Genetic algoritm

Zsolt Sziklai 2017.

Biological inspiration

- The basis of the genetic programming gives Darwin's theory of evolution.
- "The evolution usually starts from a population of randomly generated individuals, and is an *iterative process*, with the population in each iteration called a *generation*. In each generation, the fitness of every individual in the population is evaluated; the fitness is usually the value of the objective function in the optimization problem being solved. The more fit individuals are stochastically selected from the current population, and each individual's genome is modified (<u>recombined</u> and possibly randomly mutated) to form a new generation. The new generation of candidate solutions is then used in the next iteration of the algorithm. Commonly, the algorithm terminates when either a maximum number of generations has been produced, or a satisfactory fitness level has been reached for the population." https://en.wikipedia.org/wiki/Genetic algorithm [2016-03-05]

LOOP

- Initialization
- Selection
- Genetic operators
 - Crossover
 - Mutation
- Termination

The problem

$a^2 + b^2 + c^2 + d^2 = 49$

Parameters of genetic algoritm

- numberOfPopulation = 10000;
- numberOfGenes = 4;
- numberOfSelection = 100;
- minValue = -100;
- maxValue = 100;
- memberMutationRate = 35;
- geneMutationRate = 35;
- targetValue = 49;
- maxIteration = 1000;
- epsilon = 0.1;

Initialization

• "The population size depends on the nature of the problem, but typically contains several hundreds or thousands of possible solutions. Often, the initial population is generated randomly, allowing the entire range of possible solutions (the *search space*). Occasionally, the solutions may be "seeded" in areas where optimal solutions are likely to be found." https://en.wikipedia.org/wiki/Genetic algorithm [2016-03-05]

Initialization of population (stochastic)

- For integer roots
 - population = randi([minValue maxValue], numberOfPopulation, numberOfGenes);
 - randi : generate random integer value between minValue and maxValue
- For rational roots

- your business ;)

Initialization of population (stochastic)

📣 MATLAB R2017a - academic use													+ - 0	×
HOME PLOTS APPS	VARIABLE	VIEW									B (8 5)	Search Dog	sumentation 6	
🔽 🔀 Open 👻 Rows Columns	······································	Transpose												
New from Print • 1 1	Insert Delete	Sort 👻												
VARIABLE SELECTION	EDIT													-
← → 🗔 🖾 📑 + C: + Users + Sziklai Zsolt + [Documents + N	MATLAB >												- 2
Current Folder	🕤 🃝 Editor	r - GA.m				2	ariables - populat	tion			⊙ ×	Workspace		
🗋 Name 🔺	рор	ulation ×										Name 🔺	Value	
■ slprj	1000	0x4 double										CalculateDistance	@(x,targetValue)abs(
GA.m GA.student.m		1	2	3	4	5 6	7	8	9	10	11	CalculateExact	@(x)x(1)^2+x(2)^2+ @(members)[memb	
Untitled1_sfun.mexw64	1	72	-6	70	-90						^	epsilon	0.1000	
Untitled1.slx	2	51	-56	45	31							fintnesses	10000x2 double	
	3	-64	-6/	-43	15							maxiteration	35	
	5	-58	6	-63	-24				-			🖶 maxValue	100	
	6	53	60	-76	45							memberMutation	35	
	7	72	-94	-36	-34							10 mutation	@(gene)randi([minV	
	8	47	1	-34	-31							numberOfGenes	4	
	9	-39	74	23	-49							numberOfPopulat	10000	
	10	56	-63	- 10	47							population	10000x4 double	
	12	61	-11	-66	28							populationWithFit	10000x6 double	
	13	-23	34	-3	86								45	
	14	-40	47	80	-53									
	15	99	74	-92	42									
	10	-94	58 69	28 13	-23									
	18	-17	9	-31	-39									
	19	-35	-47	64	-28									
	20	-18	44	16	-49									
	21	-85	-29	67	-75									
	22	-6	-3	75	88									
	23	57	-32	-57	-88									
	25	100	-58	96	7									
	26	-21	- 56	-23	-83						~			
	<										>			
	Comma	nd Window									۲			
	<i>f</i> ¥ K>>													
GA.m (Script)	~													
Parameters of genetic algoritm	^													
Parameters of genetic algoritm														
Initialization														
Initialization of population (stochastic)														
 Functions of genetic algoritm Extend population matrix to two column 														
Initialization of valid roots set														
Genetic algoritm	~													
1111 + 7 usages of "roots" found														
* 7 usages of "roots" found														

