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Abstract

The next decade will afford us computer chips with 1,000
- 10,000 cores on a single piece of silicon. Contempo-
rary operating systems have been designed to operate on
a single core or small number of cores and hence are not
well suited to manage and provide operating system ser-
vices at such large scale. Managing 10,000 cores is so
fundamentally different from managing two cores that the
traditional evolutionary approach of operating system opti-
mization will cease to work. The fundamental design of op-
erating systems and operating system data structures must
be rethought. This work begins by documenting the scala-
bility problems of contemporary operating systems. These
studies are used to motivate the design of a factored oper-
ating system (fos). fos is a new operating system targeting
1000+ core multicore systems where space sharing replaces
traditional time sharing to increase scalability. fos is built
as a collection of Internet inspired services. Each operat-
ing system service is factored into a fleet of communicat-
ing servers which in aggregate implement a system service.
These servers are designed much in the way that distributed
Internet services are designed, but instead of providing high
level Internet services, these servers provide traditional ker-
nel services and manage traditional kernel data structures
in a factored, spatially distributed manner. The servers are
bound to distinct processing cores and by doing so do not
fight with end user applications for implicit resources such
as TLBs and caches. Also, spatial distribution of these OS
services facilitates locality as many operations only need to
communicate with the nearest server for a given service.

1 Introduction

The number of processor cores which fit onto a sin-
gle chip microprocessor is rapidly increasing. Within ten
years, a single microprocessor will contain 1,000 - 10,000
cores. Current operating systems were designed for single
processor or small number of processor systems and were

not designed to manage such scale of computational re-
sources. Unlike the past, where new hardware generations
brought higher clock frequency, larger caches, and more
single stream speculation, all of which are not huge changes
to fundamental system organization, the multicore revolu-
tion promises drastic changes in fundamental system archi-
tecture, primarily in the fact that the number of general-
purpose schedulable processing elements is drastically in-
creasing. The way that an operating systemmanages 10,000
processors is so fundamentally different than the manner in
which it manages two that the entire design of an operating
system must be rethought. This work investigates why sim-
ply scaling up traditional symmetric multiprocessor operat-
ing systems is not sufficient to attack this problem and pro-
poses how to build a factored operating system (fos) which
embraces the 10,000 core multicore chip opportunity.

The growing ubiquity of multicore processors is being
driven by several factors. If single stream microproces-
sor performance were to continue increasing exponentially,
there would be little need to contemplate parallelization of
our computing systems. Unfortunately, single stream per-
formance of microprocessors has fallen off the exponential
trend due to the inability to detect and exploit parallelism
in sequential codes, the inability to further pipeline sequen-
tial processors, the inability to raise clock frequencies due
to power constraints, and the design complexity of high-
performance single stream microprocessors[3]. While sin-
gle stream performance may not be significantly increas-
ing in the future, the opportunity provided by semiconduc-
tor process scaling is continuing for the foreseeable future.
The ITRS road-map[1] and the continuation of Moore’s
Law[17] forecast exponential increases in the number of
transistors on a single microprocessor chip for at least an-
other decade. In order to turn these exponentially increas-
ing transistor resources into exponentially increasing per-
formance, microprocessor manufacturers have turned to in-
tegrating multiple processors onto a single die. Current
examples of this include Intel and AMD’s Quad-core of-
ferings, Tilera’s 64-core processor[26], and an 80-core In-
tel prototype processor[23]. Road-maps by all major mi-



croprocessor manufacturers suggest that the trend of inte-
grating more cores onto a single microprocessor will con-
tinue. Extrapolating the doubling of transistor resources
every 18-months, and that a 64-core commercial processor
was shipped in 2007, in just ten years, we will be able to
integrate over 6000 processor cores on a single micropro-
cessor.
The fact that single stream performance has sizably

increased with past generations of microprocessors has
shielded operating system developers from qualitative hard-
ware platform changes. Unlike larger caches, larger TLBs,
higher clock frequency, and more instruction level paral-
lelism, the multicore phenomenon drastically changes the
playing field for operating system design. The primary chal-
lenge of multicore operating system design is one of scala-
bility. Current symmetric multiprocessor (SMP) operating
systems have been designed to manage a relatively small
number of cores. The number of cores that they have man-
aged has stayed relatively constant. The number of CPU
chips contained within a typical system has remained fixed,
with the vast majority of SMP systems being two proces-
sor systems. With multicore chip designs, the number of
cores will be expanding at an exponential rate therefore any
operating system designed to run on multicores will need
to embrace scalability and make it a first order design con-
straint.
This work investigates the problems with scaling SMP

