
Intensity Transformations and
Spatial Filtering

March 11, 2005

Szabolcs Sergyán

sergyan.szabolcs@nik.bmf.hu

BMF NIK

Intensity Transformations and Spatial Filtering / MATLAB – p. 1/77



Content

• Background
• Intensity Transformation Functions
• Histogram Processing and Function Plotting
• Spatial Filtering
• Image Processing Toolbox Standard Spatial Filters

Intensity Transformations and Spatial Filtering / MATLAB – p. 2/77



Background
The spatial domain processes are denoted by the
expression

g(x, y) = T [f(x, y)]

where f(x, y) is the input image, g(x, y) is the output
(processed) image, and T is an operator on f , defined over
a specified neighborhood about point (x, y).

Intensity Transformations and Spatial Filtering / MATLAB – p. 3/77



Intensity Transformation Functions

The simplest form of the transformation T is when the
neighborhood is of size 1 × 1 (a single pixel). In this case,
the value of g at (x, y) depends only on the intensity of f at
that point, and T becomes an intensity or gray-level
transformation function.

Intensity Transformations and Spatial Filtering / MATLAB – p. 4/77



Function imadjust

g=imadjust(f,[low_in high_in],...
[low_out high_out],gamma)

Intensity Transformations and Spatial Filtering / MATLAB – p. 5/77



Function imadjust

>> f=imread(’breast.tif’);

Intensity Transformations and Spatial Filtering / MATLAB – p. 6/77



Function imadjust

>> g1=imadjust(f,[0 1],[1 0]);

Intensity Transformations and Spatial Filtering / MATLAB – p. 7/77



Function imadjust

>> g2=imadjust(f,[0.5 0.75],[0 1]);

Intensity Transformations and Spatial Filtering / MATLAB – p. 8/77



Function imadjust

>> g3=imadjust(f,[],[],2);

Intensity Transformations and Spatial Filtering / MATLAB – p. 9/77



Histogram Processing and Function Plotting

• Generating and Plotting Image Histograms
• Histogram Equalization
• Histogram Matching (Specification)

Intensity Transformations and Spatial Filtering / MATLAB – p. 10/77



Generating and Plotting Image Histograms

The histogram of a digital image with L total possible
intensity levels in the range [0, G] is defined as the discrete
function

h(rk) = nk

where rk is the kth intensity level in the interval [0, G] and
nk is the number of pixels in the image whose intensity
level is rk. The value of G is 255 for images of class
uint8 , 65535 for images of class uint16 , and 1.0 for
images of class double . Keep in mind that indices in
MATLAB cannot be 0, so r1 corresponds to intensity level
0, r2 corresponds to intensity level 1, and so on, with rL

corresponding to level G. Note also that G = L − 1 for
images of class uint8 and uint16 .

Intensity Transformations and Spatial Filtering / MATLAB – p. 11/77



Generating and Plotting Image Histograms

Often, it is useful to work with normalized histograms,
obtained simply by dividing all elements of h(rk) by the
total number of pixels in the image, which we denote by n:

p(rk) =
h(rk)

n
=

nk

n

for k = 1, 2, . . . , L.

Intensity Transformations and Spatial Filtering / MATLAB – p. 12/77



Generating and Plotting Image Histograms

h=imhist(f,b)

where f is the input image, h is its histogram, h(rk), and b
is the number of bins used in forming the histogram (if b is
not included in the argument, b=256 is used by default). A
bin is simply a subdivision of the intensity scale. For
example, if we are working with uint8 images and we let
b=2 , then the intensity scale is subdivided into two ranges:
0 to 127 and 128 to 255. The resulting histogram will have
two values: h(1) equal to the number of pixels in the
image with values in the interval [0, 127], and h(2) equal to
the number of pixels with values in the interval [128, 255].