Column: a, b, c, d genes

Row: member, Rows: population

Initialization of population (stochastic)

📣 MATLAB R2017a - academic use													+ - 0	×
HOME PLOTS APPS VAL	RIABLE	VIEW									hêê	Carl Carl Search Doc	umentation 🔎	Login
P A	V	W								123	4 5 6	7890		0
🔽 🖉 Open 🔻 Rows Columns 🚟	🚟 🔯 Tr	anspose												
New from Print I I Insert Selection	Delete Z So	ort 💌												
VARIABLE SELECTION	EDIT													-
💠 🔶 🔁 🔀 📙 🕨 C: 🕨 Users 🕨 Sziklai Zsolt 🕨 Docu	ments + MATL	AB 🕨										_		- P
Current Folder 💿	Z Editor - GA	um				🔏 Variables -	population	WithFitnesses	5		T ×	Workspace		
🗋 Name 🛎	populatio	on × populationV	/ithFitnesses 🛛 🛛									Name 🔺	Value	
e slprj	10000x6 d	ouble										CalculateDistance	@(x,targetValue)abs(
GA_student.m	1	2	3	4	5	6	7	8	9	10	11	crossOver	@(members)[memb	
Untitled1_sfun.mexw64 Untitled1_sh	1	72 -6	70	-90	0	0					^	epsilon	0.1000	
in Ontitied Lsix	2	51 -56	45	31	0	0						fintnesses	10000x2 double	
	4	9 29	-61	2	0	0						maxIteration	1000	
	5	-58 6	-63	-24	0	0						maxValue	100	
	6	53 60	-76	45	0	0						minValue	-100	
	7	72 -94	-36	-34	0	0						😰 mutation	@(gene)randi([minV	
	8	47 1	-34	-31	0	0						numberOfGenes	4	
	9	-39 74	-16	-49	0	0						numberOfSelection	100	
	10	56 -63	89	47	0	0						population	10000x4 double	
	12	61 -11	-66	28	0	0						targetValue	49	
	13	-23 34	-3	86	0	0								
	14	-40 47	80	-53	0	0								
	15	99 74 11 58	-92	-23	0	0								
	17	-94 69	13	90	0	0								
	18	-17 9	-31	-39	0	0								
	19	-35 -47	64	-28	0	0								
	20	-18 44	16	-49	0	0								
	21	-85 -29	6/	-75	0	0								
	23	-48 87	21	-35	0	0								
	24	57 -32	-57	-88	0	0								
	25	100 -58	96	7	0	0								
	26	-21 -56	-23	-83	0	0					~			
	<										>			
	Command W	indow									۲			
	f* K>>													
GA.m (Script) V														
Parameters of genetic algoritm														
Parameters of genetic algoritm														
Initialization														
Initialization of population (stochastic) Eupctions of genetic algoritm														
 Extend population matrix to two column 														
Initialization of valid roots set														
Genetic algoritm Genetic algoritm														
Paused in debugger														