OSs to high core counts. The first problem is that scaling
SMPOS’s by creating successively finer grain data structure
locks is becoming problematic. Unlike small node count
systems, where only a small portion of the code may need
fine grain locking, in high node count systems, any non-
scalable portion of the design will quickly become a per-
formance problem. Also, in order to build an OS which
performs well on 100 and 10,000 cores, there may be no op-
timal lock granularity as finer grain locking allows for bet-
ter scaling, but introduces potential lock overhead on small
node count machines. Last, retrofitting fine grain locking
into an SMP OS can be an error prone and challenging
prospect.
A second challenge SMP OS’s face is that they rely on

efficient cache coherence for communications of data struc-
tures and locks. It is doubtful that future multicore proces-
sors will have efficient full-machine cache coherence as the
abstraction of a global shared memory space is inherently a
global shared structure. Another challenge for any scalable
OS is the need to manage locality. Last, the design of SMP
OS’s traditionally execute the operating system across the
whole machine. While this has good locality benefits for
application and OS communications, it requires the cache
system on each core of a multicore system to contain the
working set of the application and OS.
This work utilizes the Linux 2.6 kernel as a vehicle to

investigate scaling of a prototypical SMP OS. We perform
scaling studies of the physical page allocation routines to
see how differing core count effects the performance of this
parallelized code. We find that this code does not scale be-
yond 8 cores under heavy load.
We use these scalability studies to motivate the design

of a factored operating system (fos). fos is a new scalable
portable operating system targeted at 1000+ core systems.
The main feature of fos is that each service that the OS pro-
vides is built like a distributed Internet server. Each sys-
tem service is composed of multiple server processes which
are spatially distributed across a multicore chip. These
servers collaborate and exchange information, and in aggre-
gate provide the overall system service. In fos, each server
is allocated to a specific core thereby removing the need to
time-multiplex processor cores and simplifying the design
of each service server.
fos not only distributes high-level services, but also, dis-

tributes services and data-structures typically only found
deep in OS kernels such as physical page allocation,
scheduling, memory management, naming, and hardware
multiplexing. Each system service is constructed out of col-
laborating servers. The system service servers execute on
top of a microkernel. The fos-microkernel is platform de-
pendent, provides protection mechanisms but not protection
policy, and implements a fast machine-dependent commu-
nication infrastructure.
Many of fos’s fundamental system services embrace the

distributed Internet paradigm even further by allowing any
node to contact any server in a particular system service
group (fleet). This is similar to how a web client can access
any webserver in a load balanced web cluster, but for ker-
nel data structures and services. Also, like a spatially load
balanced web cluster, the fos approach exploits locality by
distributing servers spatially across a multicore. When an
application needs a system service, it only needs to com-
municate with its local server thereby exploiting locality.
Implementing a kernel as a distributed set of servers has

many advantages. First, by breaking away from the SMP
OS monolithic kernel approach, the OS level communica-
tion is made explicit and exposed thus removing the prob-
lem of hunting for poor performing shared memory or lock
based code. Second, in fos, the number of servers imple-
menting a particular system service scales with the num-
ber of number of cores being executed on, thus the com-
puting available for OS needs scales with the number of
cores in the system. Third, fos does not execute OS code
on the same cores which are executing application code.
Instead an application messages the particular system ser-
vice, which then executes the OS code and returns the result.
By partitioning where the OS and applications execute, the
working set of the OS and the working set of the application
do not interfere. This work dives into the design of a fac-



tored operating system and presents some initial scalability
measurements from Linux.

2 Scalability of Contemporary Operating
Systems

Computer hardware is always progressing, providing
more computing resources year-after-year to the end user.
Computer hardware progress has largely been fueled by
the ability to produce smaller structures at a lower cost,
whether they be transistors on a chip or magnetic regions
on a disk. Whenever new hardware is presented to the
programmer, software changes are needed to take full ad-
vantage of and optimize for the new hardware. Much of
the hardware progress over the last 25 years has sought
to reduce the qualitative system architecture changes. In-
stead the bulk of these changes have come in the form of
quantitative changes in system architecture such as higher
clock frequency, higher ILP, more physical memory, larger
caches, larger disks, and higher bandwidth buses. Quali-
tative changes in system architecture such as the addition
of memory management have been significantly less preva-
lent. From an operating system’s perspective, quantitative
architecture changes are significantly less disruptive than
qualitative changes. Quantitative changes are less disrup-
tive because they typically show up as performance degra-
dation while qualitative differences will show up as loss of
functionality.
The advent of 1000+ core microprocessors marks a ma-

jor qualitative change in computer system design, and one
for which operating systems will have to undergo major re-
structuring. Multi-processor systems have been in use for
many years, but have been constrained to low numbers of
processors, with the bulk being two processor systems. One
of the major differences between desktop and server multi-
processor systems of the past and 1000+ core microproces-
sors is that in the past the number of processors has stayed
constant, in the 2-8 processor range, from generation to gen-
eration. Multi-processor systems have been a means to al-
low users who needed processing power sooner than single
stream performance improvement provided a way to uti-
lize more silicon area to gain parallel performance. Main-
stream multi-processor systems have largely relied on sin-
gle stream performance of the individual processors to in-
crease performance instead of having the number of cores
exponentially increasing. Unlike past multi-processor sys-
tems, the 1000+ core era of multi-core processors enables
the number of cores in a system to track the exponential in-
crease in available silicon area. This forces the design of
an operating system to treat core count scalability as a first
order constraint.
In order to address the exponential increase in cores,

