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Abstract

Adaptive, or self-aware, computing has been proposed as one
method to help application programmers confront the growing
complexity of multicore software development. However, existing
approaches to adaptive systems are largely ad hoc and often do not
manage to incorporate the true performance goals of the applica-
tions they are designed to support. This paper presents an enabling
technology for adaptive computing systems: Application Heart-
beats. The Application Heartbeats framework provides a simple,
standard programming interface that applications can use to indi-
cate their performance and system software (and hardware) can use
to query an application’s performance. Several experiments demon-
strate the simplicity and efficacy of the Application Heartbeat ap-
proach. First the PARSEC benchmark suite is instrumented with
Application Heartbeats to show the broad applicability of the inter-
face. Then, an adaptive H.264 encoder is developed to show how
applications might use Application Heartbeats internally. Next, an
external resource scheduler is developed which assigns cores to an
application based on its performance as specified with Application
Heartbeats. Finally, the adaptive H.264 encoder is used to illustrate
how Application Heartbeats can aid fault tolerance.

1. Introduction

As multicore processors become increasing prevalent, system com-
plexities are skyrocketing. It is no longer practical for an average
programmer to balance all of the system constraints and produce an
application that performs well on a variety of machines, in a variety
of situations. One approach to simplifying the programmer’s task
is the use of self-aware hardware and software. Self-aware systems
take some of the burden off of programmers by monitoring them-
selves and optimizing or adapting as necessary to meet their goals.
Interest in such systems has been increasing recently and they have
been variously called adaptive, self-tuning, self-optimizing, auto-
nomic, and organic. Self-aware techniques apply to a broad range
of systems including: embedded, real-time, desktop, server, and
even cloud systems.

Unfortunately, there exist no standardized, universal ways for
applications and systems to measure how well they are meet-
ing their goals. Existing approaches are largely ad hoc: either
hand-crafted for a particular computing platform or reliant on
architecture-specific performance counters. Not only are these ap-
proaches fragile and unlikely to be portable to other systems, they
frequently do not capture the actual goal of the application. For ex-
ample, measuring the number of instructions executed in a period
of time does not tell you whether those instructions were doing
useful work or just spinning on a lock. Measuring CPU utiliza-
tion or cache miss rates has similar drawbacks. The problem with
mechanisms such as performance counters is that they attempt to
infer high-level application performance from low-level machine

performance. What is needed is a portable, universal method of
monitoring an application’s actual progress towards its goals.

This paper introduces a software framework called Application
Heartbeats (or just Heartbeats for short) that provides a simple,
standardized way for applications to monitor their performance and
make that information available to external observers. The frame-
work allows programmers to express their application’s goals and
the progress that it is making using a simple API. As shown in Fig-
ure 1, this progress can then be observed by either the application
itself or an external system (such as the OS or another application)
so that the application or system can be adapted to make sure the
goals are met. Application-specific goals may include throughput,
power, latency, output quality, or combinations thereof. Applica-
tion Heartbeats can also help provide fault tolerance by providing
information that can be used to predict or quickly detect failures.

Machine

‘amewor|

App Parameters ' & £ )
App System Parameters

(a) (b)
Figure 1. (a) Self-optimizing application using the Application

Heartbeats framework. (b) Optimization of machine parameters by
an external observer.

This paper makes the following contributions:

1. A simple, standardized Heartbeats API for monitoring application-

specific performance metrics.

2. A basic reference implementation of the API which is available
as open-source software.

3. Examples of ways that the framework can be used, both
within an application and by external services, to develop self-
optimizing applications. Experimental results demonstrate the
effectiveness of the Application Heartbeats approach.

Having a simple, standardized API makes it easy for program-
mers to add Heartbeats to their applications. It also crucial for
portability and interoperability between different applications, run-
time systems, and operating systems. Registering goals with exter-
nal systems enables optimizations that are unavailable within an ap-
plication such as modifying scheduling decisions or adjusting hard-
ware parameters. When running multiple Heartbeat-enabled appli-
cations, it also allows system resources (such as cores, memory,
and I/O bandwidth) to be reallocated to provide the best global out-
come.



The Application Heartbeats framework measures application
progress toward goals using a simple abstraction: a heartbeat. At
significant points, applications make an API call to signify a heart-
beat. Over time, the intervals between heartbeats provide key infor-
mation about progress for the purpose of application auto-tuning
and externally-driven optimization. The API allows applications to
communicate their goals by setting a target heart rate (i.e.,number
of heartbeats per second). The operating system, runtime system,
hardware, or the application itself monitors progress through addi-
tional API calls and takes appropriate actions to help the application
achieve those goals.

This paper presents a reference implementation of the Appli-
cation Heartbeats framework and demonstrates several approaches
to adding self-aware optimization to a system. First, we add heart-
beats to the PARSEC benchmark suite to show that they are easy
to add to existing applications. Second, an H.264 video encoder is
used to show an application modifying itself. The encoder automat-
ically adjusts its encoding parameters and algorithms to provide the
best quality possible while maintaining a required minimum frame
rate. Third, three benchmarks from the PARSEC suite [Bienia et al.
2008] are used to show optimization by an external observer. Here,
the OS monitors the application’s heart rate (heartbeats per second)
and dynamically adjusts the number of cores allocated to maintain
the required throughput while minimizing resource usage. Finally,
heartbeats are used to keep application performance within a re-
quired window in the face of simulated core failures.