Intensity Transformations and Spatial Filtering / MATLAB – p. 13/77



Generating and Plotting Image Histograms

>> f=imread(’breast.tif’);
>> imshow(f), imhist(f)

Intensity Transformations and Spatial Filtering / MATLAB – p. 14/77



Generating and Plotting Image Histograms

>> h=imhist(f);

>> h1=h(1:10:256);

>> horz=1:10:256;

>> bar(horz,h1)

>> axis([0 255 0 15000])

>> set(gca,’xtick’,0:50:255)

>> set(gca,’ytick’,0:2000:15000)

Intensity Transformations and Spatial Filtering / MATLAB – p. 15/77



Generating and Plotting Image Histograms

>> h=imhist(f);

>> h1=h(1:10:256);

>> horz=1:10:256;

>> stem(horz,h1,’fill’)

>> axis([0 255 0 15000])

>> set(gca,’xtick’,0:50:255)

>> set(gca,’ytick’,0:2000:15000)

Intensity Transformations and Spatial Filtering / MATLAB – p. 16/77



Generating and Plotting Image Histograms

>> h=imhist(f);

>> plot(h)

>> axis([0 255 0 15000])

>> set(gca,’xtick’,0:50:255)

>> set(gca,’ytick’,0:2000:15000)

Intensity Transformations and Spatial Filtering / MATLAB – p. 17/77



Some Useful Plotting Function

• plot(horz,v,’color_linestyle_marker’)

• bar(horz,v,width)

• stem(horz,v,’color_linestyle_marker’,’fill’)

• axis([horzmin horzmax vertmin vertmax])

• xlabel(’text string’,’fontsize’,size)

• ylabel(’text string’,’fontsize’,size)

• text(xloc,yloc,’text string’,’fontsize’,size)

• title(’titlestring’)

Intensity Transformations and Spatial Filtering / MATLAB – p. 18/77



Some Useful Plotting Function

Symbol Color Symbol Line Style Symbol Marker

k Black - Solid + Plus sign

w White -- Dashed o Circle

r Red : Dotted * Asterisk

g Green -. Dash-dot . Point

b Blue none No line x Cross

c Cyan s Square

y Yellow d Diamond

m Magenta none No marker

Intensity Transformations and Spatial Filtering / MATLAB – p. 19/77



Histogram Equalization

sk =
k∑

j=0

nj

n
k = 0, 1, 2, . . . , L − 1

where n is the total number of pixels in the image, nk is the
number of pixels that have gray level rk, and L is the total
number of possible gray levels in the image. A processed
image is obtained by mapping each pixel with level rk in
the input image into a corresponding pixel with level sk in
the output image.

Intensity Transformations and Spatial Filtering / MATLAB – p. 20/77



Histogram Equalization

g=histeq(f,nlev)

where f is the input image and nlev is the number of
intensity levels specified for the output image. If nlev is
equal to L (the total number of possible levels in the input
image), then histeq implements the transformation
function (described on the previous slide), directly. If nlev
is less than L, then histeq attempts to distribute the
levels so that they will approximate a flat histogram. Unlike
imhist , the default value in histeq is nlev=64 .

Intensity Transformations and Spatial Filtering / MATLAB – p. 21/77



Histogram Equalization

>> f=imread(’pollen.tif’);
>> imshow(f)
>> figure, imhist(f)
>> ylim(’auto’)
>> g=histeq(f,256);
>> figure, imshow(g)
>> figure, imhist(g)
>> ylim(’auto’)

Intensity Transformations and Spatial Filtering / MATLAB – p. 22/77



Histogram Equalization

0 50 100 150 200 250

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 50 100 150 200 250

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Intensity Transformations and Spatial Filtering / MATLAB – p. 23/77



Histogram Equalization

>> hnorm=imhist(f)./numel(f);

>> %Cummulative distribution function:

>> cdf=cumsum(hnorm);

>> x=linspace(0,1,256);

>> plot(x,cdf)

>> axis([0 1 0 1])

>> set(gca,’xtick’,0:.2:1)

>> set(gca,’ytick’,0:.2:1)

>> xlabel(’Input intensity values’,’fontsize’,9)

>> ylabel(’Output intensity values’,’fontsize’,9)

>> %Specify text in the body of the graph:

>> text(0.18,0.5,’Transformation function’,...

