22 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-18, NO. 1, JANUARY 1969

[5] E. L. Lawler, “Minimal Boolean expression with more than two
levels of sums and products,” 1962 Proc. 3rd Ann. Symp. on
Switching Circuit Theory and Logical Design, pp. 50-59.

[6] G. A. Maley and J. Earle, The Logic Design of Transistor Digital
Computers. Englewood Cliffs, N. J.: Prentice-Hall, 1963, ch. 6.

[7] D. L. Dietmeyer and P. R. Schneider, “A Computer-oriented
factoring algorithm for NoR logic design,” IJEEE Trans. Elec-
tronic Computers, vol. EC-14, pp. 868-874, December 1965.

[8] E. J. McCluskey, Jr., “Logical design theory of NOR gate net-
works with no complemented inputs,” 1963 Proc. 4th Ann. Symp.
on Switching Circuit Theory and Logical Design, pp. 137-148.

[9] J. F. Gimpel, “The minimization of TANT networks,” IEEE
7;70;15. Electronic Computers, vol. EC-16, pp. 18-38, February
1967.

[10] D. T. Ellis, “A synthesis of combinational logic with NAND or
NOR elements,” IEEE Trans. Electronic Computers, vol. EC-14,
pp. 701-705, October 1965.

[11] L. Hellerman, “A catalog of three-variable OR-INVERT and AND-
INVERT logical circuits,” IEEE Trans. Electronic Computers, vol.
EC-12, pp. 198-223, June 1963.

[12] R. A. Smith, “Minimal three-variable NOr and NAND logic cir-
cuits,” IEEE Trans. Electronic Computers (Short Notes), vol.
EC-14, pp. 79-81, February 1965.

[13] J. P. Roth, “Systematic designs of automata,” 1965 Fall Joint
Computer Conf., AFIPS Proc., vol. 27, pt. 1. Washington,
D. C.: Spartan, 1965, pp. 1093-1100.

[14] R. E. Miller, “Combinational circuits,” vol.
Theory. New York: Wiley, 1965.

[15] J. P. Roth, “Algebraic topological methods for the synthesis of
switching systems: I,” Trans. Am. Math. Soc., vol. 88, pp. 301-
326, July 1958.

[16] D. L. Dietmeyer and P. R. Schneider, “Identification of sym-
metry, redundancy, and equivalence of Boolean functions,”
IEEE Trans. Electronic Computers, vol. EC-16, pp. 804-817,
December 1967.

[17] ——, “Combinational switching function sub-routine set,”
9.4.062, COMMON library, IBM Corp. DP Program Informa-
tion Dept., Hawthorne, N. Y., July 1966.

[18] Y. H. Su and D. L. Dietmeyer, “Computer reduction of two-
level multiple-output switching circuits,” this issue, pp. 58-63.

1 in Switching

A Methodical Approach to Analyzing and Synthesizing
a Self-Repairing Computer

DOUGLAS C. DORROUGH

Abstract—The literature on computer reliability is replete with
very convincing arguments for the need and the use of self-repair
techniques, as a viable approach to significantly enhancing the relia-
bility of both maintainable and nonmaintainable computers. How-
ever, it would seem that no comprehensive and coherent program for
the development and optimal employment of such techniques exists.
This means that no method exists in the open literature for deciding
the following : 1) what self-repair techniques, taken singularly or in
combination, provide the greatest improvement in reliability; 2) what
methods are optimum for initiating fault diagnosis and self-repair by
redundancy and replacement; 3) what constitutes a closed set of self-
repair techniques and what theory can be formulated to demonstrate
the set’s completeness; and 4) what is the effect of self-repair on the
total system relative to design, maintenance, availability, and so
forth.

Although several investigators have addressed themselves to
some of the subproblems presupposed by items 1) through 4), no one
seems to have considered the possibility of resolving such problems
by the development and methodical employment of a comprehensive
systems-effectiveness measure. Such an approach, together with
some of its results, is described in this paper.

Index Terms—Configurational redundancy, fault diagnosis,
functional redundancy, optimally reliable computing systems, relia-
bility, self-repair, self-repairing systems, system-effectiveness mea-
sure.

Manuscript received July 20, 1967. This work was supported by
Douglas Aircraft Company, Inc., under Program Account 80271-019.

