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ABSTRACT 
 
Multicore has shown significant performance and power 
advantages over single cores in commercial systems with a 2-4 
cores. Applying a corollary of Moore's Law for multicore, we 
expect to see 1K multicore chips within a decade. 1K multicore 
systems introduce significant architectural challenges. One of 
these is the power efficiency challenge. Today’s cores consume 
10's of watts. Even at about one watt per core, a 1K-core chip 
would need to dissipate 1K watts! This paper discusses the "Kill 
rule for multicore" for power-efficient multicore design, an 
approach inspired by the "Kiss rule for RISC processor design". 
Kill stands for Kill if less than linear, and represents a design 
approach in which any additional area allocated to a resource 
within a core, such as a cache, is carefully traded off against using 
the area for additional cores. The Kill Rule states that we must 
increase resource size (for example, cache size) only if for every 
1% increase in core area there is at least a 1% increase in core 
performance. 

 

Categories and Subject Descriptors 
C.1.2 [Processor Architectures]: Multiple Data Stream 
Architectures (Multiprocessors) – parallel processors. 

General Terms 
Measurement, Performance, Design, Economics, 
Experimentation, Theory  

Keywords 
Kill Rule, multicore, core, computer architecture, power 
efficiency, parallel computing, CMP, stream processing, tiled 
multicore 

 

1. INTRODUCTION 
 
Application demand for computing cycles in virtually every 
domain, from the embedded market to the desktop PC, continues 
to increase unabatedly. Modern video workloads, for example, 
require 10 to 100 times more compute power than that of a few 
years ago due to increasing resolutions (from SD to HD), more 
sophisticated compression algorithms (MPEG2 to H.264), and 
greater numbers of channels. Unfortunately, the delivered 
performance of conventional sequential processors and digital 
signal processors has not kept pace with this demand.  In fact, the 
performance of sequential processors has tapered off even as the 
number of transistors that is available on a single chip has 
continued to increase exponentially. This phenomenon is called 
Moore’s Gap.  The reasons for this widening gap between the 
growing number of transistors on a single chip and its delivered 
performance include diminishing returns from single processor 
mechanisms such as caching and pipelining, wire delays, and 
power envelopes.  
 
Multicore architectures help close the Moore’s Gap. Multicore 
refers to a single chip containing multiple visibly distinct 
processing engines, each with independent control (or program 
counters), as illustrated in Figure 1.  Multicore uses the multiple-
instruction-multiple-data (MIMD) style of computation. Multiple 
voltage-scaled lower-frequency cores on a single chip offer 
significantly more performance and power efficiency than single 
cores, provided the applications have parallelism.  Indeed, 
contemporary applications and workloads of today have ample 
parallelism. In addition to the video example given at the 
beginning of the article, plenty of other applications exist that 
demonstrate parallelism properties. These include networking 
(e.g. IP forwarding), throughput oriented servers, wireless (e.g. 
Viterbi decode, FIR filters), security firewalls (e.g. AES), 
automotive (engine control), and many others. 
 
If the cores use the same number of transistors, more cores can be 
added in a multicore chip as the number of available transistors 
increases. In fact, using a corollary of Moore’s Law, we can say 
that the number of cores on a chip will double every 18 or 24 
months. Given that dual and quad cores from leading commercial 
vendors are in widespread use today, and research prototypes of 
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16-core multicores were available in university in 20021, it is 
highly likely that we will see 1000-core multicores in the early 
part of the next decade.  

 

 
Multicore chips with large numbers of cores introduce significant 
architectural and programming challenges. One of the 
architectural challenges is power efficiency. Today’s cores run at 
10's of watts. Even at about one watt per core, a 1K core chip 
would need to dissipate a staggering 1K watts! For a fixed 
frequency, power relates to chip area, so to maximize power 
efficiency (or performance per watt) it is critical to obtain the 
most performance out of a given area of silicon. This paper 
discusses a simple approach for designing the right balance of 
resources in a multicore to obtain the most out of a given amount 
of silicon area. 
 

2. KILL RULE FOR MULTICORE 
 

In the days of single core designs, architects would increase cache 
sizes, clock frequencies, pipeline depths or register file ports, as 
more area became available. Multicores provide the further choice 
of including additional cores. When parallelism exists, adding an 
additional core increases performance proportionally. However, 
increasing the size of any resource within a core might not 
increase the performance by the same amount. Thus, given more 
area, increasing the number of cores and keeping resource sizes 
relatively small, might result in more performance than increasing 
resource sizes and keeping the number of cores constant. This 
new dimension for improving performance and power efficiency 
in multicore requires us to rethink processor architecture. 

The Kill Rule is a simple scientific way of making the tradeoff 
between increasing the number of cores or increasing the core 
size. The Kill Rule states that a resource in a core must be 
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increased in area only if the core’s performance improvement is 
at least proportional to the core’s area increase. Put another way, 
increase resource size only if for every 1% increase in core area 
there is at least a 1% increase in core performance. 

The rationale for the Kill Rule is that 
a multicore’s performance can always 
be increased proportionally by adding 
more cores (assuming application 
parallelism exists). Thus, increase in a 
core’s size can only be justified if it 
results in a proportional increase in 
performance. 
 
Figure 2 illustrates an example 
applying this rule to choosing an 
optimal cache size for each core in a 
multicore chip, using MPEG2 decode 

as an application example. Suppose we start with a baseline 
multicore chip design containing 100 cores, each with a 512 byte 
data cache. Assume that the 512 byte cache occupies 1% of the 
core’s area. Since power relates to area, we will use the kill rule 
to find the design (in our case, the data cache size and resulting 
number of cores) that yields the highest performance keeping the 
area constant to that of 100 cores with a 512 byte data cache. 
 
