
Factored Operating Systems (fos): The Case for a Scalable
Operating System for Multicores

David Wentzlaff and Anant Agarwal

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139

{wentzlaf, agarwal}@csail.mit.edu

Abstract

The next decade will afford us computer chips with 100’s to 1,000’s
of cores on a single piece of silicon. Contemporary operating sys-
tems have been designed to operate on a single core or small num-
ber of cores and hence are not well suited to manage and provide
operating system services at such large scale. If multicore trends
continue, the number of cores that an operating system will be
managing will continue to double every 18 months. The traditional
evolutionary approach of redesigning OS subsystems when there
is insufficient parallelism will cease to work because the rate of
increasing parallelism will far outpace the rate at which OS design-
ers will be capable of redesigning subsystems. The fundamental
design of operating systems and operating system data structures
must be rethought to put scalability as the prime design constraint.
This work begins by documenting the scalability problems of con-
temporary operating systems. These studies are used to motivate
the design of a factored operating system (fos). fos is a new operat-
ing system targeting manycore systems with scalability as the pri-
mary design constraint, where space sharing replaces time sharing
to increase scalability.We describe fos, which is built in a message
passing manner, out of a collection of Internet inspired services.
Each operating system service is factored into a set of commu-
nicating servers which in aggregate implement a system service.
These servers are designed much in the way that distributed Inter-
net services are designed, but instead of providing high level Inter-
net services, these servers provide traditional kernel services and
replace traditional kernel data structures in a factored, spatially dis-
tributed manner. fos replaces time sharing with space sharing. In
other words, fos’s servers are bound to distinct processing cores
and by doing so do not fight with end user applications for im-
plicit resources such as TLBs and caches. We describe how fos’s
design is well suited to attack the scalability challenge of future
multicores and discuss how traditional application-operating sys-
tems interfaces can be redesigned to improve scalability.

Categories and Subject Descriptors D.4.7 [Operating Systems]:
Organization and Design

General Terms Operating System Design, Multicore Computers

Keywords Multicore Operating Systems, Factored Operating
System

1. Introduction

The number of processor cores which fit onto a single chip micro-
processor is rapidly increasing. Within ten years, a single micropro-
cessor will contain 100’s - 1,000’s cores. Current operating systems
were designed for single processor or small number of processor

systems and were not designed to manage such scale of compu-
tational resources. Unlike the past, where new hardware genera-
tions brought higher clock frequency, larger caches, and more sin-
gle stream speculation, all of which are not huge changes to fun-
damental system organization, the multicore revolution promises
drastic changes in fundamental system architecture, primarily in
the fact that the number of general-purpose schedulable processing
elements is drastically increasing. The way that an operating sys-
tem manages 1,000 processors is so fundamentally different than
the manner in which it manages one or two processors that the en-
tire design of an operating system must be rethought. This work
investigates why simply scaling up traditional symmetric multipro-
cessor operating systems is not sufficient to attack this problem and
proposes how to build a factored operating system (fos) which em-
braces the 1,000 core multicore chip opportunity.
The growing ubiquity of multicore processors is being driven by

several factors. If single stream microprocessor performance were
to continue increasing exponentially, there would be little need
to contemplate parallelization of our computing systems. Unfortu-
nately, single stream performance of microprocessors has fallen off
the exponential trend due to the inability to detect and exploit paral-
lelism in sequential codes, the inability to further pipeline sequen-
tial processors, the inability to raise clock frequencies due to power
constraints, and the design complexity of high-performance sin-
gle stream microprocessors[4]. While single stream performance
may not be significantly increasing in the future, the opportunity
provided by semiconductor process scaling is continuing for the
foreseeable future. The ITRS road-map[1] and the continuation
of Moore’s Law[16] forecast exponential increases in the number
of transistors on a single microprocessor chip for at least another
decade. In order to turn these exponentially increasing transistor re-
sources into exponentially increasing performance, microprocessor
manufacturers have turned to integrating multiple processors onto a
single die. Current examples of this include Intel and AMD’s Quad-
core offerings, TI’s TMS320C6474 triple core offering, Freescale’s
6-core MSC8156, Tilera’s 64-core processor[25], and an 80-core
Intel prototype processor[22]. Road-maps by all major micropro-
cessor manufacturers suggest that the trend of integrating more
cores onto a single microprocessor will continue. Extrapolating the
doubling of transistor resources every 18-months, and that a 64-
core commercial processor was shipped in 2007, in just ten years,
we will be able to integrate over 6,000 processor cores on a single
microprocessor.
The fact that single stream performance has sizably increased

with past generations of microprocessors has shielded operating
system developers from qualitative hardware platform changes.
Unlike quantitative changes such as larger caches, larger TLBs,
higher clock frequency, and more instruction level parallelism, the

76



multicore phenomenon is a qualitative change which drastically
changes the playing field for operating system design. The primary
challenge of multicore operating system design is one of scalability.
Current symmetric multiprocessor (SMP) operating systems have
been designed to manage a relatively small number of cores. The
number of cores being managed has stayed relatively constant with
the vast majority of SMP systems being two processor systems.
With multicore chip designs, the number of cores will be expanding
at an exponential rate therefore any operating system designed to
run on multicores will need to embrace scalability and make it a
first order design constraint.
This work investigates the problems with scaling SMP OS’s to

high core counts. The first problem is that scaling SMP OS’s by
creating successively finer grain data structure locks is becoming
problematic. Unlike small core count systems, where only a small
portion of the code may need fine grain locking, in high core
count systems, any non-scalable portion of the design will quickly
become a performance problem by Ahmdal’s law. Also, in order
to build an OS which performs well on 100 and 10,000 cores, there
may be no optimal lock granularity as finer grain locking allows for
better scaling, but introduces potential lock overhead on small core
count machines. Last, retrofitting fine grain locking into an SMP
OS can be an error prone and challenging prospect.
A second challenge SMP OS’s face is that they rely on efficient

cache coherence for communications of data structures and locks.
It is doubtful that future multicore processors will have efficient
full-machine cache coherence as the abstraction of a global shared
memory space is inherently a global shared structure. Another
challenge for any scalable OS is the need to manage locality. Last,
the design of SMP OS’s traditionally execute the operating system
across the whole machine. While this has good locality benefits for
application and OS communications, it requires the cache system
on each core of a multicore system to contain the working set of
the application and OS.
This work utilizes the Linux 2.6 kernel as a vehicle to investi-

gate scaling of a prototypical SMP OS. We perform scaling studies
of the physical page allocation routines to see how varying core
count affects the performance of this parallelized code. We find
that the physical page allocator does not scale beyond 8 cores un-
der heavy load. We also study the cache performance interference
when operating system and application code are executed on the
same core.
We use these scalability studies to motivate the design of a fac-