1000+ core operating systems will have to scale in all as-

pects. Unlike small core count systems where it is accept-
able to have small portions of the system software be serial-
ized, when scaled to large core counts, the overheads when
applied serially lead to major performance problems. Thus
in the 1000+ core case, all portions of the OS must scale
well. For example, suppose an 8 core system where 0.1%
of the execution time per core is spent in operating system
code which executes sequentially with all other processor
code. In such a system, less then 0.8% of total execution
time is due to OS-level Amdahl’s law. But when the same
senario is applied to a 1000 core system, an additional 100%
of the original execution time is due to OS overheads and
the system performance decreases by a factor of two.
In the past, fine-grain locking has been utilized to com-

bat OS scalability problems. Fine-grain locking runs into
problems as the number of cores exponentially increases.
Assume that the rate at which a user process accesses sys-
tem services stays constant and the data set is of fixed size.
Next, the probability that a lock will be contended for is pro-
portional to the number of threads in a system. This implies
that as multicore systems gain more threads/cores exponen-
tially with time, lock contention grows exponentially worst
with time. Thus to achieve performance parity, traditional
lock-based operating systems must have every critical sec-
tion protected by a lock become exponentially smaller every
18 months. The corollary to this is that the number of
locks in a fine-grain locked system, must increase exponen-
tially with time to achieve performance parity. This require-
ment becomes very difficult as operating system program-
mer productivity is not even close to being able to identify
twice as many lock locations every 18 months. Second, the
size of data protected by a single lock must become expo-
nentially smaller every 18 months. Therefore, for contem-
porary OS code which has already been fine-grain locked
on a very small level, it is very probable that the finest grain
lock size (a lock per byte?) will be reached very quickly if
it has not already reached.
This section investigates three main problems with con-

temporary OS design, locks, reliance on shared memory,
and locality aliasing. Case studies are utilized to illustrate
how each of these problems appears in a contemporary OS,
Linux, on modern multicore x86 64 hardware. The results
of these studies are studied and lessons learned are utilized
to make recommendations for future operating systems.

2.1 Problems

2.1.1 Locks

Contemporary operating systems which execute on multi-
processor systems have evolved from uni-processor oper-
ating systems. The most simplistic form of this evolution
was the addition of a single big kernel lock which prevents
multiple threads from simultaneously entering the kernel.



Allowing only one thread to execute in the kernel at a time
greatly simplifies the extension of a uni-processor operating
system to multiple processors. Allowing only one thread in
the kernel at a time allows the invariant that all kernel data
structures will be accessed only by one thread to hold true.
Unfortunately, one large kernel lock, by definition, limits
the concurrency achievable within an OS kernel and hence
the scalability. The traditional manner to further scale op-
erating system performance has been to successively cre-
ate finer-grain locks thus reducing the probability that more
than one thread is concurrently accessing locked data. This
method attempts to increase the concurrency available in the
kernel.

Adding locks into an operating system is a very time con-
suming and error prone endeavor. Adding locks can be very
error prone for several reasons. First, when trying to make
make a lock finer grain where course grain locking previ-
ously existed, it is very common to forget that a piece of
data needs to be protected by a lock. Many times this is
caused by simply not understanding the relationships be-
tween data and locks, as most programming languages do
not have a formal way to express lock and protected data
relationships. The second manner in which locks are error
prone is when locks can cause circular dependencies and
hence deadlocks to occur. This case is quite unfortunate as
in many circumstances, these only occur is very rare occur-
rences and may not be exercised by normal testing. When
the lock granularity needs to be adjusted it is usually not
the case that simply adjusting the granularity is enough. In
many cases, an entire subsystem of the operating system
will need to be redesigned in order to take be able to change
lock granularity.

2.1.2 Reliance on Shared Memory

Contemporary operating systems rely on shared memory
for communication. This is partially because this is the
only means by which a typical hardware architecture allows
core-to-core communication. A flat global shared memory
space is many times convenient to reason about. Also, the
easiest extension of a single processor operating system is
to allow multiple kernel threads executing in a single global
address space.

The downside of relying on shared memory is that shared
memory is inherently global and is a challenging to scale up
to large scale with good performance. It is doubtful that a
hardware solution will be found which provides performent
cache coherent shared memory up to 1000’s of cores. The
alternative is to use message passing which is a more ex-
plicit point-to-point communication mechanism.
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Figure 1. Physical memory allocation perfor-
mance sorted by function. As more cores are
added more processing time is spent con-
tending for locks.

2.1.3 OS-Application and OS-OS Locality Aliasing

Operating systems can have large instruction and data work-
ing sets. Traditional operating systems time multiplex com-
putation resources. By executing operating system code
and application code on the same physical core, implicitly
shared resources such as caches and TLBs have to accom-
modate the shared working set of both the application and
the operating system code and data. This reduces the hit
rates in these cache structures versus executing the operat-
ing system and application on separate cores. By reduc-
ing cache hit rates, the single stream performance of the
program will be reduced. Single stream performance is at
a premium with the advent of multicore processors as in-
creasing single stream performance by other means may be
exceedingly difficult. It is also likely that some of the work-
ing set will be so disjoint that the application and operating
system can fight for resources causing anti-locality colli-
sions in the cache. Current operating systems also execute
different portions of the OS with wildly different code and
data on one physical core. By doing this, intra-OS cache
thrash can be accentuated versus executing different logical
portions of the OS on different physical cores.