>> ’fontsize’,9)

Intensity Transformations and Spatial Filtering / MATLAB – p. 24/77



Histogram Equalization

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Input intensity values

O
ut

pu
t i

nt
en

si
ty

 v
al

ue
s

Transformation function

Intensity Transformations and Spatial Filtering / MATLAB – p. 25/77



Histogram Matching

It is useful in some applications to be able to specify the
shape of the histogram that we wish the processed image
to have. The method used to generate a processed image
that has a specified histogram is called histogram
matching.

g=histeq(f,hspec)

where f is the input image, hspec is the specified
histogram (a row vector of specified values), and g is the
input image, whose histogram approximates the specified
histogram, hspec .

Intensity Transformations and Spatial Filtering / MATLAB – p. 26/77



Histogram Matching

0 50 100 150 200 250

0

1

2

3

4

5

6

x 10
4

0 50 100 150 200 250

0

1

2

3

4

5

6

x 10
4

Intensity Transformations and Spatial Filtering / MATLAB – p. 27/77



Histogram Matching

function p=twomodegauss(m1,sig1,m2,sig2,A1,A2,k)

%TWOMODEGAUSS Generates a bimodal Gaussian function.

% P=TWOMODEGAUSS(M1,SIG1,M2,SIG2,A1,A2,K) generates a b imodal,

% Gaussian-like function in the interval [0,1]. P is a

% 256-element vector normalized so that SUM(P) equals 1. The

% mean and standard deviation of the modes are (M1,SIG1) and

% (M2,SIG2), respectively. A1 and A2 are the amplitude value s

% of the two modes. Since the output is normalized, only the

% relative values of A1 and A2 are important. K is an offset

% values that raises the "floor" of the function. A good set

% of values to try is M1=0.15, SIG1=0.05, M2=0.75, SIG2=0.05 ,

% A1=1, A2=0.07, and K=0.002.

Intensity Transformations and Spatial Filtering / MATLAB – p. 28/77



Histogram Matching

c1=A1* (1/((2 * pi)ˆ0.5) * sig1);

k1=2 * (sig1ˆ2);

c2=A2* (1/((2 * pi)ˆ0.5) * sig2);

k2=2 * (sig2ˆ2);

z=linspace(0,1,256);

p=k+c1 * exp(-((z-m1).ˆ2)./k1)+...

c2 * exp(-((z-m2).ˆ2)./k2);

p=p./sum(p(:));

Intensity Transformations and Spatial Filtering / MATLAB – p. 29/77



Histogram Matching

function p=manualhist

%MANUALHIST Generates a bimodal histogram interactively.

% P=MANUALHIST generates a bimodal histogram using

% TWOMODEGAUSS(m1,sig1,m2,sig2,A1,A2,k). m1 and m2 are th e

% means of the two modes and must be in the range [0,1]. sig1

% and sig2 are the standard deviations of the two modes. A1

% and A2 are amplitude values, and k is an offset value that

% raises the "floor" of histogram. The number of elements in

% the histogram vector P is 256 and sum(P) is normalized to 1.

% MANUALHIST repeatedly prompts for the parameters and plot s

% the resulting histogram until the user types an ’x’ to quit,

% and then it returns the last histogram computed.

%

% A good set of starting values is: (0.15, 0.05, 0.75, 0.05, 1,

% 0.07, 0.002).