The rest of this paper is organized as follows. Section 2 identi-
fies key applications that will benefit from the Application Heart-
beats framework. Section 3 describes the Application Heartbeats
API in greater detail. Section 4 describes our initial reference im-
plementation of the APIL. Section 5 presents our experimental re-
sults. Section 6 compares Application Heartbeats to related work.
Finally, Section 7 concludes.

2. Applications

The Application Heartbeats framework is a simple end-to-end feed-
back mechanism that can potentially have a far-reaching impact on
future computer design, software systems and applications, and ser-
vice ecosystems. This section explores ideas for novel computer ar-
chitectures, software libraries, operating systems, and runtime en-
vironments built around the Heartbeats framework. Additionally, it
identifies existing applications and services that Heartbeats would
improve such as system administrative tools and cloud computing.

2.1 Self-tuning Architecture

Heartbeats is designed to enable hardware to inspect application
heartbeat statistics. The information within a heartbeat and the in-
formation implied by hearbeat trends can be used in the design
of self-optimizing multicore microarchitectures. Driving these new
microarchitectures with an end-to-end mechanism such as a heart-
beat as opposed to indicators such as cache misses or utilization en-
sures that optimizations focus on aspects of execution most impor-
tant to meeting application goals. Measuring the number of instruc-
tions executed per second does not capture whether or not those in-
structions are progress toward the application goal or just spinning
on a lock.

We envision a multicore microarchitecture that can adapt prop-
erties of its TLB, L1 cache, and L2 cache structures such as as-
sociativity, size, replacement policy, etc. to improve performance
or minimize energy for a given performance level. We envision a
multicore microarchitecture that can adapt its execution pipeline
in a way similar to the heterogeneous multicores proposed in [Ku-
mar et al. 2003]. The heartbeat provides a natural mechanism for
selecting the most energy-efficient core that meets the required per-
formance. Lastly, we envision a multicore microarchitecture where

decisions about dynamic frequency and voltage scaling are driven
by the performance measurements and target heart rate mechanisms
of the Heartbeats framework. [Govil et al. 1995, Pering et al. 1998]
are examples of frequency and voltage scaling to reduce power.

2.2 Self-tuning Software Libraries

Heartbeats can be incorporated in adaptive software libraries, both
general-purpose such as STAPL [Thomas et al. 2005] and domain-
specific. A library can use the framework to tune its implementa-
tion to the host architecture on which it is running. Additionally, it
can tune data structure and algorithm choices to high-level behav-
iors and goals of the applications using the library. For example,
consider a place and route application such as those used in CAD
tool suites [Betz and Rose 1997, Karro and Cohoon 2001, Cadence
Inc. 2009]. Suppose the application uses a domain specific library
to approximate an optimal place and route. Because the algorithm
is approximate, its data structures and algorithms have a degree of
freedom in their internal precision that can be manipulated to max-
imize performance while meeting a user-defined constraint for how
long place and route can run.

2.3 System Administrative Tools

Heartbeats can be incorporated into system administrative tools
such as DTrace, a tool for Sun’s Solaris operating environment [Sun
Microsystems Inc. 2009]. DTrace is an example of a comprehen-
sive dynamic tracing framework that provides infrastructure for ex-
amining the behavior of the system and user programs, permitting
administrators, developers, and service personnel to diagnose prob-
lems or tune parameters to improve performance in the field. In this
context, heartbeats might be used to detect application hangs or
crashes, and restart the application. Heartbeats also provide a way
for an external observer to monitor which phase a program is in for
the purposes of profiling or field debugging.

2.4 Organic Operating Systems

Heartbeats provides a framework for novel operating systems with
“organic” features such as self-healing and intelligent resource
management. Heartbeats allow an OS to determine when applica-
tions fail and quickly restart them. Heartbeats provide the feedback
necessary to make decisions about how many cores to allocate to
an application. An organic OS would be able to automatically and
dynamically adjust the number of cores an application uses based
on an individual application’s changing needs as well as the needs
of other applications competing for resources. The OS would ad-
just the number of cores and observe the effect on the application’s
heart rate. An organic OS could also take advantage of the Heart-
beats framework in the scheduler. Schedulers could be designed to
run an application for a specific number of heartbeats (implying a
variable amount of time) instead of a fixed time quanta. Schedulers
could be designed that prioritize time allocation based on the target
heart rate requirements of different applications.