Add two columns: column of exact value (y=f(x)) and column of fitness

Population in works

📣 MATLAB R2017a - academic use														+ – C	x i
HOME PLOTS APPS VAR	IABLE	VIEW									₫ 🖌	h i b) 🖻 🔁 🕄 Search Doc	cumentation 🌙	D Log In
Now from a pice	Doloto 8	Transpose													
Selection - rint	Velete ZU	Sort 👻													
VARIABLE SELECTION	EDIT														
	nents + MA	ATLAB 🕨					-								م +
Current Folder 💿	Z Editor -	GA.m					🔏 Variable:	- population	WithFitnesses			⊗×	Workspace		
□ Name ▲	popul	lation ×	populationWit	hFitnesses 🛛 🕅									Name 🔺	Value	
GA.m	10000x	(b double											calculateDistance	@(x,targetValue)abs(@(x)x(1)^2+x(2)^2+	
GA_student.m	8/3/	1	2 -9	3 -50	4 00	5 0430	6	7	8	9	10	11	CrossOver	@(members)[memb	-
Untitled1_sfun.mexw64 Untitled1_slx	8758	98	4	-88	96	26580	3.7692e-05					^	epsilon	0.1000	
	8759	-64	71	-92	58	20965	4.7810e-05						geneMutationRate	35	
	8760	-29	-94	20	88	17821	5.6268e-05				-		I III	10000	
	8761	- /6	42	-86	-22	15420	0.5058e-05						iteration maxIteration	1 1000	
	8763	-78	-38	-95	34	17709	5.6625e-05				-	+	maxValue	100	
	8764	7	0	20	25	1074	9.7561e-04						memberMutation	35	
	8765	-51	87	-55	78	19279	5.2002e-05						minValue mutation	 iou @(gene)randi([minV 	
	8766	-10	-93	32	-41	11454	8.7681e-05						numberOfGenes	4	
	8767	-29	-89	-5	-95	17812	5.6297e-05						numberOfPopulat	10000	
	8768	-95	46	25	24	5649	1.7857e-04						population	10000x4 double	
	8770	57	97	2	75	18287	5.4831e-05						populationWithFit	10000x6 double	
	8771	-31	20	45	-40	4986	2.0255e-04						targetValue	[Int Int Int Int] 49	
	8772	36	-46	78	-23	10025	1.0024e-04								
	8773	-38	-95	78	5	16578	6.0500e-05								
	8774	58	72	-99	-31	19310	5.1918e-05								
	8776	20	23	-25	-63	5778	1.7455e-04								
	8777	-97	-77	80	23	22267	4.5009e-05								
	8778	12	88	62	45	13757	7.2950e-05								
	8779	78	-11	91	-12	14630	6.8582e-05								
	8780	-76	-52	68	-3	13113	7.6546e-05								
	8782	-94	59	- 19	-42	9867	0.0490e-00 1.0185e-04								
	8783	98	-44	72	92	25188	3.9779e-05								
	<											>	1		
	Command	d Window										۲	9		
	fx K>>														
GA.m (Script) V															
Parameters of genetic algoritm															
Parameters of genetic algoritm															
Initialization															
Initialization of population (stochastic) Superior of genetic algoritm															
 Extend population matrix to two column 															
Initialization of valid roots set															
Genetic algoritm															
Paused in debugger															

column of exact value (distance of target value) and column of fitness (big is better (1/x))