tored operating system (fos). fos is a new scalable operating system
targeted at 1000+ core systems. The main feature of fos is that it
factors an OS into a set of services where each service is built to
resemble a distributed Internet server. Each system service is com-
posed of multiple server processes which are spatially distributed
across a multicore chip. These servers collaborate and exchange in-
formation, and in aggregate provide the overall system service. In
fos, each server is allocated to a specific core thereby removing the
need to time-multiplex processor cores and simplifying the design
of each service server.
fos not only distributes high-level services, but also, distributes

services and data-structures typically only found deep in OS ker-
nels such as physical page allocation, scheduling, memory manage-
ment, naming, and hardware multiplexing. Each system service is
constructed out of collaborating servers. The system service servers
execute on top of a microkernel. The fos-microkernel is platform
dependent, provides protection mechanisms but not protection pol-
icy, and implements a fast machine-dependent communication in-
frastructure.
Many of fos’s fundamental system services embrace the dis-

tributed Internet paradigm even further by allowing any core to con-
tact any server in a particular system service group. This is similar

to how a web client can access any webserver in a load balanced
web cluster, but for kernel data structures and services. Also, like
a spatially load balanced web cluster, the fos approach exploits lo-
cality by distributing servers spatially across a multicore. When an
application needs a system service, it only needs to communicate
with its local server thereby exploiting locality.
Implementing a kernel as a distributed set of servers has many

advantages. First, by breaking away from the SMP OS monolithic
kernel approach, the OS level communication is made explicit and
exposed thus removing the problem of hunting for poor perform-
ing shared memory or lock based code. Second, in fos, the number
of servers implementing a particular system service scales with the
number of cores being executed on, thus the computing available
for OS needs scales with the number of cores in the system. Third,
fos does not execute OS code on the same cores which are execut-
ing application code. Instead an application messages the particular
system service, which then executes the OS code and returns the
result. By partitioning where the OS and applications execute, the
working set of the OS and the working set of the application do not
interfere.
Another impediment to the scalability of modern day operating

systems is that the operating system interfaces provided to applica-
tions are inherently non-scalable. One way to increase scalability is
to provide interfaces which supply information to the user in a best
effort manner. For example, by allowing best-effort information, it
empowers the user to request information in a high performance
manner which may be slightly out of date. Alternatively, the user
can select the lower performing, but accurate interface.
fos’s design is inspired by microkernels such as Mach [2],

L3, and L4 [15] but has significant differences. These differences
include:

• fos distributes and parallelizes within a single system service
server.

• fos embraces the spatial nature of multicore processors by hav-
ing a spatially aware placement engine/scheduler.

• Because applications and OS execute on different cores, fos
does not need to take an expensive context switch when an
application messages a OS server.

Section 4 provides more detail on related research.
We currently have a prototype implementation of the fos-

microkernel. It runs on 16 core x86 64 hardware and a QEMU
simulation of up to 255 processors. The operating system is under
active development and currently consists of a bootloader and a
microkernel with a messaging layer. We now developing system
service servers.
This paper is organized as follows. Section 2 identifies the

scalability problems with contemporary SMP operating systems.
Section 3 describes the design of fos and how its design attacks
scalability problems. Section 4 describes related work and finally
we conclude

2. Scalability Problems of Contemporary

Operating Systems

This section investigates three main scalability problems with con-
temporary OS design, locks, locality aliasing and reliance on shared
memory. Case studies are utilized to illustrate how each of these
problems appears in a contemporary OS, Linux, on modern multi-
core x86 64 hardware. The results of these studies are utilized to
make recommendations for future operating systems.

2.1 Locks

Contemporary operating systems which execute on multi-processor
systems have evolved from uni-processor operating systems. The

77



most simplistic form of this evolution was the addition of a sin-
gle big kernel lock which prevents multiple threads from simul-
taneously entering the kernel. Allowing only one thread to exe-
cute in the kernel at a time greatly simplifies the extension of a
uni-processor operating system to multiple processors. By allowing
only one thread in the kernel at a time, the invariant that all kernel
data structures will be accessed by only one thread is maintained.
Unfortunately, one large kernel lock, by definition, limits the con-
currency achievable within an OS kernel and hence the scalability.
The traditional manner to further scale operating system perfor-
mance has been to successively create finer-grain locks thus reduc-
ing the probability that more than one thread is concurrently access-
ing locked data. This method attempts to increase the concurrency
available in the kernel.
Adding locks into an operating system is time consuming and

error prone. Adding locks can be error prone for several reasons.
First, when trying to implement a fine grain lock where coarse grain
locking previously existed, it is common to forget that a piece of
data needs to be protected by a lock. Many times this is caused by
simply not understanding the relationships between data and locks,
as most programming languages, especially those commonly used
to write operating systems, do not have a formal way to express
lock and protected data relationships.
The second manner in which locks are error prone is that locks

can introduce circular dependencies and hence cause deadlocks to
occur. Many operating systems introduce lock acquisition hierar-
chies to guarantee that a circular lock dependence can never occur,
but this introduces significant complexity for the OS programmer.
An unfortunate downside of lock induced deadlocks is that they can
occur in very rare circumstances which can be difficult to exercise
in normal testing.
When the lock granularity needs to be adjusted it is usually not

the case that simply adjusting the lock granularity is enough. For
code which has already been parallelized, it is typically difficult to
make code finer grain locked in a vacuum. Instead, it is typical for
entire sub-systems of the operating system to be redesigned when
lock granularity needs to be adjusted.
In previous multiprocessor systems, the speed at which paral-

lelism increased was slow and sub-system redesign could be tack-
led. In sharp contrast, future multicore processors will follow an
exponential growth rate in the number of cores. The effect of this
is that each new generation of chip will require the granularity of a
lock to be halved in order to maintain performance parity. Thus this
lock granularity change may require operating system sub-systems
to be redesigned with each new chip generation. Unfortunately for
the operating system programmer, it is very difficult to redesign
sub-systems with this speed as programmer productivity is not scal-
ing with number of transistors. Hence we believe that traditional
lock based operating systems need to be rethought in light of the
multicore era.
Whenever discussing lock granularity, the question arises, what

is the correct lock granularity? If lock granularity is chosen to be
too coarse, the scalability on highly parallel systems may be poor.
But, if the lock granularity is too fine, the overhead of locking and
unlocking too often can cause inefficiencies on low core-count sys-
tems. Future operating systems will have to directly attack finding
the correct lock granularity as they will have to span multiple gen-
erations of computer chips which will vary by at least an order of
magnitude with respect to core count. Also, the difference in core
count between the high end processor and low end processor of the
same generation may be at least an order of magnitude in the 1000+
core era, thus even within a processor family, the OS designer may
not be able to choose an appropriate lock granularity.

