
Genetic algoritm

Zsolt Sziklai

2017.

Biological inspiration

• The basis of the genetic programming gives Darwin's theory of
evolution.

• „The evolution usually starts from a population of randomly
generated individuals, and is an iterative process, with the
population in each iteration called a generation. In each generation,
the fitness of every individual in the population is evaluated; the
fitness is usually the value of the objective function in the
optimization problem being solved. The more fit individuals are
stochastically selected from the current population, and each
individual's genome is modified (recombined and possibly randomly
mutated) to form a new generation. The new generation of
candidate solutions is then used in the next iteration of the
algorithm. Commonly, the algorithm terminates when either a
maximum number of generations has been produced, or a
satisfactory fitness level has been reached for the population.” -
https://en.wikipedia.org/wiki/Genetic_algorithm [2016-03-05]

https://en.wikipedia.org/wiki/Iteration
https://en.wikipedia.org/wiki/Fitness_(biology)
https://en.wikipedia.org/wiki/Objective_function
https://en.wikipedia.org/wiki/Stochastics
https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Genetic_algorithm

LOOP

• Initialization

• Selection

• Genetic operators

– Crossover

– Mutation

• Termination

The problem

a2 + b2 + c2 + d2 = 49

Parameters of genetic algoritm

• numberOfPopulation = 10000;
• numberOfGenes = 4;
• numberOfSelection = 100;
• minValue = -100;
• maxValue = 100;
• memberMutationRate = 35;
• geneMutationRate = 35;
• targetValue = 49;
• maxIteration = 1000;
• epsilon = 0.1;

Initialization

• „The population size depends on the nature of
the problem, but typically contains several
hundreds or thousands of possible solutions.
Often, the initial population is generated
randomly, allowing the entire range of possible
solutions (the search space). Occasionally, the
solutions may be "seeded" in areas where
optimal solutions are likely to be found.” -
https://en.wikipedia.org/wiki/Genetic_algorithm
[2016-03-05]

https://en.wikipedia.org/wiki/Genetic_algorithm

Initialization of population (stochastic)

• For integer roots

– population = randi([minValue maxValue],
numberOfPopulation, numberOfGenes);

• randi : generate random integer value between
minValue and maxValue

• For rational roots

– your business ;)

Initialization of population (stochastic)

Column: a, b, c, d genes Row: member, Rows: population

Initialization of population (stochastic)

Add two columns: column of exact value (y=f(x)) and column of fitness

Population in works

column of exact value (distance of target value) and column of fitness (big is better (1/x))

Sorted population

Criterion function

Criteria function

• calculateExact = @(x)
x(1)^2+x(2)^2+x(3)^2+x(4)^2;

– Matlab anonymous function : ‚x’ is input param
and the return value is a mathematical
expression’s result

Calculate fitness

• Close to target value are big differences
between a small step (selection pressure)

– populationWithFitnesses(i, 6) = 1 /
calculateDistance(populationWithFitnesses(i,
1:4), targetValue);

– See 1/x function

Sorting

• sortedPulationWithFitnesses = sortrows(
populationWithFitnesses, 6);

– Sorting by row

SELECTION

• „During each successive generation, a proportion of
the existing population is selected to breed a new
generation. Individual solutions are selected through a
fitness-based process, where fitter solutions (as
measured by a fitness function) are typically more
likely to be selected. Certain selection methods rate
the fitness of each solution and preferentially select
the best solutions. Other methods rate only a random
sample of the population, as the former process may
be very time-consuming.” -
https://en.wikipedia.org/wiki/Genetic_algorithm
[2016-03-05]

https://en.wikipedia.org/wiki/Selection_(genetic_algorithm)
https://en.wikipedia.org/wiki/Fitness_(biology)
https://en.wikipedia.org/wiki/Fitness_function
https://en.wikipedia.org/wiki/Genetic_algorithm

Selection

• Elitist

– selectedPopulation =
sortedPulationWithFitnesses(end:-
1:numberOfSelection, 1:4);

• Selecting the bests

• Roulette wheel

– Your bussines ;)

Selection – FITNESS Function
(roulette-wheel selection)

• „A generic selection procedure may be implemented as follows:
• The fitness function is evaluated for each individual, providing fitness values,

which are then normalized. Normalization means dividing the fitness value of each
individual by the sum of all fitness values, so that the sum of all resulting fitness
values equals 1.

