

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)

Kombinációs LABOR feladatok

Laborfeladat: egyszerű logikai kapuk vizsgálata

Logikai műveletek

Tervezz egy egyszerű logikai kapukat tartalmazó HW-t a logikai műveletek vizsgálatára, megismerésére. Az ISE és a szimulátor használatát a moodle 1. fejezetében lévő pdf anyag tartalmazza.

- ✓ A projekt neve: **logikai_kapuk**
- ✓ A rajz modul neve: **kapuk1**
- ✓ INV, AND2, NAND2, OR2, NOR2, XOR2, XNOR2 logikai kapuk vizsgálata
- ✓ Rajzold meg a kapcsolási rajzot ("A" rajzlap méret elegendő, ezután add a portokat a rajzhoz a Tools ⇒ Create I/O Markers…parancs segítségével) a korábban tanultak és a következő oldalakon leírtak szerint, végül ellenőrizd le az elkészült rajzot a Check Schematic paranccsal
- ✓ Add hozzá a projekthez a mellékelt .ucf fájlt (a moodle-ból a Letöltések fejezetből letölthető: kapuk1.ucf)
- ✓ Fordítsd le a teljes tervet (ne feledd el a float stb. beállítást!) a korábban tanultak alapján
- ✓ Töltsd le a Basys2 demó panelre a kész HW konfigurációt és teszteld le a logikai kapukat

Elvi rajz: kapuk1.sch

Amennyiben az áramkör működése megfelelő, implementáld azt, a kapott bit kiterjesztésű fájlt töltsd le a Basys2 kártyába, és a kapcsolók és a LED-ek segítségével próbáld ki az áramkör működését.

A feladathoz szükséges port nevek (ucf file)											
Port név	Busz	CP132 tokozás	Leírás								
SW(1:0)	2 bit	NET "SW<1>" LOC = "L3"; NET "SW<0>" LOC = "P11";	Az áramkörnek két darab 1-bites bemenete van: A és B.								
LED0, LED1, LED2, LED3, LED4, LED5, LED6, LED7	_	NET "LED7" LOC = "G1"; NET "LED6" LOC = "P4"; NET "LED5" LOC = "N4"; NET "LED4" LOC = "N5"; NET "LED3" LOC = "P6"; NET "LED2" LOC = "P7"; NET "LED1" LOC = "M11"; NET "LED0" LOC = "M5";	Az áramkörnek 8 darab 1-bites kimenete van, amelyeket a Led(7:0) kimenetekre vezetjük,. Ezeken a ledeken látjuk a logikai műveletek eredményét. Ha egy kimenet logikai ,1'-es , akkor az adott led világít , egyébként nem világít.								

kapuk1: meglévő teszt fájl hozzáadása

Ehhez a projekthez már **van kész**, a **moodleből a Letöltések fejezetből** letölthető teszt állomány:

- 1. A már ismertetett módon le kell tölteni a "kapuk1_teszt1.vhd" állományt a projekt mappájába
- 2. Szimulációs nézetbe kell kapcsolni
- 3. Az ISE-ben jobb klikk a kapuk1.sch állományon
- 4. Az Add Source... paranccsal hozzá kell adni a kapuk1_teszt1.vhd állományt a projekthez

Szimuláció futtatása

- 1. Jelöld ki a teszt állományt szimulációs nézetben
- 2. Futtasd a szimulációt az moodle 1. fejezetében leírtak szerint 80 ns-ig.

ISIM szimulátor elindul

👷 ISim (O.61xd) - [jelalak1.wcfg]														
🖂 File Edit View Simulation Window Layout Help														
Source Fi ↔ 🗆 🗗 🗙	Objects	⇔⊡∄X	Ð		13.174 ns									
	Simulation Objects for k	kapuk1_ka	Θ											
AND2.vhd		16 🔛	ß	Name	Value	0 ns		20 ns	40 ns	60 ns	80 ns			
INV.vhd	Ohiost Norma	Velue	Ĩ	ug a	0									
NAND2.vhd	Diject Name	value	-	Ug b	0									
NOR2.vhd	La a	1	K	U _o not_a	1									
UK2.vhd XNOR2.vhd	L not a	1	Θ	🗓 not_b	1									
XOR2.vhd	l not_b	0	t	a_and_b	0									
kapuk1.vhf	la_and_b	0	dr.	🗓 a_nand_b	1									
kapuk1_teszt1.vhd	a_nand_b	1	-	U _o a_or_b	0									
numeric_std.vhd	a nor b	0	Ĭ	🗓 a_nor_b	1									
std logic 1164 vbd	l a_xor_b	1	ŕ	U _o a_xor_b	0									
std_logic_1164.vhd	l a_xnor_b	0	4	🗓 a_xnor_b	1									
unisim_VCOMP.vhd	📙 clk_period	20000												
unisim_VCOMP.vhd			631 M											
			(JL)											

- 1. Elindul az ISIM szimulátor.
- 2. Kapcsold be a "Zoom to Full View" nézetet.
- 3. A fekete hátterű jelalak ablakban a vizsgált logikai jelek **időfüggvényeit** látjuk. A felső részen látjuk az **időskálát**. Egy sorban egy logikai jelet látunk.
- 4. Látható a jelalak ablakban, hogy a **B** és az **A** bemeneti jel felveszi sorban egymás után a 4 lehetséges értékét (00, 01, 10, 11).

- 5. Belekattintva bárhol a jelalak **ablakba** láthatjuk a **Value** oszlopban a vizsgált be- és kimeneti jelek logikai értékét és láthatjuk a helyes (vagy helytelen) működést. Amelyik jelre kattintottunk a jelalak ablakban, az a jel kiemelve (vastagabban) látható. Most természetesen a helyes működést látjuk.
- Most pld. kiemelten az AND logikai művelet eredményét látjuk mind a 4 lehetséges (B,A) kombináció esetében: az AND művelet kizárólag akkor ad logikai ,1' eredményt, ha a kapu mindegyik bemenetén logikai ,1' van.

Alkalmazandó műszerek és eszközök

- PC számítógép
- Digilent Basys2 Spartan-3E FPGA mérőpanel
- Digilent Adept konfiguráló szoftver

Hivatkozások, felkészüléshez ajánlott irodalom

- [1] FPGA fejlesztés a Xilinx ISE Webpack-ben, Elektronikus formában a tantárgy honlapján
- [2] Digilent Basys2 Board Reference Manual, Elektronikus formában a tantárgy honlapján
- [3] Spartan-3E Libraries Guide for Schematic Designs, Elektronikus formában a tantárgy honlapján
- [4] Kóré László: Digitális elektronika I. BMF 1121
- [5] Arató Péter: Logikai rendszerek tervezése, Tankönyvkiadó