Number of Cores

Cy
cle

s (
in 

Bil
lio

ns
)

�

�

�

�

�

��

��

� � � � � � 	 � 
 �� �� �� �� �� �� ��

��������������������
�����������������������
�����������������
���������������
������������
����
���������
 �������������
� ��
������������

Lock
contention

Architectural
overhead

Useful
work

Figure 1. Physical memory allocation performance sorted by func-
tion. As more cores are added more processing time is spent con-
tending for locks.

2.1.1 Case Study: Physical Page Allocator

In order to investigate how locks scale in a contemporary operating
system, we investigated the scaling aspects of the physical page
allocation routines of Linux. The Linux 2.6.24.7 kernel was utilized
on a 16 core Intel quad-socket quad-core system. The test system
is a Dell PowerEdge R900 outfitted with four Intel Xeon E7340
CPUs running at 2.40GHz and 16GB of RAM.
The test program attempts to allocate memory as quickly as

is possible on each core. This is accomplished by allocating a
gigabyte of data and then writing to the first byte of every page
as quickly as is possible. By touching the first byte in every page,
the operating system is forced to demand allocate the memory. The
number of cores was varied from 1 to 16 cores. Precision timers
and oprofile were utilized to determine the runtime and to profile
the executing code. Figure 1 shows the results of this experiment.
The bars show the time taken to complete the test per core. Note
that a fixed amount of work is done per core, thus perfect scaling
would be bars all the same height.
By inspecting the graph, several lessons can be learned. First, as

the number of cores increases, the lock contention begins to dom-
inate the execution time. Beyond eight processors, the addition of
more processors actually slows down the computation and the sys-
tem begins to exhibit fold-back. We highlight architectural over-
head as time taken due to the hardware not scaling as more cores
are added. The architectural overhead is believed to be caused by
contention in the hardware memory system.
For this benchmark, the Linux kernel already utilizes relatively

fine-grain locks. Each core has a list of free pages and a per-
core lock on the free list. There are multiple memory zones each
with independent lock sets. The Linux kernel re-balances the free
lists in bulk to minimize re-balancing time. Even with all of these
optimizations, the top level re-balancing lock ends up being the
scalability problem. This code is already quite fine-grain locked
thus to make it finer grain locked, some algorithmic rethinking is
needed. While it is not realistic for all of the cores in a 16 core
system to allocate memory as quickly as this test program does, it
is realistic that in a 1000+ core system, 16 out of the 1000 cores
would need to allocate a page at the same time thus causing traffic
similar to this test program.

2.2 OS-Application and OS-OS Locality Aliasing

Operating systems have large instruction and data working sets.
Traditional operating systems time multiplex computation re-

78



sources. By executing operating system code and application code
on the same physical core, implicitly shared resources such as
caches and TLBs have to accommodate the shared working set of
both the application and the operating system code and data. This
reduces the hit rates in these cache structures versus executing the
operating system and application on separate cores. By reducing
cache hit rates, the single stream performance of the program will
be reduced. Reduced hit rate is exacerbated by the fact that many-
core architectures typically contain smaller per-core caches than
past uniprocessors.
Single stream performance is at a premium with the advent of

multicore processors as increasing single stream performance by
other means may be exceedingly difficult. It is also likely that some
of the working set will be so disjoint that the application and oper-
ating system can fight for resources causing anti-locality collisions
in the cache. Anti-locality cache collisions are when two different
sets of instructions pull data into the cache at the same index hence
causing the different instruction streams to destroy temporal local-
ity for data at a conflicting index in the cache. Current operating
systems also execute different portions of the OS with wildly dif-
ferent code and data on one physical core. By doing this, intra-OS
cache thrash can be accentuated versus executing different logical
portions of the OS on different physical cores.
Cache interference also hampers embedded operating systems

which offer quality of service (QOS) or real-time guarantees. The
variability introduced by OS-application cache interference has
caused many embedded applications to eliminate usage of an oper-
ating system and elect to use a more bare metal approach.

2.2.1 Case Study: Cache Interference

In order to evaluate the cache system performance degradation due
to executing the operating system and application code on the same
core, we created a cache tool which allows us to differentiate oper-
ating system from application memory references. The tool is based
off of the x86 64 version of QEMU, and captures memory refer-
ences differentiated by protection level. We constructed a cache
model simulator to determine the cache miss rates due to the operat-
ing system, the application, and the interference misses caused by
the operating system and application contending for cache space.
This was accomplished by simulating a unified cache, an OS only
cache, and an application only cache for differing cache sizes and
configurations.
For our workload, we used Apache2 executing on full stack

Linux 2.6.18.8 under a Debian 4 distribution. In this test case,
Apache2 is serving static webpages which are being accessed over
the network by Apache Bench (ab) simulating ten concurrent users.
Figure 2 and 3 show the results for this experiment using a direct
mapped and two-way set associative cache respectively.
Studying these results, it can be seen that for small cache sizes,

the miss rates for the operating system far surpass the miss rates
for the application. Second, the miss rate due to cache interfer-
ence is sizable. This interference can be removed completely when
the operating system and application is executed in different cores.
Also, by splitting the application away from the operating system,
it allows the easy utilization of more parallel caches, a plentiful re-
source on multicore processors, while single stream performance
is at a premium. Last, when examining large cache sizes, the per-
centage of interference misses grows relative to the total number of
misses. This indicates that for level-2 and level-3 caches, intermix-
ing cache accesses can be quite quite damaging to performance.
This result re-affirms the results found in [3], but with a modern
application and operating system.

�

�

��

��

��

��

��
���

��
���

	
�
���

��

��������	��
�����

��������	

����������������	��

����

	
������
�����������
	


Figure 2. Cache miss rates for Apache2 running on Linux
2.6.18.8. User, OS/user interference, and OS miss rate for a direct
mapped cache.

�

�

�

�

�

��

��

��

��

��
��

���
��

���
	
�

���
��

��������	��
�����

���������	
�������
��	���	��������������
	�

��	


����	
�
���	
�	
	��	
��

Figure 3. Cache miss rates for Apache2 running on Linux
2.6.18.8. User, OS/user interference, and OS miss rate for a two-
way set-associative cache.