2.5 Organic Runtime Environments

Heartbeats also finds novel application in runtime environments,
giving them “organic” characteristics such as goal-oriented execu-
tion, introspection, and self-balancing. Heartbeats can be used as a
feedback mechanism for guaranteeing applications like video, au-
dio, wireless, and networking meet real-time deadlines. Heartbeats
might be used to notify a runtime system or gateway when an ap-
plication has consumed data from its input queue. Lastly, heart-
beats can be used to mediate a work queue system [Ghosh and
Muthukrishnan 1994, Levine and Finkel 1990], providing better
load-balancing between workers (especially if workers have asym-
metric capabilities). An Organic Runtime Environment would use
heartbeats to monitor worker performance and send approximately

2009/8/7



Table 1. Heartbeat API functions

Function Name Arguments

Description

HB _initialize window([int], local[bool]

Initialize the Heartbeat runtime system and specitfy how many heartbeats will be

used to calculate the default average heart rate

HB _heartbeat
HB_current_rate

tag[int], local[bool]
window(int], local[bool]

HB _set_target_rate min[int], max[int], local[bool]

Generate a heartbeat to indicate progress
Returns the average heart rate calculated from the last window heartbeats
Called by the application to indicate to an external observer the average heart rate

it wants to maintain

HB_get_target min  local[bool]

Called by the application or an external observer to retrieve the minimum target

heart rate set by HB_set_target_rate

HB_get_target_max local[bool]

Called by the application or an external observer to retrieve the maximum target

heart rate set by HB _set_target_rate

HB_get_history n[int], local[bool]

Returns the timestamp, tag, and thread ID for the last n heartbeats

the right amount of work to its queue, potentially improving upon
load-balancing schemes such as work-stealing.

2.6 Cloud Computing

Cloud computing environments can benefit from the Heartbeats
framework in several ways. First, applications can use heartbeat
information to automatically add or subtract resources from their
pool. Companies such as RightScale [RightScale Inc. 2009] already
provide solutions that automatically vary the number of web servers
running a website. However, adjustment decisions are based solely
on machine load. Using Heartbeats would allow this application
to adapt based on more relevant metrics such as average response
latency. As the heart rate descreases, the load balancer would shift
traffic to a different server to start up a new one. Second, heartbeats
can be used to quickly detect failed (or failing) machines and fail-
over to working machines. A lack of heartbeats from a particular
node would indicate that it has failed, and slow or erratic heartbeats
could indicate that a machine is about to fail. This early warning
could allow the application to perform an orderly transfer to a new
node rather than waiting for complete failure. Finally, heartbeats
can be used by cloud providers to conserve resources and reduce
costs. Many virtual machines allocated in clouds do not need a full
machine or core. As long as their heart rates are meeting their goals,
these “light” VMs can be consolidated onto a smaller number of
physical machines to save energy and free up resources. Only when
an application’s demands go up and its heart rate drops, will it need
to be migrated to dedicated resources.

3. Heartbeats API

Since heartbeats are meant to reduce programmer effort, it must
be easy to insert them into programs. The basic Heartbeat API
consists of only a few functions (shown in Table 1) that can be
called from applications or system software. To maintain a simple,
conventional programming style, the Heartbeats API uses only
standard function calls and does not rely on complex mechanisms
such as OS callbacks.

The key function in the Heartbeat API is HB_heartbeat. Calls
to HB_heartbeat are inserted into the application code at sig-
nificant points to register the application’s progress. Each time
HB_heartbeat is called, a heartbeat event is logged. Each heart-
beat generated is automatically stamped with the current time and
thread ID of the caller. In addition, the user may specify a tag
that can be used to provide additional information. For example,
a video application may wish to indicate the type of frame (I, B
or P) to which the heartbeat corresponds. Tags can also be used
as sequence numbers in situations where some heartbeats may be
dropped or reordered. Using the local flag, the user can specify

whether the heartbeat should be counted as a local (per-thread)
heartbeat or as a global (per-application) heartbeat.

We anticipate that many applications will generate heartbeats
in a regular pattern. For example, the video encoder discussed
previously may generate a heartbeat for every frame of video. For
these applications, it is likely that the key metric will be the average
frequency of heartbeats or heart rate. The HB_current_rate function
returns the average heart rate for the most recent heartbeats.

Different applications and observers may be concerned with
either long- or short-term trends. Therefore, it should be possible
to specify the number of heartbeats (or window) used to calculate
the moving average. Our initial version of the API left the window
entirely up to the observer, specifying it only when asking for
the current heart rate. This would allow the observer to adjust the
window size based on the frequency with which it can make its
optimizations. For example, the application itself may want a short
window if it is adjusting a parameter within its algorithms. On the
other hand, a cloud manager might want a very large window if it
is considering migrating the application to a faster machine.

However, we realized that, in some cases, the application has a
natural window size that may not be known by an external observer.
Therefore, the API also allows the application to specify a default
window size when it calls HB_initialize. Calls to HB_current_rate
with a value of zero passed for the window will use the default
window. Implementations of the Heartbeat API may wish to restrict
the maximum window size to limit the resources used to store
heartbeat history. However, whenever possible, they should store
at least as much history as the default window size requested by the
application. If window values larger than the default are passed to
HB_current_rate they may be silently clipped to the default value.