Sorted population

📣 MATLAB R2017a - academic use														+ - 0	×
HOME PLOTS APPS	VARIABLE	VIEW										AAA		cumentation 🖌	Jog In
Н Р А	V	W									1 2 3	4 5 6			0
🔟 🔏 Open 👻 Rows Columns		🐳 Transpose													
New from Print I 1 Selection	Insert Delete	Sort 🔻													
VARIABLE SELECTION	EDI														Ā
🖛 🔶 🛅 🔀 📙 🕨 C: 🕨 Users 🕨 Sziklai Zsolt 🕨	Documents + 1	MATLAB 🕨													- P
Current Folder	🕤 📝 Edito	r - GA.m					🔏 Variable	s - sortedPul	lationWithFitn	esses		Τ×	Workspace		۲
Name 🔺	. pop	ulation \times	populationWit	thFitnesses	sortedPula	ationWithFitne	esses 🛛						Name 🔺	Value	
slprj	1000	0x6 double											CalculateDistance	@(x,targetValue)abs(
GA.m GA.student.m		1	2	3	4	5	6	7	8	9	10	11	calculateExact	@(x)x(1)^2+x(2)^2+ @(members)[memb	•
Untitled1_sfun.mexw64	9979	24	1	15	3	811	0.0013					^	epsilon	0.1000	
🚡 Untitled1.slx	9980	-5	11	-13	22	799	0.0013						fintnesses	10000x2 double	
	9981	-25	5	6	10	786	0.0014						geneMutationRate	35	
	9982	-13	21	12	3	763	0.0014						iteration	1	
	9983	-10	-17	8	-12	703	0.0014						maxIteration	1000	
	9985	-23	-22	-3	-12	723	0.0014						maxValue memberMutation	. 35	
	9986	2	24	-4	-11	717	0.0015						🔛 minValue	-100	
	9987	-17	16	-7	-5	619	0.0018						mutation	@(gene)randi([minV	
	9988	-9	-1	19	-13	612	0.0018						numberOfGenes	4 10000	
	9989	15	-12	-9	-12	594	0.0018						numberOfSelection	100	
	9990	20	0	7	-12	593	0.0018						population	10000x4 double	
	9991	22	- 2	-> >	-7	567	0.0019						roots	[Inf Inf Inf Inf] [Inf 0000x6 double	
	9993	10	12	17	3	542	0.0020						sortedPulationWit		
	9994	2	-19	9	-8	510	0.0022						targetValue	49	
	9995	15	13	-4	-3	419	0.0027								
	9996	0	5	16	11	402	0.0028								
	9997	-19	1	3	-1	372	0.0031								
	9998	7	-14	-6	8	345	0.0034								
	10000	-0	-8	-8	-1	518	0.0037								
	10000	-					0.0470								
	10002														
	10003												1		
	10004											~			
	<											>	1		
1	Comma	nd Window										۲			
	<i>f</i> ¥ K>>														
GA.m (Script)	~														
Parameters of genetic algoritm	^														
Parameters of genetic algoritm															
Initialization															
Initialization of population (stochastic)															
Euclides of genetic algoritm															
Exterior population matrix to two column Initialization of valid roots set															
🚳 Genetic algoritm															
	•														
Paused in debugger															

Criterion function

Criteria function

- calculateExact = @(x)
 x(1)^2+x(2)^2+x(3)^2+x(4)^2;
 - Matlab anonymous function : ,x' is input param and the return value is a mathematical expression's result

Calculate fitness

- Close to target value are big differences between a small step (selection pressure)
 - populationWithFitnesses(i, 6) = 1 / calculateDistance(populationWithFitnesses(i, 1:4), targetValue);
 - See 1/x function

Sorting

 sortedPulationWithFitnesses = sortrows(populationWithFitnesses, 6);

– Sorting by row

SELECTION

 "During each successive generation, a proportion of the existing population is <u>selected</u> to breed a new generation. Individual solutions are selected through a *fitness-based* process, where <u>fitter</u> solutions (as measured by a <u>fitness function</u>) are typically more likely to be selected. Certain selection methods rate the fitness of each solution and preferentially select the best solutions. Other methods rate only a random sample of the population, as the former process may be very time-consuming." -

https://en.wikipedia.org/wiki/Genetic_algorithm [2016-03-05]

Selection

- Elitist
 - selectedPopulation =
 sortedPulationWithFitnesses(end: 1:numberOfSelection, 1:4);
 - Selecting the bests
- Roulette wheel
 - Your bussines ;)

Selection – FITNESS Function (*roulette-wheel selection*)