Intensity Transformations and Spatial Filtering / MATLAB – p. 30/77



Histogram Matching

%Initialize.

repeats=true;

quitnow=’x’;

%Compute a default histogram in case the user quits before

%estimating at least one histogram.

p=twomodegauss(0.15,0.05,0.75,0.05,1,0.07,0.002);

%Cycle until x is input.

while repeats

s=input(’Enter m1, sig1, m2, sig2, A1, A2, k OR x to quit:’,’s ’);

if s==quitnow

break

end

Intensity Transformations and Spatial Filtering / MATLAB – p. 31/77



Histogram Matching

%Convert the input string to a vector of numerical values and

%verify the number of inputs.

v=str2num(s);

if numel(v)˜=7

disp(’Incorrect number of inputs.’)

continue

end

p=twomodegauss(v(1),v(2),v(3),v(4),v(5),v(6),v(7));

%Start a new figure and scale the axes. Specifying only xlim

%leaves ylim on auto.

figure, plot(p)

xlim([0 255])

end

Intensity Transformations and Spatial Filtering / MATLAB – p. 32/77



Histogram Matching

>> f=imread(’moon_phobos.tif’);

>> p=manualhist;

Enter m1, sig1, m2, sig2, A1, A2, k OR x to quit:x

>> g=histeq(f,p);

>> imshow(g)

>> figure, imhist(g)

Intensity Transformations and Spatial Filtering / MATLAB – p. 33/77



Histogram Matching

0 50 100 150 200 250
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 50 100 150 200 250

0

1

2

3

4

5

6

x 10
4

Intensity Transformations and Spatial Filtering / MATLAB – p. 34/77



Spatial Filtering

Neighborhood processing consists of
• defining a center point, (x, y);
• performing an operation that involves only the pixels in

a predefined neighborhood about that center point;
• letting the result of that operation be the "response" of

the process at that point; and
• repeating the process for every point in the image.

If the computations performed on the pixels of the
neighborhoods are linear, the operation is called linear
spatial filtering; otherwise it is called nonlinear spatial
filtering.

Intensity Transformations and Spatial Filtering / MATLAB – p. 35/77



Linear Spatial Filtering
The mechanics of linear spatial filtering:

Intensity Transformations and Spatial Filtering / MATLAB – p. 36/77



Linear Spatial Filtering

The process consists simply of moving the center of the
filter mask w from point to point in an image f . At each
point (x, y), the response of the filter at that point is the
sum of products of the filter coefficients and the
corresponding neighborhood pixels in the area spanned by
the filter mask. For a mask of size m × n, we assume
typically that m = 2a + 1 and n = 2b + 1, where a and b are
nonnegative integers.
There are two closely related concepts that must be
understood clearly when performing linear spatial filtering.
Correlation is the process of passing the mask w by the
image array f in the manner described earlier.
Mechanically, convolution is the same process, except that
w is rotated by 180◦ prior to passing it by f .

Intensity Transformations and Spatial Filtering / MATLAB – p. 37/77



Linear Spatial Filtering

Figure shows a one-dimensional function, f , and a
mask w.

To perform the correlation of the two functions, we
move w so that its rightmost point coincides with the
origin of f .

There are points between the two functions that do
not overlap. The most common way to handle this
problem is to pad f with as many 0s as are nec-
essary to guarantee that there will always be corre-
sponding points for the full excursion of w past f .

Intensity Transformations and Spatial Filtering / MATLAB – p. 38/77



Linear Spatial Filtering

The first value of correlation is the sum of products of
the two functions in the position shown in the figure.

Next, we move w one location to the right and repeat
the process.

After four shifts, we encounter the first nonzero value
of the correlation, which is 2 · 1 = 2.

The ending geometry is shown in this figure.

If we proceed in this manner until w moves com-
pletely past f we would get this result.

Intensity Transformations and Spatial Filtering / MATLAB – p. 39/77



Linear Spatial Filtering

The label ’full’ is a flag used by the IPTa to
indicate correlation using a padded image and
computed in the manner just described.

The IPT provides another option, denoted by
’same’ that produces a correlation that is the
same size as f . This computation also uses
zero padding, but the starting position is with
the center point of the mask aligned with the ori-
gin of f . The last computation is with the center
point of the mask aligned with the last point in f .

aImage Processing Toolbox of MATLAB

Intensity Transformations and Spatial Filtering / MATLAB – p. 40/77



Linear Spatial Filtering

The preceding concepts extend easily to images, as
illustrated in the following figures.