Applications with real-time deadlines or performance goals will
generally have a target heart rate that they wish to maintain. For
example, if a heartbeat is produced at the completion of a task,
then this corresponds to completing a certain number of tasks per
second. Some applications will observe their own heartbeats and
take corrective action if they are not meeting their goals. However,
some actions (such as adjusting scheduler priorities or allocated re-
sources) may require help from an external source such as the op-
erating system. In these situations, it is helpful for the application
to communicate its goals to an external observer. For this, we pro-
vide the HB_set_target_rate function which allows the application
to specify a target heart rate range. The external observer can then
take steps on its own if it sees that the application is not meeting
(or is exceeding) its goals.

When more in-depth analysis of heartbeats are required, the
HB_get_history function can be used to get a complete log of recent
heartbeats. It returns an array of the last n heartbeats in the order
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that they were produced. This allows the user to examine intervals Table 2. Heartbeats in the PARSEC Benchmark Suite

between individual heartbeats or filter heartbeats according to their Benchmark Heartbeat Location ~ Average Heart Rate
tags. Most systems will probably place an upper limit on the value blackscholes Every 25000 options 561.03
of n to simplify bookkeeping and prevent excessive memory usage. bodytrack Every frame 431
This provides the option to efficiently store heartbeats in a circular canneal Every 1875 moves 1043.76
buffer. When the buffer fills, old heartbeats are simply dropped. dedup Every “chunk” 264.30

Multithreaded applications may require both per-thread and facesim Every frame 0.72
global heartbeats. For example, if different threads are working ferret Every query 40.78
on independent objects, they should use separate heartbeats so that fluidanimate Every frame 41.25
the system can optimize them independently. If multiple threads streamcluster Every 200000 points 0.02
are working together on a single object, they would likely share swaptions Every “swaption” 2.27
a global heartbeat. Thus, each thread should have its own pri- X264 Every frame 11.32

vate heartbeat history buffer and each application should have a
single shared history buffer. Threads may read and write to their
own buffer and the global buffer but not the other threads’ buffers.
Therefore the private buffers may be stored anywhere but the global
buffer must be in a universally accessible location such as coherent
shared memory or a disk file.

Some systems may contain hardware that can automatically
adapt using heartbeat information. For example, a processor core
could automatically adjust its own frequency to maintain a desired
heart rate in the application. Therefore, it must be possible for
hardware to directly read from the heartbeat buffers. In this case
the hardware must be designed to manipulate the buffers’ data
structures just as software would. To facilitate this, a standard
must be established specifying the components and layout of the
heartbeat data structures in memory. Hardware within a core should
be able to access the private heartbeats for any threads running on
that core as well as the global heartbeats for an application. We
leave the establishment of this standard and the design of hardware
that uses it to future work.

4. Implementation

This section describes our initial reference implementation of the
Heartbeats API. This implementation is intended to provide the
basic functionality of the Application Heartbeats framework but is
not necessarily optimized for performance or resource utilization.
It is written in C and is callable from both C and C++ programs.
Our implementation supports all functions listed in Table 1.

When the HB_heartbeat function is called, a new entry contain-
ing a timestamp, tag and thread ID is written into a file. One file
is used to store global heartbeats. When per-thread heartbeats are
used, each thread writes to its own individual file. A mutex is used
to guarantee mutual exclusion and ordering when multiple threads
attempt to register a global heartbeat at the same time. When an
external service wants to get information on a Heartbeat-enabled
program, the corresponding file is read. The target heart rates are
also written into the appropriate file so that the external service can
access them. This implementation does not support changing the
target heart rates from an external application. The HB_get_history
function can support any value for n because the entire heartbeat
history is kept in the file; however, implementations that are more
concerned with performance and storage utilization may restrict the
number of heartbeats that can be returned by this function.

5. Experimental Results

This section presents several examples illustrating the use of the
Heartbeats framework. First, a brief study is presented using Heart-
beats to instrument the PARSEC benchmark suite [Bienia et al.
2008]. Next, an adaptive H.264 encoder is developed to demon-
strate how an application can use the Heartbeats framework to mod-
ify its own behavior. Then an adaptive scheduler is described to
illustrate how an external service can use Heartbeats to respond
directly to the needs of a running application. Finally, the adap-

tive H.264 encoder is used to show how Heartbeats can help build
fault-tolerant applications. All results discussed in this section were
collected on an Intel x86 server with dual 3.16 GHz Xeon X5460
quad-core processors.

5.1 Heartbeats in the PARSEC Benchmark Suite

To demonstrate the applicability of the Heartbeats framework
across a range of multicore applications, it is applied to the PAR-
SEC benchmark suite (version 1.0). Table 2 shows the summary of
this work. For each benchmark the table shows where the heartbeat
was inserted and the average heart rate that the benchmark achieved
over the course of its execution running the “native” input data set
on the eight-core x86 test platform'.

For all benchmarks presented here, the Heartbeats framework
is low-overhead. For eight of the ten benchmarks the overhead
of Heartbeats was negligible. For the blackscholes bench-
mark, the overhead is negligible when registering a heartbeat every
25,000 options; however, in the first attempt a heartbeat was regis-
tered after every option was processed and this added an order of
magnitude slow-down. For the other benchmark with measurable
overhead, facesim, the added time due to the use of Heartbeats
is less than 5 %.