2.3 Reliance on Shared Memory

Contemporary operating systems rely on shared memory for com-
munication. Largely this is because shared memory is the only
means by which a desktop hardware architecture allows core-to-
core communication. The abstraction of a flat, global, address space
is convenient for the programmer to utilize as addresses can be
passed across the machine and any core is capable of accessing
the data. It is also relatively easy to extend a single threaded oper-
ating system into a multi-threaded kernel by using a single global
address space. Unfortunately, the usage of a single global shared
memory is an inherently global construct. This global abstraction
makes it challenging for a shared memory system to scale to large
core count.
Many current embedded multicore processors do not support

a shared memory abstraction. Instead cores are connected by ad-
hoc communication FIFOs, explicit communication networks, or
by asymmetric shared memory. Current day embedded multicores

79



are pioneers in the multicore field which future multicore proces-
sors will extend. Because contemporary operating systems rely on
shared memory for communication, it is not possible to execute
them on current and future embedded multicores which lack full
shared memory support. In order to have the widest applicability,
future multicore operating systems should not be reliant on a shared
memory abstraction.
It is also unclear whether cache coherent shared memory will

scale to large core counts. The most promising hardware shared
memory technique with respect to scalability has been directory
based cache coherence. Hardware directory based cache coherence
has found difficulties providing high performance cache coherent
shared memory above about 100 cores. The alternative is to use
message passing which is a more explicit point-to-point communi-
cation mechanism.
Besides scalability problems, modern operating system’s re-

liance on shared memory can cause subtle data races. If used in-
correctly, global shared memory easily allows the introduction of
data races which can be difficult to detect at test time.

2.4 Recommendations

The problems presented in this section lead to a few recommenda-
tions in order to improve scalability for future operating systems,
namely:

• Avoid the use of hardware locks.

• Separate the operating system execution resources from the
application execution resources.

Reduces implicit resource sharing (Caches/TLBs).

Utilizes the ample thread parallelism provided by multicore
processors.

• Avoid global cache coherent shared memory

Broadens applicability to architectures which don’t support
shared memory.

Shared memory hardware may not scale to large core count.

3. Design of a Factored Operating System

In order to create an operating system to tackle the 1,000+ core
era, we propose designing a factored operating system (fos). fos
is an operating system which takes scalability as the first order
design constraint. Unlike most previous operating systems where
a subsystem scales up to a given point and beyond that point,
the subsystem needs to be redesigned, fos ventures to develop
techniques to build operating system services which scale, up and
down, across a large range (> 3 orders of decimal magnitude) of
core count.

3.1 Design Principles

In order to achieve the goal of scaling over multiple orders of mag-
nitude in core count, fos utilizes the following design principles:

• Space multiplexing replaces time multiplexing.

Scheduling becomes a layout problem not a time multiplex-
ing problem.

OS runs on distinct cores from applications.

Working sets are spatially partitioned; OS does not interfere
with applications cache.

• OS is factored into function specific services.

Each OS service is distributed into spatially distributed
servers.

Servers collaborate and communicate only via message
passing.

Servers are bound to a core.

Applications communicate with servers via message pass-
ing.

Servers leverage ideas (caching, replication, spatial distri-
bution, lazy update) from Internet servers.

In the near future, we believe that the number of cores on a sin-
gle chip will be on the order of the number of active threads in a
system. When this occurs, the reliance on temporal multiplexing of
resources will be removed, thus fos replaces traditional time multi-
plexing with space multiplexing. By scheduling resources spatially,
traditional scheduling problems are transformed into layout and
partitioning problems. We believe that balancing may still occur,
but in fos, balancing will occur significantly less often than in an
operating system which temporally multiplexes resources. Deter-
mining the correct placement of processes for good performance
will be the challenge that future operating systems will face and
one that fos tackles.
Spatial multiplexing is taken further as fos is factored into

function specific services. Each system service is then distributed
into a fleet of cooperating servers. All of the different function
specific servers collaborate to provide a service such as an a file
system interface. Each server is bound to a particular processor
core and communicates with other services in the same service
fleet via messaging only. When an application needs to access a
service provided by the operating system, the application messages
the closest core providing that service. The closest core providing
a particular service is found by querying a name server.
In order to build a scalable operating system, the fos server is

inspired by Internet servers. But, instead of serving web pages, fos
servers manage traditional kernel operations and data structures.
fos servers leverage ideas such as extensive caching, replication,
spatial distribution, and lazy update, which have allowed Internet
services to scale up to millions of users. Writing fos servers can be
more challenging than writing traditional shared memory operating
system subsystems. We believe that the shared nothing, message
passing only, approach will encourage OS developers to think very
carefully about exactly what data is being shared, which will lead
to more scalability.

3.2 Structure of fos

A factored operating system environment is composed of three
main components. A thin microkernel, a set of servers which to-
gether provide system services which we call the OS layer, and
applications which utilize these services. The lowest level of soft-
ware management comes from the microkernel. A portion of the
microkernel executes on each processor core. The microkernel con-
trols access to resources (protection), provides a communication
API and code spawning API to applications and system service
servers, and maintains a name cache used internally to determine
the location (physical core number) of the destination of messages.
Applications and system servers execute on separate cores on top
of the microkernel and execute on the same core resources as the
microkernel as shown in Figure 4.
fos is a full featured operating system which provides many ser-

vices to applications such as resource multiplexing, management
of system resources such as cores, memory, and input-output de-
vices, abstraction layers such as file-systems and networking, and
application communication primitives. In fos, this functionality is
provided by the OS layer. The OS layer is composed of fleets of
function specific servers. Each operating system function is pro-
vided by one or more servers. Each server of the same type is a

80



� � � � � �

� � � � � ���

��

��

��

��

��

����

�
�

����
����
����

����
����
����

�

�

���� ���

� ���

� ��������	�

�������
����	�����

� ����������������
����������

� ������������
�	��������������	������������


���������	
��
�

���������	

��
������	
����������

�������
������
�������

���������	
��
�

Figure 4. OS and application clients executing on the fos-microkernel

part of a function specific fleet. Naturally there are differing fleets
for different functions. For instance there is a fleet which manages
physical memory allocation, a fleet which manages the file system
access, and a fleet which manages process scheduling and layout.
Each server executes solely on a dedicated processor core. Servers
communicate only via the messaging interface provided by the mi-
crokernel layer.
In fos, an application executes on one or more cores. Within

an application, communication can be achieved via shared memory
communication or messaging. While coherent shared memory may
be inherently unscalable in the large, in a small application, it can
be quite useful. This is why fos provides the ability for applications
to have shared memory if the underlying hardware supports it. The
OS layer does not internally utilize shared memory, but rather uti-
lizes explicit message based communication. When an application
requires OS services, the underlying communication mechanism is
via microkernel messaging. While messaging is used as the com-
munication mechanism, a more traditional system call interface is
exposed to the application writer. A small translation library is used
to turn system calls into messages from application to an OS layer
server.
Applications and OS layer servers act as peers. They all run un-

der the fos-microkernel and communicate via the fos-microkernel
messaging API. The fos-microkernel does not differentiate between
applications and OS layer servers executing under it. The code ex-
ecuting on a single core under the fos-microkernel is called an fos
client. Figure 4 has a conceptual model of applications and the OS
layer, as implemented by fleets of servers, executing on top of the
microkernel. As can be seen from the figure, fos concentrates on
spatial allocation of resources over time multiplexing of resources.
In high core count environments, the problem of scheduling turns
from one of time slicing to one of spatial layout of executing pro-
cesses.

