
Sai Luo, Xiaocheng Zhou, Tiger Hu Chen,
Shoumeng Yan, Ying Gao

Intel Labs China

Wei Liu, Brian Lewis, Bratin Saha
Programming Systems Lab

Software Managed
Coherency on SCC

Intel Labs Single-chip Cloud Computer Symposium
March 16, 2010

Revive an old topic: cache
coherence ?
• Software-managed coherence was a popular topic

– Been around at least a couple of decades

– Mostly targeting multiprocessors or clusters of workstations

• World is changing

– Many cores on a single die

– Much higher bandwidth and lower latency

– Running out of power budget

• World is not changing

– Legacy code written in shared memory programming model

– Coherent memory requirement from ISVs

77

What is the right trade-off: HW vs. SW?

Why Software-Managed Coherency?
(Why not hardware)

• No or minimal hardware!

– Limited power budget on many-core

– High complexity and validation effort to support hardware cache
coherence protocol

• Flexibility: Dynamic reconfigurable coherency domains

– Multiple applications running in separate coherency domains

– Good match to SCC

– Enable more optimizations: load balancing etc.

• Emerging applications

– Most data are RO-shared, few are RW-shared

– Coarse-grained synchronization: Map-Reduce, BSP, etc

78

SW-managed coherency can achieve comparable
performance

SCC architecture, a brief overview

79

R

M
C

M
C

M
C

M
C

24 Tiles

24 Routers

48 IA cores

Core 1

Core 2

L2 Cache

L2 Cache

ROUTER Message BufferROUTER

M
E

M
O

R
Y

C
O

N
T

R
O

L
L
E

R

• 45nm Hi-K metal-gate silicon

• 48 IA cores

• 6x4 2D mesh network

• 4 DDR3 memory controllers

• On-die message buffers

• No hardware cache

coherency

R R

R R R

1TILE

Dual-core Tile

Outline

•Motivation

•Overview of SW managed coherence

•Implementation and Optimizations

•Our results

•Challenges for future research

80

Overview

• Shared virtual memory can be used to support
coherency

– Similar to DSM

– A single shared memory view
to applications

– Seamlessly sharing data
structure and pointers among
multiple cores

• No special HW support is
needed.

81

Cores in SCC have

separate address spaces

shared
virtual memory

core

1

application

core

2

core

N
…

Even worse, what to do

if one node is modified at

one core?

Why Shared Virtual Memory?

82

Buffer

Core 1 Core 2, …

Binary

Tree

Buffer
Programmer

serializes

into a buffer

Transfer to other core(s)

Programmer

recreates

the binary tree

Separate

Memory Spaces

without Coherency

82

All data potentially needed

should be transferred

Why Shared Virtual Memory? (Cont.)

83

Physical Shared Space

Core 1

Binary Tree

Core 2, …

Explicit data management goes

away

Only data really needed are

accessed

But:

SCC has no hardware

cache coherency,

So the shared space must not be

cached

It is a performance hit

83

Or

Why Shared Virtual Memory? (Cont.)

84

Virtual Shared Space

Core 1

Binary Tree

Core 2, …

Shared data are allocated in the

shared virtual address space

They are cacheable

(higher performance)

Data coherency are managed by

software

Uses don’t care about where the

data locate and how many copies

exist

84

How

about

Partially shared

Release consistency

Ownership

Cut down

coherent overhead

85

Shared Virtual Memory Model

85

VA

Shared

Core 1 virt addr space Core 2 virt addr space

Shared data

are allocated

here

SW can indicate regions

being exclusively

accessed:

Owned by core 1

VA

Private

VA

Private

VA

Shared

These regions can

be handed over:

Owned by core 2

No particular

owner:

(jointly accessed)

85

86

Language and Compiler Support

• New “shared” type qualifier

> shared int a; //a shared variable

> shared int* pa; //a pointer to a shared int

> shared int* shared pb; //a shared pointer to a shared
int

• Static checking rules enforced by the compiler

> No sharing between stack variables

• foo() {shared int c;}

> Shared pointer can‟t point to private data

• int* shared pc;

> And more on pointer assignment and casting etc.