Adding heartbeats to the PARSEC benchmark suite is easy, even
for users who are unfamiliar with the benchmarks themselves. The
PARSEC documentation describes the inputs for each benchmark.
With that information it is simple to find the key loops over the in-
put data set and insert the call to register a heartbeat in this loop.
The only exception is the blackscholes benchmark which pro-
cesses ten million options. For this benchmark, a conditional state-
ment was added so that the heartbeat is registered every 25,000 op-
tions. This reduces overhead and makes the output data processing
more manageable.

The total amount of code required to add heartbeats to each of
the benchmarks is under half-a-dozen lines. The extra code is sim-
ply the inclusion of the header file and declaration of a Heartbeat
data structure, calls to initialize and finalize the Heartbeats run-time
system, and the call to register each heartbeat.

Using the Heartbeats interface can provide additional insight
into the performance of these benchmarks beyond that provided
by just measuring execution time. For example, Figure 2 shows a
moving average of heart rate for the x264 benchmark using a 20
beat window (a heartbeat is registered as each frame is processed).
The chart shows that x264 has several distinct regions of perfor-
mance when run on the PARSEC native input. The first occurs in
the first 100 frames where the heart rate tends to the range of 12-
14 beats per second. Then, between frames 100 and 330 the heart
rate jumps to the range of 23-29 beats per second. Finally, the heart

'Two benchmarks are missing as neither freqmine nor vips would
compile on the target system due to issues with the installed version of
gcc.
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rate settles back down to its original range of 12-14 beats per sec-
ond. In this example, the use of Heartbeats shows distinct regions
of performance for the x2 64 benchmark with the native input size.
This information can be useful for understanding the performance
of certain benchmarks and optimizing these benchmarks on a given
architecture. Such regions would be especially important to detect
in an adaptive system.
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Figure 2. Heart rate of the x264 PARSEC benchmark executing
native input on an eight-core x86 server.

In summary, the Heartbeats framework is easy to insert into a
broad array of applications. The reference implementation is low-
overhead. Finally, heartbeats can provide much more information
about the performance of a benchmark than end-to-end execution
time. The next section provides an example of using the Heartbeats
framework to develop an adaptive application.

5.2 Internal Heartbeat Usage

This example shows how Heartbeats can be used within an appli-
cation to help a real-time H.264 video encoder maintain an accept-
able frame rate by adjusting its encoding quality to increase perfor-
mance. For this experiment the x264 implementation of an H.264
video encoder [x264] is augmented so that a heartbeat is registered
after each frame is encoded. x264 registers a heartbeat after every
frame and checks its heart rate every 40 frames. When the applica-
tion checks its heart rate, it looks to see if the average over the last
forty frames was less than 30 beats per second (corresponding to 30
frames per second). If the heart rate is less than the target, the ap-
plication adjusts its encoding algorithms to get more performance
while possibly sacrificing the quality of the encoded image.

For this experiment, x264 is launched with a computationally
demanding set of parameters for Main profile H.264 encoding.
Both the input parameters and the video used here are different than
the PARSEC inputs; both are chosen to be more computationally
demanding and more uniform. The parameters include the use of
exhaustive search techniques for motion estimation, the analysis
of all macroblock sub-partitionings, x264’s most demanding sub-
pixel motion estimation, and the use of up to five reference frames
for coding predicted frames. Even on the eight core machine with
Xx264’s assembly optimizations enabled, the unmodified x264 code-
base achieves only 8.8 heartbeats per second with these inputs.

As the Heartbeat-enabled x264 executes, it reads its heart rate
and changes algorithms and other parameters to attempt to reach an
encoding speed of 30 heartbeats per second. As these adjustments

are made, x264 switches to algorithms which are faster, but may
produce lower quality encoded images.

Figures 3 and 4 illustrate the behavior of this adaptive version
of x264 as it attempts to reach its target heart rate of 30 beats per
second. The first figure shows the average heart rate over the last
40 frames as a function of time (time is measured in heartbeats or
frames). The second figure illustrates how the change in algorithm
affects the quality (measured in peak signal to noise ratio) of the
encoded frames.
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Figure 3. Heart rate of adaptive x264.
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Figure 4. Image quality (PSNR) of adaptive x264. The chart
shows the difference in PSNR between the unmodified x264 code
base and our adaptive version.

As shown in Figure 3 the adaptive implementation of x264
gradually increases its speed until frame 400, at which point it
makes a decision allowing it to maintain a heart rate over thirty-five
beats per second. Given these inputs and the target performance,
the adaptive version of x264 tries several search algorithms for
motion estimation and finally settles on the computationally light
diamond search algorithm. Additionally, this version of x264 stops
attempting to use any sub-macroblock partitionings. Finally, the
adaptive encoder decides to use a less demanding sub-pixel motion
estimation algorithm.

