources

• http://www.aptronix.com/fide/howfuzzy.htm

• The Fuzzy toolbox, An example

Inger Klein, 
Reglerteknik&Kommunikationssystem ISY

Linköpings universitet

http://www.aptronix.com/fide/howfuzzy.htm

