
The KILL Rule for Multicore

 Anant Agarwal Markus Levy
 MIT and Tilera Corp. EEMBC

ABSTRACT

Multicore has shown significant performance and power
advantages over single cores in commercial systems with a 2-4
cores. Applying a corollary of Moore's Law for multicore, we
expect to see 1K multicore chips within a decade. 1K multicore
systems introduce significant architectural challenges. One of
these is the power efficiency challenge. Today’s cores consume
10's of watts. Even at about one watt per core, a 1K-core chip
would need to dissipate 1K watts! This paper discusses the "Kill
rule for multicore" for power-efficient multicore design, an
approach inspired by the "Kiss rule for RISC processor design".
Kill stands for Kill if less than linear, and represents a design
approach in which any additional area allocated to a resource
within a core, such as a cache, is carefully traded off against using
the area for additional cores. The Kill Rule states that we must
increase resource size (for example, cache size) only if for every
1% increase in core area there is at least a 1% increase in core
performance.

Categories and Subject Descriptors
C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors) – parallel processors.

General Terms
Measurement, Performance, Design, Economics,
Experimentation, Theory

Keywords
Kill Rule, multicore, core, computer architecture, power
efficiency, parallel computing, CMP, stream processing, tiled
multicore

1. INTRODUCTION

Application demand for computing cycles in virtually every
domain, from the embedded market to the desktop PC, continues
to increase unabatedly. Modern video workloads, for example,
require 10 to 100 times more compute power than that of a few
years ago due to increasing resolutions (from SD to HD), more
sophisticated compression algorithms (MPEG2 to H.264), and
greater numbers of channels. Unfortunately, the delivered
performance of conventional sequential processors and digital
signal processors has not kept pace with this demand. In fact, the
performance of sequential processors has tapered off even as the
number of transistors that is available on a single chip has
continued to increase exponentially. This phenomenon is called
Moore’s Gap. The reasons for this widening gap between the
growing number of transistors on a single chip and its delivered
performance include diminishing returns from single processor
mechanisms such as caching and pipelining, wire delays, and
power envelopes.

Multicore architectures help close the Moore’s Gap. Multicore
refers to a single chip containing multiple visibly distinct
processing engines, each with independent control (or program
counters), as illustrated in Figure 1. Multicore uses the multiple-
instruction-multiple-data (MIMD) style of computation. Multiple
voltage-scaled lower-frequency cores on a single chip offer
significantly more performance and power efficiency than single
cores, provided the applications have parallelism. Indeed,
contemporary applications and workloads of today have ample
parallelism. In addition to the video example given at the
beginning of the article, plenty of other applications exist that
demonstrate parallelism properties. These include networking
(e.g. IP forwarding), throughput oriented servers, wireless (e.g.
Viterbi decode, FIR filters), security firewalls (e.g. AES),
automotive (engine control), and many others.

If the cores use the same number of transistors, more cores can be
added in a multicore chip as the number of available transistors
increases. In fact, using a corollary of Moore’s Law, we can say
that the number of cores on a chip will double every 18 or 24
months. Given that dual and quad cores from leading commercial
vendors are in widespread use today, and research prototypes of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

DAC 2007, June 4–8, 2007, San Diego, California, USA

Copyright 2007 ACM 978-1-59593-627-1/07/0006…5.00

750

42.2

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4–8, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-627-1/07/0006 ...$5.00.

16-core multicores were available in university in 20021, it is
highly likely that we will see 1000-core multicores in the early
part of the next decade.

Multicore chips with large numbers of cores introduce significant
architectural and programming challenges. One of the
architectural challenges is power efficiency. Today’s cores run at
10's of watts. Even at about one watt per core, a 1K core chip
would need to dissipate a staggering 1K watts! For a fixed
frequency, power relates to chip area, so to maximize power
efficiency (or performance per watt) it is critical to obtain the
most performance out of a given area of silicon. This paper
discusses a simple approach for designing the right balance of
resources in a multicore to obtain the most out of a given amount
of silicon area.

2. KILL RULE FOR MULTICORE

In the days of single core designs, architects would increase cache
sizes, clock frequencies, pipeline depths or register file ports, as
more area became available. Multicores provide the further choice
of including additional cores. When parallelism exists, adding an
additional core increases performance proportionally. However,
increasing the size of any resource within a core might not
increase the performance by the same amount. Thus, given more
area, increasing the number of cores and keeping resource sizes
relatively small, might result in more performance than increasing
resource sizes and keeping the number of cores constant. This
new dimension for improving performance and power efficiency
in multicore requires us to rethink processor architecture.

The Kill Rule is a simple scientific way of making the tradeoff
between increasing the number of cores or increasing the core
size. The Kill Rule states that a resource in a core must be

1 “Evaluation of the Raw Microprocessor: An Exposed-Wire-

Delay Architecture for ILP and Streams,” by Michael
Bedford Taylor, Walter Lee, Jason Miller, David Wentzlaff, Ian
Bratt, Ben Greenwald, Henry Hoffmann, Paul Johnson, Jason
Kim, James Psota, Arvind Saraf, Nathan Shnidman, Volker
Strumpen, Matt Frank, Saman Amarasinghe, and Anant
Agarwal. Proceedings of the International Symposium on
Computer Architecture (ISCA), June 2004.

increased in area only if the core’s performance improvement is
at least proportional to the core’s area increase. Put another way,
increase resource size only if for every 1% increase in core area
there is at least a 1% increase in core performance.