As shown in Figure 4, as x264 increases speed, the quality,
measured in PSNR, of the encoded images decreases. This figure
shows the difference in PSNR between the unmodified x264 source
code and the Heartbeat-enabled implementation which adjusts its
encoding parameters. In the worst case, the adaptive version of
x264 can lose as much as one dB of PSNR, but the average loss

2009/8/7



is closer to 0.5 dB. This quality loss is just at the threshold of
what most people are capable of noticing. However, for a real-time
encoder using these parameters on this architecture the alternative
would be to drop two out of every three frames. Dropping frames
has a much larger negative impact on the perceived quality than
losing an average of 0.5 dB of PSNR per frame.

This experiment demonstrates how an application can use the
Heartbeats API to monitor itself and adapt to meet its own needs.
This allows the programmer to write a single general application
that can then be run on different hardware platforms or with differ-
ent input data streams and automatically maintain its own real-time
goals. This saves time and results in more robust applications com-
pared to writing a customized version for each individual situation
or tuning the parameters by hand. The next example demonstrates
how the Heartbeats API can be used by an external application.

Videos demonstrating the adaptive encoder are available online.
These videos are designed to capture the experience of watching
encoded video in real-time as it is produced. The first video shows
the heart rate of the encoder without adaptation®. The second video
shows the heart rate of the encoder with adaptation®. [Note to
reviewers: we will move these videos from YouTube and make
them available through our project web site after the anonymous
review process.]

5.3 [External Heartbeat Usage

In this example Heartbeats is used to help an external system
allocate system resources while maintaining required application
performance. The application communicates performance infor-
mation and goals to an external observer which attempts to keep
performance within the specified range using the minimum num-
ber of cores possible. Three of the Heartbeat-enabled PARSEC
benchmarks are run while an external scheduler reads their heart
rates and adjusts the number of cores allocated to them. The ap-
plications tested include the PARSEC benchmarks bodytrack,
streamcluster, and x264.

5.3.1 bodytrack

The bodytrack benchmark is a computer vision application that
tracks a person’s movement through a scene. For this application a
heartbeat is registered at every frame. Using all eight cores of the
x86 server, the bodyt rack application maintains an average heart
rate of over four beats per second. The external scheduler starts this
benchmark on a single core and then adjusts the number of cores
assigned to the application in order to keep performance between
2.5 and 3.5 beats per second.

The behavior of bodytrack under the external scheduler is
illustrated in Figure 5. This figure shows the average heart rate as
a function of time measured in beats. As shown in the figure, the
scheduler quickly increases the assigned cores until the applica-
tion reaches the target range using seven cores. Performance stays
within that range until heartbeat 102, when performance dips be-
low 2.5 beats per second and the eighth and final core is assigned
to the application. Then, at beat 141 the computational load sud-
denly decreases and the scheduler is able to reclaim cores while
maintaining the desired performance. In fact, the application even-
tually needs only a single core to meet its goal.

5.3.2 streamcluster

The streamcluster benchmark solves the online clustering
problem for a stream of input points by finding a number of medi-
ans and assigning each point to the closest median. For this applica-
tion one heartbeat is registered for every 5000 input points. Using

2 Available here: http://www.youtube.com/watch?v=c 1t30MDcpP0
3 Available here: http://www.youtube.com/watch?v=Msr22JcmY WA

4.5 9
4 8
—~ 35 7
NN #\mmm v
S e (/JN ZavAL \ ls g
o < =
g 2 43
% 1.5 /? —+- Heartrate \ 3
£ T’ Target Min \
1 — Target Max 2
0.5 — Cores 1
0 ‘ w w w — 0
0 50 100 150 200 250

Time (Heartbeat)

Figure 5. Behavior of bodytrack coupled with an external
scheduler.
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Figure 6. Behavior of streamcluster coupled with an exter-
nal scheduler.

all eight cores of the x86 server, the st reamcluster benchmark
maintains an average heart rate of over 0.75 beats per second. The
scheduler starts this application on a single core and then attempts
to keep performance between 0.5 and 0.55 beats per second.

The behavior of streamcluster under the external sched-
uler is displayed in Figure 6. This figure shows the average heart
rate as a function of time (measured in heartbeats). The sched-
uler adds cores to the application to reach the target heart rate
by the twenty-second heartbeat. The scheduler then works to keep
the application within the narrowly defined performance window.
The figure illustrates that the scheduler is able to quickly react to
changes in application performance by using the Heartbeats inter-
face.

5.3.3 x264

The x264 benchmark is the same code base used in the internal
optimization experiment described above. Once again, a heartbeat
is registered for each frame. However, for this benchmark the input
parameters are modified so that X264 can easily maintain an aver-
age heart rate of over 40 beats per second using eight cores. The
scheduler begins with x264 assigned to a single core and then ad-
justs the number of cores to keep performance in the range of 30 to
35 beats per second.
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Figure 7. Behavior of x264 coupled with an external scheduler.

Figure 7 shows the behavior of x2 64 under the external sched-
uler. Again, average heart rate is displayed as a function of time
measured in heartbeats. In this case the scheduler is able to keep
x264’s performance within the specified range while using four to
six cores. As shown in the chart the scheduler is able to quickly
adapt to two spikes in performance where the encoder is able to
briefly achieve over 45 beats per second. A video demonstrating
the performance of the encoder running under the adaptive external
scheduler has been posted online*.