3.2.1 Microkernel Messaging

The key service provided by the fos-microkernel to microkernel
clients is that of a reliable messaging layer. Each fos-microkernel
client can allocate a large number of receive mailboxes via which
it can receive messages. Clients can attach symbolic names to their
receive mailboxes and publish these names such that other clients
can find published services. Namespace can be protected to prevent
clients from stealing namespace from privileged service names. fos
clients send messages to named mailboxes. The fos-microkernel

manages the reliable transport and enqueuing of messages into the
receiving mailbox. If a receive mailbox is full, the sending client
send call returns an error.
In addition to transport of messages, the fos-microkernel main-

tains a cache of name mapping. By using a cache based system, the
fos-microkernel can provide fast name lookups and a large names-
pace at the same time. The fos-microkernel delegates destination
look-up to the name server fleet (running in the OS layer) which
maintains the canonical mailbox name to physical core and mail-
box directory. Utilizing a name server allows for redirection of
mailboxes if a client changes physical location. The name server
also provides a one-to-many mapping function allowing multiple
clients to implement the same service in a server pool manner. This
enables a fleet of servers to implement the same function and allow
applications to access them via one known name. For one-to-many
mappings, the name server can choose a particular server instance
based off of physical proximity or load balancing. Also, the name
server can be used to provide fault resilience as broken servers can
be steered away from when a fault is detected. fos is primarily fo-
cused on scalability and not fault tolerance. To that end, on-chip
communications are considered to be reliable, but if a fault is de-
tected corrective actions are taken.
Figure 5 diagrams an example file system access. 1: An applica-

tion calls read which calls the message proxy library. 2: The mes-
sage proxy library constructs a message to the file system service.
3: The message proxy library calls the fos-microkernel to send the
message. 4: The fos-microkernel looks up the physical destination
in name cache. 5: The fos-microkernels transport the message to
the destination via on-chip networks or shared memory. 6: The re-
ceive microkernel deposits message in the file system server’s re-
quest mailbox. 7: The file system server processes the request. 8:
The file system server returns data to the message proxy library re-
ceive mailbox via a message which follows a similar return path. 9:
The message proxy library unpackages the response message and
returns data to the application.

3.2.2 Microkernel to OS Layer Delegation

The fos-microkernel is designed to delegate functionality to the
OS layer in several situations. One example is the naming service
maintained in the OS layer, but the fos-microkernel needs to access
this information to route messages. While this may seem to cause
cyclic dependencies, the fos-microkernel and delegated clients have
been designed with this in mind. The fos-microkernel and delegated

81



� � � � � �

� � � � � ���

��

��

��

��

��

����

�
�

����
����
����

����
����
����

�

����������	

�����������	�
���
��	������


��

����
�������	��
����
�����

����������
�������

����
�������	��
����
�����

����������
�������


��

�


��

�

�

�

�

�

��

	


��

Figure 5. Message walkthrough of an example application file
system access.

client communicate via microkernel messaging. In order to prevent
dependency cycles, the fos-microkernel knows the physical loca-
tion of the delegated to client tasks. Also, delegated to client tasks
are not dependent on microkernel services which they ultimately
provide. Example delegated services are the name server service
and the privilege service.
The privilege service is implemented as a fleet of servers in the

OS layer. The fos-microkernel requests privilege information from
the delegated to privilege manager servers and caches the informa-
tion inside of the microkernel in a read only manner. Occasionally
privileges change and the privilege manager messages the micro-
kernel notifying the microkernel to invalidate the appropriate stale
privilege information. In order for the privilege manager to run as a
fos-microkernel client, the fos-microkernel affords privilege man-
ager servers static privileges, so that a privilege fixed point can be
reached.

3.2.3 Structure of a Server

fos’s servers are inspired by Internet servers. The typical server is
designed to process an inbound queue of requests and is transaction-
oriented. A transaction consists of a request sent to a server, the
server performing some action, and a reply being sent. Most fos
servers are designed to use stateless protocols like many Internet
services. This means that each request encodes all of the needed
data to complete a transaction and the server itself does not need
to store data for multiple transactions in sequence. By structuring
servers as transaction-oriented stateless processes, server design is
much simplified. Also, scalability and robustness is improved as
requests can be routed by the name server to differing servers in
the same server fleet.
Programming difficulty of a typical server is also reduced be-

cause each server processes a transaction to completion without the
possibility of interruption. Thus local locking is not required to pre-
vent multiple server threads from attempting to concurrently update
memory. Some transactions may require a long latency operation to
occur, such as accessing I/O or messaging another server. When a
long latency operation does occur, a server constructs a continua-
tion for the current transaction, which is stored locally. The contin-
uation is restarted when a response from the long latency operation
is received.
Servers are structured to process two inbound mailboxes. One

for new requests and one for responses. The server prioritizes
responses over requests. Servers do not preempt transactions, but

����������	

�����

��������

�����

�����������	
�������

���������
���	
���

��������
���	�
��

��������
���

������
���
����
��

�����

��� ��

��
�
����
���
�	������
�
������

���	���������
����	�
��

��
����
���
���������

��

���
�	����������
������	�
�����

Figure 6. The main runloop for a server.

rather use a cooperative model. Figure 6 shows the typical control
flow of a server. Servers are designed to acquire all resources
needed to complete a transaction before a transaction creates a
continuation and yields to the next transaction. By doing so, servers
can be designed without local locking.

3.3 Comparison to Traditional OS’s

In this section we evaluate the design of fos to see how it tackles
the scalability challenges set forth in Section 2. The first challenge
that traditional operating systems face is their utilization of locks
to protect access to data which is shared amongst multiple threads.
fos approaches the lock problem with a multipronged approach.