2.2 Physical Page Allocation Case Study

In order to investigate how locks scale in a contempo-
rary operating system, we investigated the scaling aspects of
the physical page allocation routines of Linux. The Linux
2.6.24.7 kernel was utilized on a 16 core Intel quad-socket
quad-core system. The test system is a Dell PowerEdge
R900 outfitted with four Intel Xeon E7340 CPUs running at
2.40GHz and 16GB of RAM.



The test program attempts to allocate memory as quickly
as is possible on each core. This is accomplished by allo-
cating a gigabyte of data and then writing to the first byte of
every page as quickly as is possible. By touching the first
byte in every page, the operating system is forced to allo-
cate the memory. The number of cores was varied from 1
to 16 cores. Precision timers and oprofile were utilized to
determine the runtime and what body of code required the
most time to execute. Figure 1 shows the results of this ex-
periment. The bars show the time taken to complete the test
per core. Note that a fixed amount of work is done per core,
thus perfect scaling would be bars all the same height.
By inspecting the graph, several lessons can be learned.

First, as the number of cores increases, the lock contention
begins to dominate the execution time. Past eight proces-
sors, the addition of more processors actually slows down
the computation and the system begins to exhibit fold-back.
Architectural overhead takes up a portion of the execution
time as more cores are added. This is believed to be con-
tention in the hardware memory system.
For this benchmark, the Linux kernel already utilizes rel-

atively fine-grain locks. Each core has a list of free pages
and a per-core lock on this free list. There are multiple
memory zones each with independent lock sets. The Linux
kernel rebalances the free lists in bulk to minimize rebal-
ancing time. Even with all of these optimizations, the top
level rebalancing lock ends up being the scalability prob-
lem. This code is already quite fine-grain locked thus to
make it finer grain locked, some algorithmic rethinking is
needed. While it is not realistic for all of the cores in a 16
core system to allocate memory as quickly as this test pro-
gram does, it is realistic that in a 1000+ core system that 16
out of the 1000 cores would need to allocate a page at the
same time thus causing traffic similar to this test program.

3 Design of a Factored Operating System

A factored operating system environment is composed
of three main components. A thin microkernel, a set of
servers which together provide system services which we
call the OS layer, and applications which utilize these ser-
vices. The lowest level of software management comes
from the microkernel. A portion of the microkernel ex-
ecutes on each processor core. The microkernel controls
access to resources (protection), provides a communication
API to applications and system service servers, and main-
tains a name cache used internally to determine the destina-
tion of messages. Applications and system servers execute
on top of the microkernel and execute on the same core re-
sources as the microkernel.
fos is a full featured operating system which provides

many services to applications such as resource multiplex-
ing, management of system resources such as cores, mem-
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Figure 2. OS and application clients execut-
ing on the fos-microkernel

ory, and input-output devices, abstraction layers such as
file-systems and networking, and application communica-
tion primitives. In fos, this functionality is provided by
the OS layer. The OS layer is composed of fleets of func-
tion specific servers. Each core operating system function
is provided by one or more servers. Each server of the
same type is a part of a function specific fleet. Naturally
there are differing fleets for different functions. For instance
there is a fleet which manages physical memory allocation,
a fleet which manages the file system access, and a fleet
which manages process scheduling and layout. Defaultly
each server executes solely on a dedicated processor core.
Servers communicate only via the messaging interface pro-
vided by the microkernel layer.

In fos, an application executes on one or more cores.
Within an application, communication can be achieved via
shared memory communication or messaging. While co-
herent shared memory may be inherently unscalable in the
large, in a small application, it can be quite useful. This is
why fos provides the ability for applications to have shared
memory if the underlying hardware supports it. The OS
layer does not internally utilize shared memory, but rather
utilizes explicit message based communication. When an
application requires OS services, the underlying commu-
nication mechanism is via microkernel messaging. While
messaging is used as the communication mechanism, a
more traditional system call interface can be exposed to the
application writer. A small translation library is used to turn
system calls into messages from an application layer to an
OS layer server.

Applications and OS layer servers act as peers. They all
run under the fos-microkernel and communicate via the fos-
microkernel messaging API. The fos-microkernel does not
differentiate between applications and OS layer servers ex-
ecuting under it. The code executing on a single core under
the fos-microkernel is called an fos client. Figure 2 has a
conceptual model of applications and the OS layer, as im-



plemented by fleets of servers, executing on top of the mi-
crokernel. As can be seen from the figure, fos concentrates
on spatial allocation of resources over time multiplexing of
resources. In high core count environments, the problem of
scheduling turns from one of time slicing to one of spatial
layout of executing processes.

3.1 fos-microkernel

The main functions the fos-microkernel provides are
communication between clients executing on cores and re-
source protection. The fos-microkernel provides a reliable
messaging layer to applications and the OS layer. The fos-
microkernel also implements the mechanisms of resource
protection, but not the protection policy, which it leaves up
to the protection manager as implemented in the OS layer.
Each processor core in fos executes a portion of the fos-

microkernel. The microkernel on each core is largely in-
dependent of the microkernel executing on other cores. By
utilizing shared-little design, the microkernel is capable of
scaling up to large numbers of processing cores. Microker-
nels on different cores communicate as needed to transport
messages from client tasks.
The fos-microkernel does not have any threads of control

running inside of it and does not time-slice with the clients
executing on a particular core. Rather the fos-microkernel
executes only in response to clients requesting services from
it or in response to messages destined for a given core.