These experiments demonstrate a fundamental benefit of using
the Heartbeats API for specifying application performance: exter-
nal services are able to read the heartbeat data and adapt their be-
havior to meet the application’s needs. Furthermore, the Heartbeats
interface makes it easy for an external service to quantify its effects
on application behavior. In this example, an external scheduler is
able to adapt the number of cores assigned to a process based on its
heart rate. This allows the scheduler to use the minimum number
of cores necessary to meet the application’s needs. The decisions
the scheduler makes are based directly on the application’s perfor-
mance instead of being based on priority or some other indirect
measure.

5.4 Heartbeats for Fault Tolerance

The final example in this section illustrates how the Heartbeats
framework can be used to aid in fault tolerance. This example
reuses the adaptive H.264 encoder developed above in Section 5.2.
The adaptive encoder is initialized with a parameter set that can
achieve a heart rate of 30 beat/s on the eight-core testbed. At frames
160, 320, and 480, a core failure is simulated by restricting the
scheduler to running x264 on fewer cores. After each core failure
the adaptive encoder detects a drop in heart rate and adjusts its
algorithm to try to maintain its target performance.

The results of this experiment are shown in Figure 8. This fig-
ure shows a moving average of heart rate (using a 20-beat window)
as a function of time for three data sets. The first data set, labeled
“Healthy,” shows the behavior of unmodified x264 for this input
running on eight cores with no failures. The second data set, la-
beled “Unhealthy,” shows the behavior of unmodified x264 when
cores “die” (at frames 160, 320, and 480). Finally, the data set la-
beled “Adaptive” shows how the adaptive encoder responds to these
changes and is able to keep its heart rate above the target even in
the presence of core failures.

4 Available here: http://www.youtube.com/watch?v=13sVaGZKgkc
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Figure 8. Using Heartbeats in an adaptive video encoder for fault
tolerance. The line labeled “Healthy” shows the performance of the
encoder under normal circumstances. The line labeled “Unhealthy”
shows the performance of the encoder when cores fail. The line
labeled “Adaptive” shows the performance of an adaptive encoder
that adjusts its algorithm to maintain a target heart rate of greater
than 30 beats/s.

Figure 8 shows that in a healthy system, x264 is generally able
to maintain a heart rate of greater than 30 beat/s. Furthermore, the
performance in the healthy case actually increases slightly towards
the end of execution as the input video becomes slightly easier at
the end. In the unhealthy system, where cores die, the unmodified
x264 is not able to maintain its target heart rate and performance
falls below 25 beat/s. However, the adaptive encoder is able to
change the algorithm and maintain performance in the face of
hardware failures.

The adaptive encoder does not detect a fault or attempt to detect
anything about which, or how many, cores are healthy. Instead, the
adaptive encoder only attempts to detect changes in performance
as reflected in the heart rate. The encoder is then able to adapt its
behavior in order to return performance to its target zone.

The generality of this approach means that the encoder can re-
spond to more than just core failures. For example, if a cooling fan
failed and the hardware lowered its supply voltage to reduce power
consumption, the encoder would detect the loss of performance and
respond. Any event that alters performance will be detected by this
method and allow the encoder a chance to adapt its behavior in re-
sponse. Thus, the Heartbeats framework can aid fault tolerance and
detection by providing a general way to detect changes in applica-
tion performance.

6. Related Work

The problem of performance monitoring is fundamental to the de-
velopment of parallel applications, so it has been addressed by a va-
riety of different approaches. This work includes research on mon-
itoring GRID, cloud computing, and web services [Vadhiyar and
Dongarra 2005, Buisson et al. 2005, Reinecke and Wolter 2008],
single- and multi-core architectures [Sprunt 2002b, Kumar et al.
2003, Intel Inc. 2006, Azimi et al. 2005], and complex software sys-
tems and operating systems [Caporuscio et al. 2005, De Rose and
Reed 1999, Cascaval et al. 2006, Krieger et al. 2006, Wisniewski
and Rosenburg 2003, Tamches and Miller 1999]. Considerable
work has been done using tracing to understand kernel performance
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(e.g., K42 [Wisniewski and Rosenburg 2003], Kernlnst [Tamches
and Miller 1999]) and application behavior (e.g.,Paradyn [Miller
et al. 1995], SvPablo [De Rose and Reed 1999]). Profiling frame-
works, such as Oprofile [Levon and Elie 2009], a Linux profiler
for system-wide sampling of hardware performance counters, and
gprof [Free Software Foundation Inc. 1993],are in wide use today.
Most of this work focuses on off-line collection and visualization.

More complex monitoring techniques have been presented
in [Schulz et al. 2005, Wisniewski and Rosenburg 2003]. This
work represents a shift in approach as the research community
moves from using simple aggregate metrics, i.e.,cache miss rate, to
more advanced statistics such as reuse distance [Ding and Zhong
2001] and predictability [Duesterwald et al. 2003]. Hardware as-
sistance for system monitoring, often in the form of event counters,
is included in most common architectures. However, counter-based
techniques suffer common shortcomings [Sprunt 2002a]: too few
counters, sampling delay, and lack of address profiling.

