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Revive an old topic: cache 
coherence ?
• Software-managed coherence was a popular topic

– Been around at least a couple of decades

– Mostly targeting multiprocessors or clusters of workstations

• World is changing

– Many cores on a single die

– Much higher bandwidth and lower latency

– Running out of power budget

• World is not changing

– Legacy code written in shared memory programming model

– Coherent memory requirement from ISVs
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What is the right trade-off: HW vs. SW?



Why Software-Managed Coherency?
(Why not hardware)

• No or minimal hardware!

– Limited power budget on many-core

– High complexity and validation effort to support hardware cache 
coherence protocol

• Flexibility: Dynamic reconfigurable coherency domains

– Multiple applications running in separate coherency domains

– Good match to SCC

– Enable more optimizations: load balancing etc.

• Emerging applications

– Most data are RO-shared, few are RW-shared

– Coarse-grained synchronization: Map-Reduce, BSP, etc
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SW-managed coherency can achieve comparable 
performance



SCC architecture, a brief overview
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Outline

•Motivation

•Overview of SW managed coherence

•Implementation and Optimizations

•Our results

•Challenges for future research
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Overview

• Shared virtual memory can be used to support 
coherency

– Similar to DSM

– A single shared memory view
to applications

– Seamlessly sharing data 
structure and pointers among
multiple cores

• No special HW support is
needed.
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Even worse, what to do

if one node is modified at 

one core?

Why Shared Virtual Memory?
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All data potentially needed

should be transferred



Why Shared Virtual Memory? (Cont.)
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Physical Shared Space
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Why Shared Virtual Memory? (Cont.)
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Partially shared

Release consistency

Ownership

Cut down 

coherent overhead
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Shared Virtual Memory Model
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Language and Compiler Support

• New “shared” type qualifier

> shared int a; //a shared variable

> shared int* pa; //a pointer to a shared int

> shared int* shared pb;  //a shared pointer to a shared 
int

• Static checking rules enforced by the compiler

> No sharing between stack variables

• foo() {shared int c;}

> Shared pointer can‟t point to private data

• int* shared pc;

> And more on pointer assignment and casting etc.



Runtime Support

• Partial sharing on page-level
– Only those actually shared are subjected to consistency 

maintenance

• Release consistency model
– Consistency only guaranteed at the sync points (release,

acquire)
> Significantly reduce coherence traffic

– Many applications already follow RC model
> E.g. sync points: pthread_create, mutex, barrier, … 
> Release/Acquire can be inserted automatically at these points

• Ownership rights
– No coherence traffic until ownership changed
– They are treated as hints (i.e. optimization opportunities)

> Fault on touch: fault if touch something owned by others
> Promote on touch: promote to “jointly accessible”
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Object Collision Detection Example: 
Share Memory Approach

typedef shared struct Ball Ball;

struct Ball {

Vector position, velocity;

int area_id;

Ball* next; // balls in the same area

};

Ball* areas[N];

void collision(Ball* all) {

// do collision detection

// and compute the new position/velocity

……

}

void simulate()

{

for(i=0; i<N; i++)

thd[i] = spawn(collision, areas[i]);

for(i=0; i<N; i++)

join(thd[i]);

update_area_array();

}  
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• It’s just like writing a pthread program

• Implicit sync points at spawn, join,

the beginning and ending of collision()



• Lots of code are spent in data

serialization and reconstruction.

• Is error-prone and might dead-lock.

• All data are sent even not used.

Example: Message Passing Approach

typedef struct Ball Ball;

struct Ball {

Vector position, velocity;

int area_id;

Ball* next; // balls in the same area

};

Ball* areas[N];

int get_area_id(Ball* b) { …}

void collision(int id)

{

// receive the data objects

// and recreate the structure

for(i=0; i<N; i++) {

areas[i] = NULL;

while(recv(id, buf)) {

b = malloc(sizeof(Ball));

*b = *buf;

b->next = areas[i];

areas[i] = b;

}

}

// do collision detection

// and compute the new pos/vel

……

// send back new data

// and free the local objects

for(b=all; b; b=next) {

new_id = get_area_id(b);

send(new_id, b);

next = b->next; free(b);

}

}

void simulate()
{
// spawn
for(i=0; i<N; i++)
thd[i] = spawn(collision, i);

// send  data to the individual threads

// and destroy the objects

for(i=0; i<N; i++) {

for(b=areas[i];b;b=next) {

for(j=0; j<N; j++) send(j, b);

next = b->next; free(b);

}

}

// gather data back

// and recreate the link list

for(i=0; i<N; i++) {

areas[i] = NULL;

while(recv(id, buf)) {

b = malloc(sizeof(Ball));

*b = *buf;

b->next = areas[i];

areas[i] = b;

}

}

// join

for(i=0; i<N; i++)

join(thd[i]);

} 
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Optimized implementation for SCC

– Leverage shared memory (SHM) support in SCC

– Golden copy is saved at SHM, needn‟t communicate with any 
other nodes

– Do memcpy between cacheable private memory & 
uncacheable SHM
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Scalability of both implementations on SCC
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• Significantly improved scalability, up to 20X on 32 cores.

• More optimizations (WIP)
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SW managed coherence vs. HW coherence
on 32way SMP server (process per core)

• Software managed coherency is as efficient as 
hardware cache coherency
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Emerging usage models

• Separated coherency domains

– Whole system partitioned into multiple coherency domains

– Dynamic reconfigurable

– Mixed mode: share memory in one domain with MPI in others
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• Multiple SCC chips

– When an application is massively parallel, more SCC chips 
can be connected together to form a uniform wider 
coherency domain
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Summary

•We believe software managed coherency on 
non-coherent many-core is the future trend

•A prototyped partially shared virtual 
memory system demonstrates it can be:

− Easy to program

− Comparable performance vs. hardware coherence

− Adaptive to future advanced usage models

•Also opens new research opportunities
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Challenges for future research

•This revived “software managed coherency” 
topic opens many “cold cases”

•What are the right software optimizations?
− Prefetching, locality, affinity, consistency model

− And more…

•What is the right hardware support?

•How do emerging workloads adapt to this?

Please contact us if you are interested in this topic.
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