First, fos is an inherently message passing operating system, there-
fore there are no shared memory locks between cores. Second,
fos servers are constructed in a non-preemptive manner. Only one
thread is ever executing on a server and the server chooses where,
when, and if it should yield when a long latency operation occurs.
The server writer chooses the yield locations, thus if the data is
consistent, no locks are needed. In fos, if a lock is absolutely nec-
essary, hardware locking instructions are not used as servers are not
preempted.
In fos, servers can be used as lock managers. While this is possi-

ble, the message passing nature of fos discourages this usage model
by making programming in this manner difficult. If lock managers
are used, the OS designer is able to add more lock management
resources explicitly rather than relying on the underlying shared
memory system and exclusive operations provided by the hard-
ware.
Applications and the operating system have largely different

working sets. To address this problem and avoid implicitly shar-
ing hardware structures such as caches and translation lookaside
buffers (TLBs), fos executes the operating system on separate pro-
cessing cores from the application. Also, different portions of the
operating system are factored apart such that different operating
system working sets do not interfere in implicitly accessed data
structures.
The third identified problem with traditional OS’s is their de-

pendence on shared memory. Being dependent on hardware shared
memory limits the applicability of traditional OS’s to multicore
hardware architectures which are patterned after symmetric multi-
processors (SMPs). Many current multicore processors, future mul-
ticore processors, and embedded multicores do not support shared

82



memory abstractions. fos breaks traditional OS’s dependence on
shared memory by solely using message passing for internal OS
layer communication. By breaking this dependence, fos has a wider
applicability than if it was constrained by using shared memory for
internal kernel communication.
Shared memory may also limit scalability as currently there is

no known scalable cache-coherent shared memory protocol. Also,
it is easy to construct subtly incorrect shared memory programs. To
combat these problems, fos does not use shared memory inside of
the OS layer. We believe that by making data movement explicit
the ultimate goal of scalability can be easier to achieve.
One challenge presented by utilizing only message passing is

that it decouples the communication and storage of data. Shared
memory abstractions allow for shared data to be written to a region
of memory which is later read by an unknown reader, while in
message passing, the destination of any piece of data must be
known when a message is sent. One way that fos combats this
problem is that it uses transactions to pull data when needed from
the originator of the shared data.
The messaging layer provided by the fos-microkernel is de-

signed to alleviate some of the pains of message passing. First, send
routines and receive routines do not need to be synchronized like
in the L4 [15] operating system. fos provides large buffers which
live in the receiving client’s address space. The use of large input
mailboxes decouples send and receive synchronization.

3.4 Challenges

fos executes operating system code on disparate processing cores
from the application code. This introduces core-to-core commu-
nication latency to application-operating system communication.
Conversely, when the operating system and application execute on
the same core, a context switch is needed when the application and
operating system communicate. Typical context switch times are in
the 100 cycle to 300 cycle range on modern processors. On multi-
core architectures with exposed on-chip messaging networks such
as the Raw [24, 21] and Tilera [25] processors, the cost of core-to-
core dynamic messages is on the order of 15 - 45 cycles depend-
ing on distance. fos explores whether separating operating system
code away from application code is a good performance tradeoff.
We believe that the low communications cost of local core-to-core
communication motivates separating operating system code from
application code.
One open question for fos is whether structures which are tra-

ditionally shared between multiple OS services can be accessed
with good performance in an environment such as fos. An exam-
ple of this type of sharing is the virtual memory system and the
file system’s buffer cache. Buffer caches are typically globally dis-
tributed between all cores and accessed via shared memory. In fos,
the servers which provide the file system and the virtual memory
management do not share memory with each other. fos replaces
wide sharing of data with techniques utilized by distributed ser-
vices. One example of this replacement is that fos utilizes replica-
tion and aggressive caching to replace a widely shared buffer cache.
The cost of utilizing implicitly shared memory on future multicores
will affect the tradeoff of whether a hardware solution or the soft-
ware solution explored by fos proves more scalable.
While fos’s servers are designed without memory based locks

within a server and without locks between servers, synchronization
points are still needed to guarantee exclusive access to certain
structures when atomicity is required. In fos, a notional lock can
be managed by a server. In order to acquire the lock, a message
is sent to the owner of the lock which can dole out the lock. One
challenge of using lock servers is that the cost of software-based
lock management may dwarf the performance wins of removing
traditional locks from the operating system. We believe that the

cost of using notional locks will affect the design of fos’s servers
such that notional locks will only be used in rare circumstances.
An alternative to using lock servers is to use a core as a object

server or transaction server. Other servers would work in parallel
doing the bulk of the computation, only communicating with the
transaction server when an operation is complete. By serializing
transactions against a transaction server, fos can take advantage of
optimistic concurrency.
Another open question is whether it will be possible to write

all the needed multi-sequence operations without local locks in
a server. For instance if a server needs to execute a sequence of
communications with other servers, can all of the servers that fos
will contain be designed such that no local resources need to be
locked. Due to the single threaded nature of fos’s servers, each
thread implicitly takes out a global lock on all of the memory
owned by one server, but when executing a sequence of operations,
it is not certain that all cases can be handled.

3.5 Implementation

fos is currently booting on 16 core x86 64 hardware and a QEMU
simulation of up to 255 processors. The operating system is under
active development and currently consists of a bootloader, micro-
kernel, messaging layer with capability checking, and name server.
We are beginning to implement OS Layer servers.

4. Related Work

There are several classes of systems which have similarities to
fos proposed here. These can be roughly grouped into three cate-
gories: traditional microkernels, distributed operating systems, and
distributed Internet-scale servers.
A microkernel is a minimal operating system kernel which

typically provides no high-level operating system services in the
microkernel, but rather provides mechanisms such as low level
memory management and inter-thread communication which can
be utilized to construct high-level operating system services. High-
level operating system services are typically constructed inside
of servers which utilize the microkernel’s provided mechanisms.
Mach [2] is an example of an early microkernel. In order to address
performance problems, portions of servers were slowly integrated
into the Mach microkernel to minimize microkernel/server context
switching overhead. This led to the Mach microkernel being larger
than the absolute minimum. The L4 [15] kernel is another example
of a microkernel which attempts to optimize away some of the
inefficiencies found in Mach and focuses heavily on performance.
fos is designed as a microkernel and extends microkernel de-

sign. It is differentiated from previous microkernels in that instead
of simply exploiting parallelism between servers which provide dif-
ferent functions, this work seeks to distribute and parallelize within
a server for a single high-level function. This work also exploits the
spatial-ness of massively multicore processors. This is done by spa-
tially distributing servers which provide a common function. This
is in contrast to traditional microkernels which were not spatially
aware. By spatially distributing servers which collaboratively pro-
vide a high-level function, applications which use a given service
may only need to communicate with the local server providing the
function and hence can minimize intra-chip communication. Oper-
ating systems built on top of previous microkernels have not tackled
the spatial non-uniformity inherent in massively multicore proces-
sors. fos embraces the spatial nature of future massively multicore
processors and has a scheduler which is not only temporally aware,
but also spatially aware.
The cost of communication on fos compared to previous micro-

kernels is reduced because fos does not temporally multiplex oper-
ating system servers and applications. Therefore when an applica-
tion messages an OS server, a context swap does not occur. This is