Some approaches [Sprunt 2002b] address these deficiencies;
however, they still suffer in that they can only be applied to col-
lect aggregate statistics using sampling. It is not possible to react
to some rare but high-impact events. The Itanium processor fam-
ily [Intel Inc. 2006], overcomes this limitation by introducing mi-
croarchitectural event data. This data is delivered to the consuming
software through an exception triggered by each event, a solution
that can cause frequent interrupts on the processor that is consum-
ing the event data. Furthermore these methods are not able to help
in detecting and avoiding infinite loops and deadlocks.

A more extensive technique for system monitoring is presented
in [Schulz et al. 2005]. Its design is based on the use of reconfig-
urable logic, i.e., FPGAs, to implement hardware monitors. These
monitors are located at different event sources, e.g.,memory buses,
and update the content of the monitors according to their specific
location. This approach has a major drawback in that it places great
demands on the underlying architecture. An additional problem
with all of these hardware solutions is that they are very architec-
ture specific and it is therefore difficult to write code that is portable
between architectures.

The rise of adaptive and autonomic computing systems (de-
signed to configure, heal, optimize, and protect themselves without
human intervention) creates new challenges and demands for sys-
tem monitoring [Dini 2004]. Major companies such as IBM [IBM
Inc. 2009] (IBM Touchpoint Simulator, the K42 Operating Sys-
tem [Krieger et al. 2006]), Oracle (Oracle Automatic Workload
Repository [Oracle Corp.]), and Intel (Intel RAS Technologies for
Enterprise [Intel Inc. 2005]) have all invested effort in adaptive
computing.

An example of an adaptive approach, related to the IBM K42
Operating System [Krieger et al. 2006], is proposed in [Azimi et al.
2004, Cascaval et al. 2006, Baumann et al. 2004]. This work aims
to characterize and understand the interactions between hardware
and software and to optimize based on those characterizations. This
work led to an architecture for continuous program optimization
(CPO) [Cascaval et al. 2006] which can help automate the chal-
lenging task of performance tuning a complex system. CPO agents
utilize the data provided by the performance and environment mon-
itoring (PEM) infrastructure to detect, diagnose, and eliminate per-
formance problems [Baumann et al. 2004]. An agent-based system
has been developed to create a competitive scenario where agents
negotiate for resources affecting the performance of the applica-
tions. To be efficiently used, the CPO framework needs to be in-
strumented with the information on what data needs to be collected
and what events need to be detected. Once the CPO is properly in-
strumented, it can be used to understand performance events and
improve performance prior to, during, and across different execu-
tions of the applications.

The approach taken by the PEM and CPO projects is promis-
ing, but differs from the Heartbeats approach in several respects:
CPO uses an efficient multi-layer monitoring system, but it is not
able to support multiple optimizations and all the measurements
are compared to pre-defined and expected values. This agent-based
framework, combined with the performance and environment mon-
itoring infrastructure stands in contrast to the lightweight approach
proposed by the Heartbeats solution. Moreover, the CPO and PEM
infrastructure requires a separate instrumentation phase which is
unnecessary with the Heartbeats approach.

Another example of these emerging adaptive systems can be
found in the self-optimizing memory controller described in [Ipek
et al. 2008]. This controller optimizes its scheduling policy using
reinforcement learning to estimate the performance impact of each
action it takes. As designed, performance is measured in terms
of memory bus utilization. The controller optimizes memory bus
utilization because that is the only metric available to it, and better
bus utilization generally results in better performance. However,
it would be preferable for the controller to optimize application
performance directly and the Heartbeats API provides a mechanism
with which to do so.

Finally, the Application Heartbeats API should not be confused
with the Heartbeat daemon and API which provides cluster man-
agement services as part of the High-Availability Linux (Linux-
HA) project. Nor should it be confused with the Heartbeat synchro-
nization API used in the LIGO (Laser Interferometer Gravitational-
Wave Observatory) diagnostics software. These projects are similar
to Application Heartbeats in name only.

System monitoring, as described in this section, is a crucial task
for several very different goals: performance, security, quality of
service, etc. Different ad hoc techniques for self-optimization have
been presented in the literature, but the Heartbeats approach is the
only one that provides a simple, unified framework for reasoning
about and addressing all of these goals.

7. Conclusion

Our prototype results indicate that the Heartbeats framework is a
useful tool for both application auto-tuning and externally-driven
optimization. Our experimental results demonstrate three useful ap-
plications of the framework: dynamically reducing output quality
(accuracy) as necessary to meet a throughput (performance) goal,
optimizing system resource allocation by minimizing the number
of cores used to reach a given target output rate, and tolerating
failures by adjusting output quality to compensate for lost com-
putational resources. The authors have identified several important
applications that the framework can be applied to: self-optimizing
microarchitectures, self-tuning software libraries, smarter system
administration tools, novel “Organic” operating systems and run-
time environments, and more profitable cloud computing clusters.
We believe that a unified, portable standard for application perfor-
mance monitoring is crucial for a broad range of future applica-
tions.
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