Runtime Support

• Partial sharing on page-level
– Only those actually shared are subjected to consistency

maintenance

• Release consistency model
– Consistency only guaranteed at the sync points (release,

acquire)
> Significantly reduce coherence traffic

– Many applications already follow RC model
> E.g. sync points: pthread_create, mutex, barrier, …
> Release/Acquire can be inserted automatically at these points

• Ownership rights
– No coherence traffic until ownership changed
– They are treated as hints (i.e. optimization opportunities)

> Fault on touch: fault if touch something owned by others
> Promote on touch: promote to “jointly accessible”

87

Object Collision Detection Example:
Share Memory Approach

typedef shared struct Ball Ball;

struct Ball {

Vector position, velocity;

int area_id;

Ball* next; // balls in the same area

};

Ball* areas[N];

void collision(Ball* all) {

// do collision detection

// and compute the new position/velocity

……

}

void simulate()

{

for(i=0; i<N; i++)

thd[i] = spawn(collision, areas[i]);

for(i=0; i<N; i++)

join(thd[i]);

update_area_array();

}

88

• It’s just like writing a pthread program

• Implicit sync points at spawn, join,

the beginning and ending of collision()

• Lots of code are spent in data

serialization and reconstruction.

• Is error-prone and might dead-lock.

• All data are sent even not used.

Example: Message Passing Approach

typedef struct Ball Ball;

struct Ball {

Vector position, velocity;

int area_id;

Ball* next; // balls in the same area

};

Ball* areas[N];

int get_area_id(Ball* b) { …}

void collision(int id)

{

// receive the data objects

// and recreate the structure

for(i=0; i<N; i++) {

areas[i] = NULL;

while(recv(id, buf)) {

b = malloc(sizeof(Ball));

*b = *buf;

b->next = areas[i];

areas[i] = b;

}

}

// do collision detection

// and compute the new pos/vel

……

// send back new data

// and free the local objects

for(b=all; b; b=next) {

new_id = get_area_id(b);

send(new_id, b);

next = b->next; free(b);

}

}

void simulate()
{
// spawn
for(i=0; i<N; i++)
thd[i] = spawn(collision, i);

// send data to the individual threads

// and destroy the objects

for(i=0; i<N; i++) {

for(b=areas[i];b;b=next) {

for(j=0; j<N; j++) send(j, b);

next = b->next; free(b);

}

}

// gather data back

// and recreate the link list

for(i=0; i<N; i++) {

areas[i] = NULL;

while(recv(id, buf)) {

b = malloc(sizeof(Ball));

*b = *buf;

b->next = areas[i];

areas[i] = b;

}

}

// join

for(i=0; i<N; i++)

join(thd[i]);

}

89

Optimized implementation for SCC

– Leverage shared memory (SHM) support in SCC

– Golden copy is saved at SHM, needn‟t communicate with any
other nodes

– Do memcpy between cacheable private memory &
uncacheable SHM

90

Linux

Core 1 Core 2

runtime

Core N

mmap

runtime runtime

…Linux mmap Linux mmap

PrivMem 1 PrivMem 2 PrivMem N

Physical Shared Memory (SHM)

Scalability of both implementations on SCC

0

5

10

15

20

25

1 2 4 8 16 32

S
p

e
e
d

u
p

of cores

BlackScholes - TCP Based

ART - TCP Based

BlackScholes - SCC Opt

ART - SCC Opt

• Significantly improved scalability, up to 20X on 32 cores.

• More optimizations (WIP)

91

SW managed coherence vs. HW coherence
on 32way SMP server (process per core)

• Software managed coherency is as efficient as
hardware cache coherency

92

0

5

10

15

20

25

30

1 2 4 8 16 32

R
e
la

ti
v
e
 P

e
r
fo

r
m

a
n

c
e

Thread Number

Black Scholes - Hardware

Black Scholes - Software

Art - Hardware

Art - Software

Emerging usage models

• Separated coherency domains

– Whole system partitioned into multiple coherency domains

– Dynamic reconfigurable

– Mixed mode: share memory in one domain with MPI in others

93

Domain #1

Domain #2

Domain #3

Non-coherent

MPI-based

scc_myo_bullet.avi
scc_myo.wmv

• Multiple SCC chips

– When an application is massively parallel, more SCC chips
can be connected together to form a uniform wider
coherency domain

94

A uniform

wider

coherency

domain

Another usage models

Summary

•We believe software managed coherency on
non-coherent many-core is the future trend

•A prototyped partially shared virtual
memory system demonstrates it can be:

− Easy to program

− Comparable performance vs. hardware coherence

− Adaptive to future advanced usage models

•Also opens new research opportunities

95

95

Challenges for future research

•This revived “software managed coherency”
topic opens many “cold cases”

•What are the right software optimizations?
− Prefetching, locality, affinity, consistency model

− And more…

•What is the right hardware support?

•How do emerging workloads adapt to this?

Please contact us if you are interested in this topic.

96