83



in contrast to previous microkernels which temporally multiplexed
resources, causing every communication to require a costly context
swap. Last, fos, is differentiated from previous microkernels on par-
allel systems, because the communication costs and sheer number
of cores on a massively multicore processor is different than in pre-
vious parallel systems, thus the optimizations made and trade-offs
are quite different.
The Tornado [11] operating system which has been extended

into the K42 [5] operating system is a microkernel operating sys-
tem and is one of the more aggressive attempts at constructing scal-
able microkernels. They are differentiated from fos in that they are
designed to be run on SMP and NUMA shared memory machines
instead of single-chip massively multicore machines. Tornado and
K42 also suppose future architectures which support efficient hard-
ware shared memory. fos does not require architectures to support
intra-machine shared memory. Also, the scalability claims [6] of
K42 have been focused on machines up to 24 processors which
is a modest number of processors when compared to the target of
1000+ processors which fos is being designed for.
The Hive [9] operating system utilizes a multicellular kernel

architecture. This means that a multiprocessor is segmented into
cells which each contain a set of processors. Inside of a cell, the
operating system manages the resources inside of the cell like a
traditional OS. Between cells the operating system shares resources
by having the different cells message and allowing safe memory
reads. Hive OS focused heavily on fault containment and less
on high scalability than fos does. Also, the Hive results are for
scalability up to 4 processors. In contrast to fos, Hive utilizes shared
memory between cells as a manner to communicate.
Another approach to building scalable operating systems is the

approach taken by Disco [8] and Cellular Disco [13]. Disco and
Cellular Disco run off the shelf operating systems in multiple vir-
tual machines executing on multiprocessor systems. By dividing
a multiprocessor into multiple virtual machines with fewer pro-
cessors, Disco and Cellular Disco can leverage the design of pre-
existing operating systems. They also leverage the level of scalabil-
ity already designed into pre-existing operating systems. Disco and
Cellular Disco also allow for sharing between the virtual machines
in multiple ways. For instance in Cellular Disco, virtual machines
can be thought of as a cluster running on a multiprocessor system.
Cellular Disco utilizes cluster services like a shared network file
system and network time servers to present a closer approxima-
tion of a single system image. Various techniques are used in these
projects to allow for sharing between VMs. For instance memory
can be shared between VMs so replicated pages can point at the
same page in physical memory. Cellular Disco segments a multi-
processor into cells and allows for borrowing of resources, such as
memory between cells. Cellular Disco also provides fast commu-
nication mechanisms which break the virtual machine abstraction
to allow two client operating systems to communicate faster than
communicating via a virtualized network-like interface. VMWare
has adopted many of the ideas from Disco and Cellular Disco to im-
prove VMWare’s product offerings. One example is VMCI Sock-
ets [23] which is an optimized communication API which provides
fast communication between VMs executing on the same machine.
Disco and Cellular Disco utilize hierarchical shared information

sharing to attack the scalability problem much in the same way that
fos does. They do so by leveraging conventional SMP operating
systems at the base of hierarchy. Disco and Cellular Disco argue
leveraging traditional operating systems as an advantage, but this
approach likely does not reach the highest level of scalability as
a purpose built scalable OS such as fos will. Also, the rigid cell
boundaries of Cellular Disco can limit scalability. Last, because at
it core these systems are just utilizing multiprocessor systems as
a cluster, the qualitative interface of a cluster is restrictive when

compared to a single system image. This is especially prominent
with large applications which need to be rewritten such that the
application is segmented into blocks only as large as the largest
virtual machine. In order to create larger systems, an application
needs to either be transformed to a distributed network model,
or utilize a VM abstraction-layer violating interface which allows
memory to be shared between VMs.
More recently, work has been done to investigate operating

systems for multicore processors. One example is Corey [7] which
focuses on allowing applications to direct how shared memory data
is shared between cores.
fos bears much similarity to a distributed operating system, ex-

cept executing on a single chip. In fact much of the inspiration
for this work comes from the ideas developed for distributed op-
erating systems. A distributed operating system is an operating
system which executes across multiple computers or workstations
connected by a network. Distributed operating systems provide ab-
stractions which allow a single user to utilize resources across mul-
tiple networked computers or workstations. The level of integration
varies with some distributed operating systems providing a single
system image to the user, while others provide only shared process
scheduling or a shared file system. Examples of distributed operat-
ing systems include Amoeba [20, 19], Sprite [17], and Clouds [10].
These systems were implemented across clusters of workstation
computers connected by networking hardware.
While this work takes much inspiration from distributed oper-

ating systems, some differences stand out. The prime difference
is that the core-to-core communication cost on a single-chip mas-
sively multicore processor is orders of magnitude smaller than on
distributed systems which utilize Ethernet style hardware to in-
terconnect the nodes. Single-chip massively multicore processors
have much smaller core-to-core latency and much higher core-to-
core communications bandwidth. A second difference that multi-
cores present relative to clusters of workstations is that on-chip
communication is much more reliable than between workstations
over commodity network hardware. fos takes advantage of this by
approximating on-chip communication as being reliable. This re-
moves the latency of correcting errors and removes the complex-
ity of correcting communication errors. Last, single-chip multicore
processors are easier to think of as a single trusted administrative
domain than a true distributed system. In many distributed operat-
ing systems, much effort is spent determining whether communica-
tions are trusted. This problem does not disappear in a single-chip
multicore, but the on-chip protection hardware and the fact that the
entire system is contained in a single chip simplifies the trust model
considerably.
The parallelization of system level services into cooperating

servers as proposed by this work has much in common with tech-
niques used by distributed Internet servers. Load balancing is one
technique taken from clustered webservers. The name server of fos
derives inspiration from the hierarchical caching in the Internet’s
DNS system. This work hopes to leverage other techniques such as
those in peer-to-peer and distributed hash tables such as Bit Tor-
rent, Chord, and Freenet. The file system on fos will be inspired by
distributed file systems such as AFS [18], OceanStore [14] and the
Google File System [12].
While this work leverages techniques which allow distributed

Internet servers to be spatially distributed and provide services at
large-scale, there are some differences. First, instead of being ap-
plied to serving webpages or otherwise user services, these tech-
niques are applied to services which are internal to an OS kernel.
Many of these services have lower latency requirements than are
found on the Internet. Second, the on-chip domain is more reli-
able than the Internet, therefore there are fewer overheads needed
to deal with errors or network failures. Last, the communication

84



costs within a chip are orders of magnitude lower than on the Inter-
net.