We will use instructions per clock (IPC) as our metric of 
performance. IPC is the effective number of instructions that the 
core or chip can complete per clock cycle. Assume that a third of 
all instructions are loads or stores. Assume further that the data 
cache miss rate is “m”, and the latency of satisfying a cache miss 
is 300 cycles. In other words, “m” is the probability that a load or 
store instruction suffers a cache miss. If each instruction executes 
ideally (when no cache misses occur) in a core in a single cycle, 
the IPC is given by 
 

Core IPC = 1/(1 + 0.33 x m x 300) = 1/(1 + m x 100) 

 
For MPEG2 decode, in the baseline design with the 512 byte 
cache, the data cache miss rate is measured to be 25%. Thus the 
core IPC for the baseline design is 0.04. Since the multicore chip 
has 100 cores, the aggregate IPC for the entire chip is therefore 4. 
 
If the data cache per core is increased from 512 bytes to 2Kbytes, 
the resulting area occupied by the data cache is 4%. Only 97 cores 
will now fit in the same area. The miss rate of the caches 
decreases to 5%,  the IPC for each core increases to 
approximately 0.17, and so the IPC for the entire chip with the 
2Kbyte data cache becomes 0.17 x 97, which is approximately 17. 

 
Notice that increasing the cache size from 512 bytes to 2Kbytes is 
a good trade by the kill rule since the area of a core increases by 
3% (see Figure 3) while the performance of a core increases by 
325%.  

 

Figure 1  Three examples of multicore implementations, a bus-based multicore showing two 
identical CPUs, one with a RISC CPU and a DSP, and a tiled multicore architecture with 16 

identical CPUs 
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Now, suppose we consider doubling the cache size to 4Kbytes. 
This cache occupies 8% of the chip area. The miss rate decreases 
further to 3%, the number of cores decreases to 93, and the IPC of 
each core increases to 0.25. 
 
 As depicted in Figure 3, there is a 4% increase in the area of a 
core, which results in a 47% increase in core performance over 
the 2Kbyte cache. By the kill rule, increasing cache size to 
4Kbytes is a good tradeoff, because the 47% performance 
increase is greater than the 4% area increase over the 2Kbyte 
cache.  
 
This trend continues until we try to implement a cache size 
greater than 8Kbytes. To go from 8Kbytes to 16Kbytes, notice 
from Figure 3 that an additional 14% of the chip area must be 
devoted to data cache, while the resulting increase in the core’s 
performance is only 7%. This is a bad tradeoff, since the 
performance increase of 7% is less than the 14% area increase. 
Put another way, a 16Kbyte cache for MPEG2 decode is past the 
point of diminishing returns.  
 
The chip IPC shown in Figure 3 below each of the multicore 
designs shows that the 8Kbyte cache is indeed the optimal design 
because it maximizes the chip IPC. 
 

Although our example used 
a single benchmark for 
illustration, in general, a 
design can use average 
results from a  benchmark 
suite to obtain an optimal 
design for the entire 
benchmark set.  
 
The example above 
demonstrates that multicore 
designs must carefully 
allocate chip area between a 
core’s resources. The 
existing single processor 
design approach of building 
ever increasing caches (and 
constructs such as extremely 
deep pipelines, many-ported 
register files, etc.) can be 
counter productive to power 
efficiency and performance. 
In fact, because the 
multicore choice did not 
exist, traditional sequential 
processors have ventured far 
beyond the point of 
diminishing returns for 

many single core mechanisms such as caches, issue width, and 
pipeline depth. As an example, caches in many commercial 
sequential processors occupy over two-thirds of the die area. The 
kill rule suggests that future core designs for multicore will use 
significantly simpler cores with significantly smaller caches. 
 
Conversely, this example also demonstrates that simply 
increasing the number of cores without creating the right balance 
of resources within a core (and hence the core size) can be a 
wasteful exercise. There is a danger that the number of cores will 
become the new MHz paradigm – the Kill rule demonstrates that 
the number of cores can become yet another meaningless 
indicator of performance.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2  Multicore example illustrating the application of the Kill Rule 
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3. SUMMARY 
 

In the days of single core designs, architects would increase core 
resource sizes (e.g., cache size) as more transistors became 
available in each succeeding technology generation.  Multicores 
provide the further choice of including additional cores. Thus, 
given more area, increasing the number of cores and keeping 
resource sizes relatively small might result in more performance 
than increasing resource sizes and keeping the number of cores 
constant. This new dimension for improving performance and 
power efficiency in multicore requires us to rethink processor 
architecture and is captured in a simple principle called the Kill 
Rule. The Kill Rule states that a resource size must be increased 
only if for every 1% increase in core area there is at least a 1% 
increase in core performance. 

The kill rule suggests that future core designs for multicore will 
use significantly simpler cores with significantly smaller caches. 
Processors in the early 90’s sported 5 to 6 pipeline stages, and 16 
to 32Kbyte caches.  Compare that to todays 30+ pipeline stages 
and multi Megabyte caches. Our best guess is that the optimal 
design point for the future will reflect processor designs from the 
mid 90’s. 

Figure 3  The Kill Rule suggests that the multicore with 8Kbyte caches per core is the optimal design 
point for MPEG2 decode since increasing the cache further does not yield a proportional increase in 

core performance 
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