Intensity Transformations and Spatial Filtering / MATLAB – p. 41/77



Linear Spatial Filtering

Correlation

Intensity Transformations and Spatial Filtering / MATLAB – p. 42/77



Linear Spatial Filtering

Convolution

Intensity Transformations and Spatial Filtering / MATLAB – p. 43/77



Linear Spatial Filtering

g=imfilter(f,w,filtering_mode,...
boundary_options,size_options)

where f is the input image, w is the filter mask, g is the
filtered result, and the other parameters are summarized in
the following table.

Intensity Transformations and Spatial Filtering / MATLAB – p. 44/77



Linear Spatial Filtering
Options Description

Filtering Mode

’corr’ Filtering is done using correlation. This is the default.

’conv’ Filtering is done using convolution.

Boundary Options

P The boundaries of the input image are extended by padding with a
value, P. This is the default, with value 0.

’replicate’ The size of the image is extended by replicating the values in its
outer border.

’symmetric’ The size of the image is extended by mirror-reflecting it across its
border.

’circular’ The size of the image is extended by treating the image as one
period a 2-D periodic function.

Size Options

’full’ The output is of the same size as the extended (padded) image.

’same’ The output is of the same size as the input. This is the default.

Intensity Transformations and Spatial Filtering / MATLAB – p. 45/77



Linear Spatial Filtering

>> f=imread(’original_test_pattern.tif’);
>> f=double(f);
>> w=ones(31);

Intensity Transformations and Spatial Filtering / MATLAB – p. 46/77



Linear Spatial Filtering

>> gd=imfilter(f,w);
>> imshow(gd,[])

Intensity Transformations and Spatial Filtering / MATLAB – p. 47/77



Linear Spatial Filtering

gr=imfilter(f,w,’replicate’);
imshow(gr,[])

Intensity Transformations and Spatial Filtering / MATLAB – p. 48/77



Linear Spatial Filtering

>> gs=imfilter(f,w,’symmetric’);
>> imshow(gs,[])

Intensity Transformations and Spatial Filtering / MATLAB – p. 49/77



Linear Spatial Filtering

>> gc=imfilter(f,w,’circular’);
>> imshow(gc,[])

Intensity Transformations and Spatial Filtering / MATLAB – p. 50/77



Linear Spatial Filtering

>> f8=im2uint8(f);
>> g8r=imfilter(f8,w,’replicate’);
>> imshow(g8r,[])

Intensity Transformations and Spatial Filtering / MATLAB – p. 51/77



Nonlinear Spatial Filtering
Nonlinear spatial filtering is based on neighborhood
operations also, and the mechanics of defining m × n

neighborhoods by sliding the center point through an
image are the same as discussed in linear spatial filtering.
Nonlinear spatial filtering is based on nonlinear operations
involving the pixels of a neighborhood. For example, letting
the response at each center point be equal to the
maximum pixel value in its neighborhood is a nonlinear
filtering operation. Another basic difference is that the
concept of a mask is not as prevalent in nonlinear
processing. The ides of filtering carries over, but the "filter"
should be visualized as a nonlinear function that operates
on the pixels of a neighborhood, and whose response
constitutes the response of the operation at the center
pixel of the neighborhood.

Intensity Transformations and Spatial Filtering / MATLAB – p. 52/77



Nonlinear Spatial Filtering

The IPT provides two functions for performing general
nonlinear filtering: nlfilter and colfilt . The former
performs operations directly in 2-D, while colfilt
organizes the data in the form of columns. Altough
colfilt requires more memory, it generally executes
significantly faster than nlfilter . In most image
processing applications speed is an overriding factor, so
colfilt is preferred over nlfilter for implementing
generalized nonlinear spatial filtering.