5. Conclusion

In the next decade, we will have single chips with 100 - 1,000 cores
integrated into a single piece of silicon. In this work we chronicled
some of the problems with current monolithic operating systems
and described these scaling problems. These scaling problems mo-
tivate a rethinking of the manner in which operating systems are
structured. In order to address these problems we propose a fac-
tored operating system (fos) which targets 1000+ core multicore
systems and replaces traditional time sharing with space sharing to
increase scalability. By structuring an OS as a collection of Internet
inspired services we believe that operating systems can be scaled
for 1000+ core single-chip systems and beyond allowing us to de-
sign and effectively harvest the performance gains of the multicore
revolution.

Acknowledgments

This work is funded by DARPA, Quanta Computing, Google, and
the NSF. We thank Robert Morris and Frans Kaashoek for feedback
on this work. We also thank Charles Gruenwald for help on fos.

References

[1] The international technology roadmap for semiconductors: 2007
edition, 2007. http://www.itrs.net/Links/2007ITRS/Home2007.htm.

[2] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian,
and M. Young. Mach: A new kernel foundation for UNIX
development. In Proceedings of the USENIX Summer Conference,
pages 93–113, June 1986.

[3] A. Agarwal, J. Hennessy, and M. Horowitz. Cache performance
of operating systems and multiprogramming workloads. ACM
Transaction on Computer Systems, 6(4):393–431, Nov. 1988.

[4] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger.
Clock rate versus IPC: The end of the road for conventional
microarchitectures. In Proceedings of the International Symposium
on Computer Architecture, pages 248–259, June 2000.

[5] J. Appavoo, M. Auslander, M. Burtico, D. M. da Silva, O. Krieger,
M. F. Mergen, M. Ostrowski, B. Rosenburg, R. W. Wisniewski, and
J. Xenidis. K42: an open-source linux-compatible scalable operating
system kernel. IBM Systems Journal, 44(2):427–440, 2005.

[6] J. Appavoo, M. Auslander, D. D. Silva, O. Krieger, M. Ostrowski,
B. Rosenburg, R. W. Wisniewski, J. Xenidis, M. Stumm, B. Gamsa,
R. Azimi, R. Fingas, A. Tam, and D. Tam. Enabling scalable
performance for general purpose workloads on shared memory
multiprocessors. Technical Report RC22863, International Business
Machines, July 2003.

[7] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris,
A. Pesterev, L. Stein, M.Wu, Y. D. Y. Zhang, and Z. Zhang. Corey: An
operating system for many cores. In Proceedings of the Symposium
on Operating Systems Design and Implementation, Dec. 2008.

[8] E. Bugnion, S. Devine, and M. Rosenblum. Disco: Running
commodity operating systems on scalable multiprocessors. In
Proceedings of the ACM Symposium on Operating System Principles,
pages 143–156, 1997.

[9] J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teodosiu,
and A. Gupta. Hive: Fault containment for shared-memory
multiprocessors. In Proceedings of the ACM Symposium on Operating
System Principles, pages 12–25, 1995.

[10] P. Dasgupta, R. Chen, S. Menon, M. Pearson, R. Ananthanarayanan,
U. Ramachandran, M. Ahamad, R. J. LeBlanc, W. Applebe, J. M.
Bernabeu-Auban, P. Hutto, M. Khalidi, and C. J. Wileknloh. The
design and implementation of the Clouds distributed operating
system. USENIX Computing Systems Journal, 3(1):11–46, 1990.

[11] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm. Tornado: Maxi-
mizing locality and concurrency in a shared memory multiprocessor
operating system. In Proceedings of the Symposium on Operating
Systems Design and Implementation, pages 87–100, Feb. 1999.

[12] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file
system. In Proceedings of the ACM Symposium on Operating System
Principles, Oct. 2003.

[13] K. Govil, D. Teodosiu, Y. Huang, and M. Rosenblum. Cellular
Disco: Resource management using virtual clusters on shared-
memory multiprocessors. In Proceedings of the ACM Symposium
on Operating System Principles, pages 154–169, 1999.

[14] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and
B. Zhao. Oceanstore: An architecture for global-scale persistent
storage. In Proceedings of the Conference on Architectural Support
for Programming Languages and Operating Systems, pages 190–201,
Nov. 2000.

[15] J. Liedtke. On microkernel construction. In Proceedings of the ACM
Symposium on Operating System Principles, pages 237–250, Dec.
1995.

[16] G. E. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8), Apr. 1965.

[17] J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson, and
B. B. Welch. The Sprite network operating system. IEEE Computer,
21(2):23–36, Feb. 1988.

[18] M. Satyanarayanan. Scalable, secure, and highly available distributed
file access. IEEE Computer, 23(5):9–18,20–21, May 1990.

[19] A. S. Tanenbaum, M. F. Kaashoek, R. V. Renesse, and H. E. Bal.
The Amoeba distributed operating system-a status report. Computer
Communications, 14:324–335, July 1991.

[20] A. S. Tanenbaum, S. J. Mullender, and R. van Renesse. Using sparse
capabilities in a distributed operating system. In Proceedings of the
International Conference on Distributed Computing Systems, pages
558–563, May 1986.

[21] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald,
H. Hoffman, P. Johnson, J. Kim, J. Psota, A. Saraf, N. Shnidman,
V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal. Evaluation
of the Raw microprocessor: An exposed-wire-delay architecture for
ILP and streams. In Proceedings of the International Symposium on
Computer Architecture, pages 2–13, June 2004.

[22] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, P. Iyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman,
Y. Hoskote, and N. Borkar. An 80-tile 1.28TFLOPS network-on-chip
in 65nm CMOS. In Proceedings of the IEEE International Solid-State
Circuits Conference, pages 98–99, 589, Feb. 2007.

[23] VMWare, Inc. VMCI Sockets Programming Guide for VMware Work-
station 6.5 and VMware Server 2.0, 2008. http://www.vmware.com/
products/beta/ws/VMCIsockets.pdf.

[24] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee,
J. Kim, M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe,
and A. Agarwal. Baring it all to software: Raw machines. IEEE
Computer, 30(9):86–93, Sept. 1997.

[25] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. Brown III, and A. Agarwal. On-chip
interconnection architecture of the Tile Processor. IEEE Micro,
27(5):15–31, Sept. 2007.

85