3.1.1 Communication

The key service provided by the fos-microkernel to micro-
kernel clients is that of a reliable messaging layer. The
fos-microkernel provides a reliable message transport layer.
Each fos-microkernel client can allocate a large set of re-
ceive mailboxes via which it can receive messages. The
receive mailbox can be configured in either a polling mode
or can be configured to generate interrupts to the receiv-
ing client. A mailbox has a fixed size and is named by
the receiving client. Clients send messages by naming a
particular destination client and receive mailbox. The fos-
microkernel then enqueues the sent message in the receiv-
ing client’s receive queue. If the receive queue is full, the
sending client’s send command will return that the receive
queue is full and the sender can elect to retry. Message order
is guaranteed between any two clients, but is not guaranteed
globally.
In addition to transport of messages, the fos-microkernel

also maintains a cache of name mapping. The fos-
microkernel delegates destination look-up to the name
server fleet (running in the OS layer) which maintains the
canonical name directory. The name cache provides a man-
ner for microkernel clients to send messages to uniquely
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Figure 3. Message walkthrough of an exam-
ple application file system access.

named clients. The name server also allows for redirection
if a client moves to a different processor core. The name
server also provides a one-to-many mapping function. This
allows for clients to send to a named service which may be
implemented by a fleet of servers. The name server can then
choose the mapping to a particular server instance based off
of physical proximity or load balancing. The name server
manager also helps with fault resilience as broken servers
can be steered away from when a fault is detected.
Figure 3 diagrams an example file system access. 1:

An application calls ‘read’ which calls the message proxy
library. 2: The message proxy library constructs a mes-
sage to the file system service. 3: The message proxy li-
brary calls the fos-microkernel to send the message. 4: The
fos-microkernel looks up the physical destination in name
cache. 5: The fos-microkernels transport the message to
the destination via on-chip networks or shared memory. 6:
The receive microkernel deposits message in the file system
server’s request mailbox. 7: The file system server pro-
cesses the request. 8: The file system server returns data
to the message proxy library receive mailbox via a message
which follows a similar return path. 9: The message proxy
library unpackages the response message and returns data
to the application.

3.1.2 Protection and Privilege Isolation

The fos-microkernel does not implement the policies of re-
source protection, but rather policy decisions are left up to
the OS layer. fos differentiates between protection mech-
anism and policy. The fos-microkernel executes protected
operations on behalf of clients, thus it controls the mecha-
nisms of protection, but the policy decisions are delegated to



the protection manager. The protection manager is a portion
of the OS layer and is implemented in a distributed manner.
The fos-microkernel likewise enforces privilege checking to
determine if a given client has enough privilege to access a
particular resource. The fos-microkernel caches privilege
information in a read only manner and calls into the dis-
tributed protection manager which is a service provided by
the OS layer and is the canonical repository of privilege in-
formation. The fos-microkernel restricts which clients can
send messages to which other clients. It also restricts access
to administrative hardware such as memory protection hard-
ware and I/O messaging hardware. Interface to the memory
protection hardware is via a system call interface into the
fos-microkernel.

3.1.3 Delegation

The fos-microkernel is designed to delegate functionality
to the OS layer in several situations. While this may
seem cause cyclic dependencies, the fos-microkernel and
delegated clients have been designed with this in mind.
Delegation occurs by the microkernel originating mes-
sages for client tasks. The client tasks respond via fos-
microkernel messaging. In order for dependency loops
to not exist, client tasks which can be delegated to by
the fos-microkernel are designed to not be reliant on fos-
microkernel services which would case a cycle to occur.
An example of microkernel delegation is that of the priv-

ilege manager. The privilege manager is implemented as a
fleet of servers in the OS layer. The fos-microkernel re-
quests privilege information from the delegated to privilege
manager servers and caches the information inside of the
microkernel in a read only manner. Occasionally privileges
change and the privilege manager messages the microker-
nel notifying the microkernel to invalidate the appropriate
stale privilege information. In order for the privilege man-
ager to run as a fos-microkernel client, the fos-microkernel
affords privilege manager clients static privileges, so that a
privilege fixed point can be reached.

3.1.4 Platform Dependence

One of the goals of fos is to be platform independent. While
the authors believe that platform independence is important
in the bulk of the code, we do not believe that platform in-
dependence extends to the fos-microkernel. The microker-
nel needs to implement protection mechanisms and as such
must be specialized to the hardware it is executing on. I/O
interfacing which is handled by the fos-microkernel is also
inherently platform dependent. The fos-microkernel must
provide high performance messaging to client tasks in order
for the OS layer to execute efficiently. Therefore the fos-
microkernel design is free to use any hardware provided by
the platform to increase the performance of messaging. One

example of this is that messaging on shared memory ma-
chines utilizes shared memory and memory mapping mod-
ification to communicate between cores, while fos’s micro-
kernel can use messaging networks on machines which pro-
vide hardware messaging networks.