Intensity Transformations and Spatial Filtering / MATLAB – p. 53/77



Nonlinear Spatial Filtering

Given an input image, f , of size M × N , and a
neighborhood of size m× n, function colfilt generates a
matrix, call it A, of maximum size mn × MN , in which each
column corresponds to the pixels encompassed by the
neighborhood centered at a location in the image. For
example, the first column corresponds to the pixels
encompassed by the neighborhood when its center is
located at the top, leftmost point in f . All required padding
is handled transparently by colfilt .

Intensity Transformations and Spatial Filtering / MATLAB – p. 54/77



Nonlinear Spatial Filtering

g=colfilt(f,[m n],’sliding’,@fun,parameters)

where mand n are the dimensions of the filter region,
’sliding’ indicates that the process is one of sliding the
m × n region from pixel to pixel in the input image f , @fun
references a function, which we denote arbitrarily as fun ,
and parameters indicates parameters (separated by
commas) that may be required by function fun . The
symbol @is called a function handle, a MATLAB data type
that contains information used in referencing a function.

Intensity Transformations and Spatial Filtering / MATLAB – p. 55/77



Nonlinear Spatial Filtering

fp=padarray(f,[r c],method,direction)

where f is the input image, fp is the padded image,
[r c] gives the number of rows and columns, by which to
pad f , and method and direction are as explained in
the next table.

Intensity Transformations and Spatial Filtering / MATLAB – p. 56/77



Nonlinear Spatial Filtering

Options Description

Method

’symmetric’ The size of the image is extended by mirror-reflecting it across its
border.

’replicate’ The size of the image is extended by replicating the values in its
outer border.

’circular’ The size of the image is extended by treating the image as one
period of a 2-D periodic function.

Direction

’pre’ Pad before the first element of each dimension.

’post’ Pad after the last element of each dimension.

’both’ Pad before the first element and after the last element of each di-
mension. This is the default.

Intensity Transformations and Spatial Filtering / MATLAB – p. 57/77



Nonlinear Spatial Filtering

>> f=[1 2;3 4];
>> fp=padarray(f,[3 2],’replicate’,’post’)

fp =

1 2 2 2
3 4 4 4
3 4 4 4
3 4 4 4
3 4 4 4

Intensity Transformations and Spatial Filtering / MATLAB – p. 58/77



Nonlinear Spatial Filtering

function v=gmean(A)

%The length of the columns of A is always mn.
mn=size(A,1);
v=prod(A,1).ˆ(1/mn);

>> f=padarray(f,[5 5],’replicate’);
>> g=colfilt(f,[5 5],’sliding’,@gmean);

Intensity Transformations and Spatial Filtering / MATLAB – p. 59/77



Nonlinear Spatial Filtering

Intensity Transformations and Spatial Filtering / MATLAB – p. 60/77



IPT Standard Spatial Filters

• Linear Spatial Filters
• Nonlinear Spatial Filters

Intensity Transformations and Spatial Filtering / MATLAB – p. 61/77



Linear Spatial Filters

w=fspecial(’type’,parameters)

where ’type’ specifies the filter type, and parameters
further define the specified filter. The spatial filters
supported by fspecial are summarized in the following
table, including applicable parameters for each filter.

Intensity Transformations and Spatial Filtering / MATLAB – p. 62/77



Linear Spatial Filters
Type Syntax and Parameters

’average’ fspecial(’average’,[r c]) . A rectangular averaging filter of
size r ×c . The default is 3 × 3. A single number instead of [r c]

specifies a square filter.

’disk’ fspecial(’disk’,r) . A circular averaging filter (within a square
of size 2r +1) with radius r . The default radius is 5.

’gaussian’ fspecial(’gaussian’,[r c],sig) . A Gaussian lowpass filter
of size r ×c and standard deviation sig (positive). The defaults are
3×3 and 0.5. A single number instead of [r c] specifies a square
filter.

’laplacian’ fspecial(’laplacian’,alpha) . A 3× 3 Laplacian filter whose
shape is specified by alpha , a number in the range [0, 1]. The
default value for alpha is 0.5.