• The population is sorted by descending fitness values.
• Accumulated normalized fitness values are computed (the accumulated fitness

value of an individual is the sum of its own fitness value plus the fitness values of
all the previous individuals). The accumulated fitness of the last individual should
be 1 (otherwise something went wrong in the normalization step).

• A random number R between 0 and 1 is chosen.
• The selected individual is the first one whose accumulated normalized value is

greater than R.
• For a large number of individuals the above algorithm might be computationally

quite demanding. A simpler and faster alternative uses the so-called stochastic
acceptance.” - https://en.wikipedia.org/wiki/Genetic_algorithm [2016-03-05]

https://en.wikipedia.org/wiki/Fitness_function
https://en.wikipedia.org/wiki/Genetic_algorithm

Selection – Roulette-wheel

http://www.elec.gla.ac.uk/~yunli/ga_demo/ga_demo.html
http://www.elec.gla.ac.uk/~yunli/ga_demo/ga_demo.html

Selection by Rank

• Like roulette-wheel selection but…

• For example: 60% , 35% , 5%

– Sorting by (reverse): 1st 5% , 2nd 35%, 3th 60%

– Modifying by: (1 + 2 + 3 = 6)

• 1/6 = 17% , 2/6 = 33% , 3/6 = 50% => 100%

Selection - Competition

• Choose randomly two invidual

• Generate a random number between 0 and 1

• If [0, 0,5] choose first invidual Else choose
second

Selection – Best (elitist)

• Choose two of the best for crossover

Selection - Randomly

• Choose randomly of population

Selection - interactive

• „Interactive evolutionary computation (IEC) or
aesthetic selection is a general term for methods
of evolutionary computation that use human
evaluation. Usually human evaluation is
necessary when the form of fitness function is
not known (for example, visual appeal or
attractiveness; as in Dawkins, 1986[1]) or the
result of optimization should fit a particular user
preference (for example, taste of coffee or color
set of the user interface).” -

https://en.wikipedia.org/wiki/Evolutionary_computation
https://en.wikipedia.org/wiki/Fitness_function
https://en.wikipedia.org/wiki/Interactive_evolutionary_computation#cite_note-1

Selection - boltzman

T is temperature and < > denotes the average over the population, as T
decreases

)/)(exp(

)/)(exp(
)(*

Tif

Tif
if

Selection - Sigma scaling

01

0
2

)(
1

)(*

sha

sha
s

Fif

if

f(i) is the fitness of i, F is teh mean fitness of the population, s is the standard deviation of the
population

Crossover

Crossover

Crossover

• simple crossover
– crossOver = @(member1, member2) [member1(1)

member1(2) member2(3) member2(4)];
• 1st and 2nd genes inherit to father and other to mother

• randomize crossover
– crossOver = @(members) [members{randi([1

2])}(1) members{randi([1 2])}(2) members{randi([1
2])}(3) members{randi([1 2])}(4)];
• use matlab array for rating 50% to choose father’s or

mother’s gene(s)

Crossover (implement)

• Select two members selectedPopulation and
use crossOver function. The result member
put the new population matrix.

– for i=1:numberOfPopulation

Mutation

• For integer roots

– mutation = @(gene) randi([minValue maxValue]);

• For rational roots

– Your business ;)

Mutation (implement)

• Use memberMutationRate and write the correct
condition.

• If member has to mutate use geneMutationRate
and write the correct conditions all of genes.

– for i=1:numberOfPopulation

• If depends memberMutationRate

– If depends geneMutationRate

– If depends geneMutationRate

– If depends geneMutationRate

– If depends geneMutationRate

Exit condition

• Integer and rational target value

– Integer case

• If sortedPulationWithFitnesses(end,5) == targetValue

– General case

• if abs(sortedPulationWithFitnesses(end,5) -
targetValue) < epsilon
– Epsilon has to be less than 1

Write out the result

• Last one is the best

– disp(sortedPulationWithFitnesses(end,:));

Appendix

• rng('shuffle');

– Help ;)

• Random generator initialization. Every run generates
different random values.

• get(gcf,'currentchar')

– Help ;)

• asynchronously keyboard handling
– get(gcf,'currentchar') ~= ' '

– Gives the pressed button, it doesn’t block your code running.