3.2 OS layer

The OS layer provides all of the system services pro-
vided by typical modern day operating systems. In contrast
to typical modern day operating systems, the OS layer is
constructed out of fleets of decentralized servers. In order to
provide scalability up to thousands of processor cores, fos’s
OS layer has been factored first by service being provided.
For instance the code which provides file system functional-
ity is not part of the same server as the code which provides
physical page allocation. In fact these portions of the oper-
ating system run on different spatially disparate cores. Each
service is further factored into a fleet of servers. The servers
are spatially scattered across the compute fabric. When a
application requires a particular service, it contacts the ser-
vice specific server which it is closest to. Servers execute
on disparate computing cores than the applications are exe-
cuting on and are contacted via fos-microkernel messaging.
By not executing portions of the OS on the application pro-
cessing node, the core that the application is executing on
does not have its cache polluted. Also, the application does
not need to time-multiplex the compute resource.
Fleets of servers communicate with each other when the

OS needs services from other portions of the OS. Fleets of
servers communicate via fos-microkernel messaging. An
example of two fleets communicating would be when the
file system needs physical memory buffers. In this example,
the a file system server contacts the physical memory server
fleet to request a memory buffer.
Inside of a fleet of servers, the individual servers com-

municate. fos is structured to reduce this communication,
but for shared resources, communication is needed. Servers
communicate with each other via fos-microkernel messag-
ing. Servers often need to communicate with multiple of
the other servers in the same fleet to complete a transac-
tion. Servers are designed with spatial locality in mind and
choose to communicate with the nearest server in the same
fleet if possible.

3.2.1 Structure of a Server

fos’s servers are inspired by Internet servers. The typical
server is designed to process an inbound queue of requests
and is thus transaction-oriented. As much as is possible,
servers are designed to be stateless. This means that each
request encodes all of the needed data to complete a trans-
action and the server itself does not need to store data for
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Figure 4. The main runloop for a server.

multiple transactions in sequence. By structuring servers
as transaction-oriented stateless processes, server design is
much simplified. Also, scalability and robustness is im-
proved as transactions can be routed by the name server
manager to differing servers in the same server fleet. Some
single stream performance may be sacrificed for this level
of robustness and scalability.

Programming difficulty of a typical server is also re-
duced because each server processes a transaction to com-
pletion without the possibility of interruption. Thus local
locking is not required to prevent multiple server threads
from attempting to concurrently update memory. Some
transactions may require a long latency operation to occur,
such as accessing I/O or messaging another server. When
a long latency operation does occur, servers construct up a
continuation for the current transaction, which is stored lo-
cally. The continuation is restarted when a response from
the long latency operation is received.

Servers are typically structured to process two inbound
mailboxes. One for new requests and one for responses.
When a ongoing transaction is completed, the server checks
the response mailbox. If there are pending responses, the
server restarts the needed continuation with the response.
Figure 4 shows they typical control flow of a server. Servers
are designed to acquire all resources to complete a transac-
tion before a transaction creates a continuation and yields to
the next transaction. By doing so, servers can be designed
without local locking.

3.3 Core Service Servers

The fos OS-layer is composed of many different dis-
tributed core services. Following is a list of the servers in
the base fos:

• name server
• scheduler/placement server
• physical memory allocation server
• privilege server
• file system server
• driver servers
• networking server

3.4 Naming API

In fos, messaging mailboxes can be textural named. The
naming layer is managed by the name servers which are
components of the fos OS-layer. On mailbox creation, a
name for the mailbox is automatically added to the nam-
ing layer. The automatically created name is automati-
cally chosen such that it aids the system in routing mes-
sages, therefore more symbolic naming is needed. In or-
der to register a mailbox with a name, an fos client mes-
sages the nameserver with a register name message.
A register name message includes the mailbox name,
which is returned from the creation of a mailbox, the desired
name, and flags which indicate whether the named port can
be added to a set of mailboxes providing a service. The
flags also indicate whether the mailbox is interchangeable
with other mailboxes providing the service or whether it is
stateful. register name returns whether the name as-
signment was a success or a failure with a returned error
code. Example errors include that the name is already taken
or if there are insufficient permissions to create the name.
In addition to register name message, there

is also an ability to claim namespaces, via the
claim namespace message. By claiming names-
paces, the system can guarantee that a namespace will be
available for future servers such as system level names. An
example of this is that the namespace "sys:*" would be
reserved by the system on boot which would reserve the
entire ”sys” namespace for its use.
Names can be deleted via the delete name message.

In order to delete a name where a name points to a set
of names, the delete specific name message is used
which allows for removal of specific mappings. When a
process is migrated, a specific name would be deleted and a
new mapping would be added.