’log’ fspecial(’log’,[r c],sig) . Laplacian of a Gaussian (LoG)
filter of size r timesc and standard deviation sig (positive). The de-
faults are 5×5 and 0.5. A single number instead of [r c] specifies
a square filter.

Intensity Transformations and Spatial Filtering / MATLAB – p. 63/77



Linear Spatial Filters

Type Syntax and Parameters

’motion’ fspecial(’motion’,len,theta) . Outputs a filter that, when con-
volved with an image, approximates linear motion (of a camera with
respect to the image) of len pixels. The direction of motion is theta ,
mesaured in degrees, counterclockwise from the horizontal. The de-
faults are 9 and 0, which represents a motion of 9 pixels in the hori-
zontal direction.

’prewitt’ fspecial(’prewitt’) . Outputs a 3 × 3 Prewitt mask, wv, that ap-
proximates a vertical gradient. A mask for the horizontal gradient is
obtained by transposing the result: wh=wv’ .

’sobel’ fspecial(’sobel’) . Outputs a 3 × 3 Sobel mask, sv , that ap-
proximates a vertical gradient. A mask for the horizontal gradient is
obtained by transposing the result: sh =sv’ .

’unsharp’ fspecial(’unsharp’,alpha) . Outputs a 3 × 3 unsharp filter. Pa-
rameter alpha controls the shape; it must be greater than or equal to
0 and less than or equal to 1.0; the default is 0.2.

Intensity Transformations and Spatial Filtering / MATLAB – p. 64/77



Linear Spatial Filters

>> w=fspecial(’laplacian’,0)

w =

0 1 0
1 -4 1
0 1 0

Intensity Transformations and Spatial Filtering / MATLAB – p. 65/77



Linear Spatial Filters

>> f=imread(’moon.tif’);

Intensity Transformations and Spatial Filtering / MATLAB – p. 66/77



Linear Spatial Filters

>> g1=imfilter(f,w,’replicate’);
>> imshow(g1,[])

Intensity Transformations and Spatial Filtering / MATLAB – p. 67/77



Linear Spatial Filters

>> f2=im2double(f);
>> g2=imfilter(f2,w,’replicate’);
>> imshow(g2,[])

Intensity Transformations and Spatial Filtering / MATLAB – p. 68/77



Linear Spatial Filters

>> g=f2-g2;
>> imshow(g)

Intensity Transformations and Spatial Filtering / MATLAB – p. 69/77



Linear Spatial Filters

>> f=imread(’moon.tif’);
>> w4=fspecial(’laplacian’,0);
>> w8=[1 1 1;1 -8 1;1 1 1];
>> f=im2double(f);
>> g4=f-imfilter(f,w4,’replicate’);
>> g8=f-imfilter(f,w8,’replicate’);
>> imshow(f)
>> figure, imshow(g4)
>> figure, imshow(g8)

Intensity Transformations and Spatial Filtering / MATLAB – p. 70/77



Linear Spatial Filters

Intensity Transformations and Spatial Filtering / MATLAB – p. 71/77



Nonlinear Spatial Filters

g=ordfilt2(f,order,domain

This function creates the output image g by replacing each
element of f by the order -th element in the sorted set of
neighbors specified by the nonzero elements in domain .
Here, domain is an m × n matrix of 1s and 0s that specify
the pixel locations in the neighborhood that are to be used
in the computation. In this sense, domain acts like a mask.
The pixels in the neighborhood that corresponds to 0 in the
domain matrix are not used in the computation.

Intensity Transformations and Spatial Filtering / MATLAB – p. 72/77



Nonlinear Spatial Filters

Min filter of size m × n:
g=ordfilt2(f,1,ones(m,n))

Max filter of size m × n:
g=ordfilt2(f,m * n,ones(m,n))

Median filter of size m × n:
g=ordfilt2(f,median(1:m * n),ones(m,n))

Intensity Transformations and Spatial Filtering / MATLAB – p. 73/77



Nonlinear Spatial Filters

g=medfilt2(f,[m n],padopt

where the tuple [m n] defines a neighborhood of size
m × n over which the median is computed, and padopt
specifies one of three possible border padding options:
’zeros (the default), ’symmetric’ in which f is
extended symmetrically by mirror-reflecting it across its
border, and ’indexed’ , in which f is padded with 1s if it
is of class double and with 0s otherwise. The default form
of this function is g=medfilt2(f) which uses a 3 × 3
neighborhood to compute the median, and pads the border
of the input with 0s.