The rationale for the Kill Rule is that
a multicore’s performance can always
be increased proportionally by adding
more cores (assuming application
parallelism exists). Thus, increase in a
core’s size can only be justified if it
results in a proportional increase in
performance.

Figure 2 illustrates an example
applying this rule to choosing an
optimal cache size for each core in a
multicore chip, using MPEG2 decode

as an application example. Suppose we start with a baseline
multicore chip design containing 100 cores, each with a 512 byte
data cache. Assume that the 512 byte cache occupies 1% of the
core’s area. Since power relates to area, we will use the kill rule
to find the design (in our case, the data cache size and resulting
number of cores) that yields the highest performance keeping the
area constant to that of 100 cores with a 512 byte data cache.

We will use instructions per clock (IPC) as our metric of
performance. IPC is the effective number of instructions that the
core or chip can complete per clock cycle. Assume that a third of
all instructions are loads or stores. Assume further that the data
cache miss rate is “m”, and the latency of satisfying a cache miss
is 300 cycles. In other words, “m” is the probability that a load or
store instruction suffers a cache miss. If each instruction executes
ideally (when no cache misses occur) in a core in a single cycle,
the IPC is given by

Core IPC = 1/(1 + 0.33 x m x 300) = 1/(1 + m x 100)

For MPEG2 decode, in the baseline design with the 512 byte
cache, the data cache miss rate is measured to be 25%. Thus the
core IPC for the baseline design is 0.04. Since the multicore chip
has 100 cores, the aggregate IPC for the entire chip is therefore 4.

If the data cache per core is increased from 512 bytes to 2Kbytes,
the resulting area occupied by the data cache is 4%. Only 97 cores
will now fit in the same area. The miss rate of the caches
decreases to 5%, the IPC for each core increases to
approximately 0.17, and so the IPC for the entire chip with the
2Kbyte data cache becomes 0.17 x 97, which is approximately 17.

Notice that increasing the cache size from 512 bytes to 2Kbytes is
a good trade by the kill rule since the area of a core increases by
3% (see Figure 3) while the performance of a core increases by
325%.

Figure 1 Three examples of multicore implementations, a bus-based multicore showing two
identical CPUs, one with a RISC CPU and a DSP, and a tiled multicore architecture with 16

identical CPUs

751

Now, suppose we consider doubling the cache size to 4Kbytes.
This cache occupies 8% of the chip area. The miss rate decreases
further to 3%, the number of cores decreases to 93, and the IPC of
each core increases to 0.25.

 As depicted in Figure 3, there is a 4% increase in the area of a
core, which results in a 47% increase in core performance over
the 2Kbyte cache. By the kill rule, increasing cache size to
4Kbytes is a good tradeoff, because the 47% performance
increase is greater than the 4% area increase over the 2Kbyte
cache.

This trend continues until we try to implement a cache size
greater than 8Kbytes. To go from 8Kbytes to 16Kbytes, notice
from Figure 3 that an additional 14% of the chip area must be
devoted to data cache, while the resulting increase in the core’s
performance is only 7%. This is a bad tradeoff, since the
performance increase of 7% is less than the 14% area increase.
Put another way, a 16Kbyte cache for MPEG2 decode is past the
point of diminishing returns.

The chip IPC shown in Figure 3 below each of the multicore
designs shows that the 8Kbyte cache is indeed the optimal design
because it maximizes the chip IPC.

Although our example used
a single benchmark for
illustration, in general, a
design can use average
results from a benchmark
suite to obtain an optimal
design for the entire
benchmark set.

The example above
demonstrates that multicore
designs must carefully
allocate chip area between a
core’s resources. The
existing single processor
design approach of building
ever increasing caches (and
constructs such as extremely
deep pipelines, many-ported
register files, etc.) can be
counter productive to power
efficiency and performance.
In fact, because the
multicore choice did not
exist, traditional sequential
processors have ventured far
beyond the point of
diminishing returns for

many single core mechanisms such as caches, issue width, and
pipeline depth. As an example, caches in many commercial
sequential processors occupy over two-thirds of the die area. The
kill rule suggests that future core designs for multicore will use
significantly simpler cores with significantly smaller caches.

Conversely, this example also demonstrates that simply
increasing the number of cores without creating the right balance
of resources within a core (and hence the core size) can be a
wasteful exercise. There is a danger that the number of cores will
become the new MHz paradigm – the Kill rule demonstrates that
the number of cores can become yet another meaningless
indicator of performance.

Figure 2 Multicore example illustrating the application of the Kill Rule

752

3. SUMMARY

In the days of single core designs, architects would increase core
resource sizes (e.g., cache size) as more transistors became
available in each succeeding technology generation. Multicores
provide the further choice of including additional cores. Thus,
given more area, increasing the number of cores and keeping
resource sizes relatively small might result in more performance
than increasing resource sizes and keeping the number of cores
constant. This new dimension for improving performance and
power efficiency in multicore requires us to rethink processor
architecture and is captured in a simple principle called the Kill
Rule. The Kill Rule states that a resource size must be increased
only if for every 1% increase in core area there is at least a 1%
increase in core performance.

The kill rule suggests that future core designs for multicore will
use significantly simpler cores with significantly smaller caches.
Processors in the early 90’s sported 5 to 6 pipeline stages, and 16
to 32Kbyte caches. Compare that to todays 30+ pipeline stages
and multi Megabyte caches. Our best guess is that the optimal
design point for the future will reflect processor designs from the
mid 90’s.

Figure 3 The Kill Rule suggests that the multicore with 8Kbyte caches per core is the optimal design
point for MPEG2 decode since increasing the cache further does not yield a proportional increase in

core performance

753