4 Related Work

The work in is motivated by the advent of multicore and
manycore processors. If trends continue, we will soon see
single chips with 1000’s of processor cores. There have
been several research projects which have designed proto-
types of massively multicore processors. The MIT Raw
Processor [25, 22], the Piranha Chip Multiprocessor [6],
and the 80-core Intel designed Polaris project [23] are ex-
amples of single-chip research multiprocessors. Chip mul-
tiprocessor research has begun to transition from research
into commercial realization. One example is the Niagara
processor [15] designed by Afara Websystems later pur-
chased by Sun Microsystems. The Niagara 1 processor has
8 cores each with four threads. Another commercial mas-
sively multicore processor is the TILE64 processor [26] de-
signed by Tilera Corporation. The TILE architecture uti-
lizes a mesh topology for connecting 64 processor cores.
The TILE Architecture provides register-mapped on-chip
networks to allow cores to explicitly communicate via mes-
sage passing in addition to using shared memory commu-
nication abstraction. The TILE Architecture supports mul-
tiple hardware levels of protection and the ability to con-
struct hardwalls which can block communications on the
on-chip networks. This research supposes that future pro-
cessors will look like TILE Architecture processors scaled
up to 1000’s of cores. In order to facilitate development
and to ease porting to x86 compatible processors, this work
supposes that future processors will look like the TILE Ar-
chitecture, but with an industry standard x86 64 instruction
set.
There are several classes of systems which have similar-

ities to fos proposed here. These can be roughly grouped
into three categories: traditional microkernels, distributed
operating systems, and distributed Internet-scale servers.
A microkernel is a minimal operating system kernel

which typically provides no high-level operating system
services in the microkernel, but rather provides mecha-
nisms such as low level memory management and inter-
thread communication which can be utilized to construct
high-level operating system services. High-level oper-
ating system services are typically constructed inside of
servers which utilize the microkernel’s provided mecha-
nisms. Mach [2] is an example of an early microkernel. In
order to address performance problems, portions of servers
were slowly integrated into the Mach microkernel to mini-
mize microkernel/server context switching overhead. This
led to the Mach microkernel being larger than the absolute
minimum. The L4 [16] kernel is another example of a mi-
crokernel which attempts to optimize away some of the in-
efficiencies found in Mach and focuses heavily on perfor-
mance.
Microkernels have been used in commercial systems.

Most notably Mach has been used as the basis of NeXTStep
and Mac OS X. The QNX [13] operating system is a com-
mercial microkernel largely used for embedded systems.
Also BeOS and the Windows NT kernel are microkernels.

fos is designed as a microkernel and extends microker-
nel design. It is differentiated from previous microkernels
in that instead of simply exploiting parallelism between
servers which provide different functions, this work seeks
to distribute and parallelize within a server for a single
high-level function. This work also exploits the spatial-ness
of massively multicore processors. This is done by spa-
tially distributing servers which provide a common func-
tion. This is in contrast to traditional microkernels which
were not spatially aware. By spatially distributing servers
which collaboratively provide a high-level function, appli-
cations which use a given function may only need to com-
municate with the local server providing the function and
hence can minimize intra-chip communication. Operating
systems built on top of previous microkernels have not tack-
led the spatial non-uniformity inherent in massively mul-
ticore processors. This work embraces the spatial nature
of future massively multicore processors and has a sched-
uler which is not only temporally aware, but also spatially
aware. Last, fos, is differentiated from previous microker-
nels on parallel systems, because the communication costs
and sheer number of cores on massively multicore proces-
sor is different than in previous parallel systems thus the
optimizations made and trade-offs are quite different.

The Tornado [10] operating system which has been ex-
tended into the K42 [4] operating system is a microkernel
operating system and is one of the more aggressive attempts
at constructing scalable microkernels. They are differenti-
ated from fos in that they are designed to be run on SMP
and NUMA shared memory machines instead of single-chip
massively multicore machines. Tornado and K42 also sup-
pose future architectures which support efficient hardware
shared memory. fos does not require architectures to sup-
port cross-machine shared memory. Also, the scalability
claims [5] of K42 have been focused on machines up to 24
processors which is a modest number of processors when
compared to the target of 1000+ processors which fos is be-
ing designed for.

The Hive [8] operating system utilizes a multicellular
kernel architecture. This means that a multiprocessor is seg-
mented into cells which each contain a set of processors.
Inside of a cell, the operating system manages the resources
inside of the cell like a traditional OS. Between cells the
operating system shares resources by having the different
cells message and allowing safe memory reads. Hive OS
focused heavily on fault containment and less on high scala-
bility than fos does. Also, the Hive results are for scalability
up to 4 processors. In contrast to fos, Hive utilizes shared
memory between cells as a manner to communicate.



Another approach to building scalable operating systems
is the approach taken by Disco [7] and Cellular Disco [12].
Disco and Cellular Disco run off the shelf operating sys-
tems in multiple virtual machines executing on multipro-
cessor systems. By dividing a multiprocessor into multiple
virtual machines with fewer processors, Disco and Cellu-
lar Disco can leverage the design of pre-existing operating
systems. They also leverage the level of scalability already
designed into pre-existing operating systems. Disco and
Cellular Disco also allow for sharing between the virtual
machines in multiple ways. For instance in Cellular Disco,
virtual machines can be thought of as a cluster running on
a multiprocessor system. Cellular Disco utilizes cluster ser-
vices like a shared network file system and network time
servers to present a closer approximation of a single sys-
tem image. Various techniques are used in these projects
to allow for sharing between VMs. For instance memory
can be shared between VMs so replicated pages can point
at the same page in physical memory. Cellular Disco seg-
ments a multiprocessor into cells and allows for borrow-
ing of resources, such as memory between cells. Cellular
Disco also provides fast communication mechanisms which
break the virtual machine abstraction to allow two client
operating systems to communicate faster than transiting a
virtualized network-like interface. VMWare has adopted
many of the ideas from Disco and Cellular Disco to improve
VMWare’s product offerings. One example is VMCI Sock-
ets [24] which is an optimized communication API which
provides fast communication between VMs executing on
the same machine.