Intensity Transformations and Spatial Filtering / MATLAB – p. 74/77



Nonlinear Spatial Filters

>> f=imread(’ckt-board.tif’);
>> fn=imnoise(f,’salt & pepper’,0.2);
>> gm=medfilt2(fn);
>> gms=medfilt2(fn,’symmetric’);
>> subplot(2,2,1), imshow(f)
>> subplot(2,2,2), imshow(fn)
>> subplot(2,2,3), imshow(gm)
>> subplot(2,2,4), imshow(gms)

Intensity Transformations and Spatial Filtering / MATLAB – p. 75/77



Nonlinear Spatial Filters

Intensity Transformations and Spatial Filtering / MATLAB – p. 76/77



References

• R. C. Gonzalez, R. E. Woods, S. L. Eddins: Digital
Image Processing Using MATLAB. Pearson Prentice
Hall, 2004

• R. C. Gonzalez, R. E. Woods: Digital Image
Processing. Prentice Hall, 2002

• http://www.imageprocessingplace.com

Intensity Transformations and Spatial Filtering / MATLAB – p. 77/77


	Content
	Background
	Intensity Transformation Functions
	Function 	exttt {imadjust}
	Function 	exttt {imadjust}
	Function 	exttt {imadjust}
	Function 	exttt {imadjust}
	Function 	exttt {imadjust}
	large Histogram Processing and Function Plotting
	large Generating and Plotting Image Histograms
	large Generating and Plotting Image Histograms
	large Generating and Plotting Image Histograms
	large Generating and Plotting Image Histograms
	large Generating and Plotting Image Histograms
	large Generating and Plotting Image Histograms
	large Generating and Plotting Image Histograms
	Some Useful Plotting Function
	Some Useful Plotting Function
	Histogram Equalization
	Histogram Equalization
	Histogram Equalization
	Histogram Equalization
	Histogram Equalization
	Histogram Equalization
	Histogram Matching
	Histogram Matching
	Histogram Matching
	Histogram Matching
	Histogram Matching
	Histogram Matching
	Histogram Matching
	Histogram Matching
	Histogram Matching
	Spatial Filtering
	Linear Spatial Filtering
	Linear Spatial Filtering
	Linear Spatial Filtering
	Linear Spatial Filtering
	Linear Spatial Filtering
	Linear Spatial Filtering
	Linear Spatial Filtering
	Linear Spatial Filtering
	Linear Spatial Filtering
	Linear Spatial Filtering
	Linear Spatial Filtering
	Linear Spatial Filtering
	Linear Spatial Filtering
	Linear Spatial Filtering
	Linear Spatial Filtering
	Linear Spatial Filtering
	Nonlinear Spatial Filtering
	Nonlinear Spatial Filtering
	Nonlinear Spatial Filtering
	Nonlinear Spatial Filtering
	Nonlinear Spatial Filtering
	Nonlinear Spatial Filtering
	Nonlinear Spatial Filtering
	Nonlinear Spatial Filtering
	Nonlinear Spatial Filtering
	IPT Standard Spatial Filters
	Linear Spatial Filters
	Linear Spatial Filters
	Linear Spatial Filters
	Linear Spatial Filters
	Linear Spatial Filters
	Linear Spatial Filters
	Linear Spatial Filters
	Linear Spatial Filters
	Linear Spatial Filters
	Linear Spatial Filters
	Nonlinear Spatial Filters
	Nonlinear Spatial Filters
	Nonlinear Spatial Filters
	Nonlinear Spatial Filters
	Nonlinear Spatial Filters
	References