- "A generic selection procedure may be implemented as follows:
- The <u>fitness function</u> is evaluated for each individual, providing fitness values, which are then normalized. Normalization means dividing the fitness value of each individual by the sum of all fitness values, so that the sum of all resulting fitness values equals 1.
- The population is sorted by descending fitness values.
- Accumulated normalized fitness values are computed (the accumulated fitness value of an individual is the sum of its own fitness value plus the fitness values of all the previous individuals). The accumulated fitness of the last individual should be 1 (otherwise something went wrong in the normalization step).
- A random number *R* between 0 and 1 is chosen.
- The selected individual is the first one whose accumulated normalized value is greater than *R*.
- For a large number of individuals the above algorithm might be computationally quite demanding. A simpler and faster alternative uses the so-called stochastic acceptance." - <u>https://en.wikipedia.org/wiki/Genetic_algorithm</u> [2016-03-05]

Selection – Roulette-wheel

Computer-Automated Design by Artificial Evolution

© Yun Li, University of Glasgow, 1995-97

Selection by Rank

- Like roulette-wheel selection but...
- For example: 60% , 35% , 5%
 - Sorting by (reverse): 1st 5% , 2nd 35%, 3th 60%
 - Modifying by: (1 + 2 + 3 = 6)
 - 1/6 = **17%**, 2/6 = **33%**, 3/6 = **50%** => **100%**

Selection - Competition

- Choose randomly two invidual
- Generate a random number between 0 and 1
- If [0, 0,5] choose first invidual Else choose second

Selection – Best (elitist)

• Choose two of the best for crossover

Selection - Randomly

• Choose randomly of population

Selection - interactive

 "Interactive evolutionary computation (IEC) or aesthetic selection is a general term for methods of evolutionary computation that use human evaluation. Usually human evaluation is necessary when the form of fitness function is not known (for example, visual appeal or attractiveness; as in Dawkins, 1986^[1]) or the result of optimization should fit a particular user preference (for example, taste of coffee or color set of the user interface)." -

Selection - boltzman

 $f^*(i) = \frac{\exp(f(i)/T)}{<\exp(f(i)/T)>}$

T is temperature and < > denotes the average over the population, as T decreases

Selection - Sigma scaling

$$f^*(i) = \begin{cases} 1 + \frac{f(i) - F}{2s} & ha \ s \neq 0\\ 1 & ha \ s = 0 \end{cases}$$

f(i) is the fitness of i, **F** is teh mean fitness of the population, **s** is the standard deviation of the population

Crossover

Keresztezés

Crossover

Crossover

- simple crossover
 - crossOver = @(member1, member2) [member1(1)
 member1(2) member2(3) member2(4)];
 - 1st and 2nd genes inherit to father and other to mother
- randomize crossover
 - crossOver = @(members) [members{randi([1
 2])}(1) members{randi([1 2])}(2) members{randi([1
 2])}(3) members{randi([1 2])}(4)];
 - use matlab array for rating 50% to choose father's or mother's gene(s)

Crossover (implement)

- Select two members selectedPopulation and use crossOver function. The result member put the new population matrix.
 - for i=1:numberOfPopulation

Mutation

• For integer roots

- mutation = @(gene) randi([minValue maxValue]);

• For rational roots

– Your business ;)

Mutation (implement)

- Use memberMutationRate and write the correct condition.
- If member has to mutate use geneMutationRate and write the correct conditions all of genes.
 - for i=1:numberOfPopulation
 - If depends memberMutationRate
 - If depends geneMutationRate
 - If depends geneMutationRate
 - If depends geneMutationRate
 - If depends geneMutationRate

Exit condition

- Integer and rational target value
 - Integer case
 - If sortedPulationWithFitnesses(end,5) == targetValue
 - General case
 - if abs(sortedPulationWithFitnesses(end,5) targetValue) < epsilon
 - Epsilon has to be less than 1

Write out the result

• Last one is the best

- disp(sortedPulationWithFitnesses(end,:));

Appendix

- rng('shuffle');
 - Help ;)
 - Random generator initialization. Every run generates different random values.
- get(gcf,'currentchar')
 - Help ;)
 - asynchronously keyboard handling
 - get(gcf,'currentchar') ~= ' '
 - Gives the pressed button, it doesn't block your code running.