Disco and Cellular Disco utilize hierarchical shared in-
formation sharing to attack the scalability problem much in
the same way that fos does. They do so by leveraging con-
ventional SMP operating systems at the base of hierarchy.
Disco and Cellular Disco argue leveraging traditional oper-
ating systems as an advantage, but this approach likely does
not reach the highest level of scalability as a purpose built
scalable OS such as fos will. Also, the rigid cell boundaries
of Cellular Disco can limit scalability. Last, because at it
core these systems are just utilizing multiprocessor systems
as a cluster, the qualitative interface of a cluster is restric-
tive when compared to a single system image. This is es-
pecially prominent with large applications which need to be
rewritten such that the application is segmented into blocks
only as large as the largest virtual machine. In order to cre-
ate larger systems, an application needs to either be trans-
formed to a distributed network model, or utilize a VM ab-
straction layer violating interface which allows memory to
be shared between VMs.

This work bears much similarity to a distributed operat-
ing system, except executing on a single chip. In fact much
of the inspiration for this work comes from the ideas de-
veloped for distributed operating systems. A distributed

operating system is an operating system which executes
across multiple computers or workstations connected by a
network. Distributed operating systems provide abstrac-
tions which allow a single user to utilize resources across
multiple networked computers or workstations. The level
of integration varies with some distributed operating sys-
tems providing a single system image to the user, while
others provide only shared process scheduling or a shared
file system. Examples of distributed operating systems in-
clude Amoeba [21, 20], Sprite [18], and Clouds [9]. These
systems were implemented across clusters of workstation
computers connected by networking hardware.
While this work takes much inspiration from distributed

operating systems, some differences stand out. The prime
difference is that the core-to-core communication cost on
a single-chip massively multicore processor is orders of
magnitude smaller than on distributed systems which utilize
Ethernet style hardware to interconnect the nodes. Single-
chip massively multicore processors have much smaller
core-to-core latency and much higher core-to-core commu-
nications bandwidth. A second difference that multicores
present relative to clusters of workstations is that on-chip
communication is much more reliable than between work-
stations over commodity network hardware. fos takes ad-
vantage of this by approximating on-chip communication
as being reliable. This removes the latency of correcting
errors and removes the complexity of correcting commu-
nication errors. Last, single-chip multicore processors are
easier to think of as a single trusted administrative domain
than a true distributed system. In many distributed operating
systems, much effort is spent determining whether commu-
nications are trusted. This problem does not disappear in a
single-chip multicore, but the on-chip protection hardware
and the fact that the entire system is contained in a single
chip simplifies the trust model considerably.
The parallelization of system level services into cooper-

ating servers as proposed by this work has much in common
with techniques used by distributed Internet servers. This
work leverages many of the techniques from distributed In-
ternet scale servers, but instead of applying them to Inter-
net applications, this work applies them on-chip to increase
scalability of operating system services.
fos’s inspiration for techniques to increase OS scalabil-

ity is partially derived from different classes of Internet
servers. Load balancing is one technique taken from clus-
tered webservers. The name server of fos derives inspi-
ration from the hierarchical caching in the Internet’s DNS
system. This work hopes to leverage other techniques such
as those in peer-to-peer and distributed hash tables such as
Bit Torrent, Chord, and Freenet. The file system on fos will
be inspired by distributed file systems such as AFS [19],
OceanStore [14] and the Google File System [11].
While this work leverages techniques which allow dis-



tributed Internet servers to be spatially distributed and pro-
vide services at large-scale, there are some differences.
First, instead of being applied to serving webpages or other-
wise user services, these techniques are applied to services
which are internal to an OS kernel. Many of these services
have lower latency requirements than are found on the In-
ternet. Second, the on-chip domain is more reliable than the
Internet, therefore there are fewer overheads needed to deal
with errors or network failures. Last, the communication
costs within a chip are orders of magnitude lower than on
the Internet.

5 Conclusion

In the next decade, we will have single chips with 1,000
- 10,000 cores integrated into a single piece of silicon. In
this work we chronicled some of the problems with current
monolithic operating systems and described these scaling
problems. These scaling problems motivate a rethinking
of the manner in which operating systems are structured.
In order to address these problems we propose the factored
operating system (fos) which targets 1000+ core multicore
systems and replaces traditional time sharing to increase
scalability. By structuring an OS as a collection of Inter-
net inspired services we believe that operating systems can
be scaled for 1000+ core single-chip systems and beyond al-
lowing us to design and effectively harvest the performance
gains of the multicore revolution.
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