The author was with McDonnel Douglas Corporation, Advanced
Electronics Department, Santa Monica, Calif. He is now with the
Department of Philosophy and Computer Science, Louisiana State
University, Baton Rouge, La. 70803

1. STATEMENT OF THE PROBLEM

N THE literature on system theory, the concept of
I[self-repair is not new. It has been proposed and dis-

cussed by numerous individuals (see, for example,
[t]-[16]). Research in this area is presently pursued
by several groups within industrial and university en-
vironments. In general, these research efforts are along
two distinct lines. One line regards self-repair as a re-
generative process in which a failing substructure is
partially or completely renewed. The other line regards
self-repair as a process in which redundant structures
within the system are employed by the system to effect
either a partial or complete restoration of some sub-
function. To some extent, the choice of approach is
conditioned by a particular researcher’s definition of
“failure.” For the purposes of this paper, the term
“failure” is to be synonymous with the term “error.”
This definition implies that any dynamical system is to
be treated informationally with respect to both failure
and repair. While there is some controversy as to
whether or not all dynamical systems can be so treated,
there is mounting evidence [17] that most mechanical,
electromechanical, and electronic systems are amenable
to some extension of the Shannon—-Weaver model.

1.1 Definition of “Self-Repair” and Related Terms

In the most general sense of the term, “self-repair” is
applied to those (and only those) dynamical systems

DORROUGH: METHODICAL APPROACH TO SELF-REPAIRING COMPUTER 23

that, by means of redundancy, monitoring, and learning
capacity, have the ability either to correct or to com-
pensate for internal error. This definition embraces three
key terms that are themselves in need of definition.

The first is the word “redundancy” which may be
generically defined as the employment of two or more
structures to accomplish the same task. Within the con-
straints of this definition, two subtypes of redundancy
can be delineated: configurational redundancy and func-
tional redundancy. The former is defined as the employ-
ment of two or more lzke structures (physical or sym-
bolic) to accomplish the same task. The latter can be
specified as the employment of two or more unlike struc-
tures to accomplish the same task. An example of the
former might be a jet aircraft employing three identi-
cally structured engines concomitantly; an example of
the latter might be the employment, at different times,
of both oars and a sail on a small boat. It is clear that
both types allow for parallel as well as standby redun-
dancy.

The second key term of the definition is “monitor-
ing.” This word is intended to embrace that method-
ology and those techniques which allow for and enhance
a system’s ability to isolate error sources within itself.

The third and final key term is “learning capacity.”
This means the potential of a system for acquiring,
prior to (off-line) or during (on-line) task accomplish-
ment, knowledge of its own error sources as well as
knowledge of its own control functions.

1.2 The Problem

In terms of the foregoing definitions and distinctions,
the general problem of developing a self-repairing sys-
tem becomes the following set of specific problems.

1) Accurately specifying a system'’s self-repair capa-
bility such as to ensure the following:

a) the allocation of redundancy can be optimized;

b) quantitative comparisons among self-repairing
systems can be obtained.

2) Extending the mathematical theory and body of
techniques for automatic fault location so that
some resolution of the dichotomy between time-
optimal and item-optimal solutions to automatic
checkout can be obtained.

3) Developing and/or implementing learning tech-
niques that will accomplish the following:

a) optimize on-line learning (by a system) of the
means and variances of error from sources
within the system;

b) show promise of allowing a system, off-line, to
learn to specify its own controller.

Problem 1) entails the development of an adequate
system effectiveness measure, that is, one that measures
not only length of performance but also quality of per-
formance. It also involves development of a technique,
or set of techniques, for applying that measure to the
actual design of a self-repairing system.

:Problems 2) and 3) essentially reduce to the problem
of specifying an informational network that will opti-
mally check itself, optimally check the rest of the system,
employ existing redundant (both configurational and
functional) structures to effect repair, and, where neces-
sary, modify its internal structure with respect to
changes in its error-producing environment.

It is obvious that the ultimate objective in the solu-
tion of the entire self-repair problem (as stated above) is
a very large and difficult one. This paper outlines a pro-
posed approach and some of the specific techniques es-
sential to solution of some of the problems. In a sense,
the discussions contained are programmatic and reflect
those ultimate necessary conditions for arriving at an
acceptable self-repairing android. Many subdisciplines
and methodologies that are relevant to the topic of self-
repair are either only mentioned or entirely ignored.
The controlling reason for this is to be found in the
fact that, before a particular discipline can be considered
relevant or irrelevant to the self-repairing problem, the
problem must be carefully delineated and what would
constitute an adequate solution defined.

2. METHODOLOGY
2.1 Evaluation and Synthesis of Self-Repairing Systems

The problem of self-repair, with respect to computer
systems and subsystems as well as with respect to their
networks, can be described in terms of two factors: de-
tection of failure and correction of failure. This does not
mean that these two factors are always physically
separable, but only that they can be separated con-
ceptually. Now, assuming that the terms “error” and
“failure” are synonymous, it is virtually certain that the
correction of error can be obtained only by some sort of
redundancy. With respect to error detection, redun-
dancy is not an absolute requirement; that is, in certain
situations, something other than a redundant structure
could be employed to detect an error. However, the ex-
tensive and effective employment by designers of re-
dundant structures to detect errors in digital networks
and systems in general indicates the importance of re-
dundancy for facilitating that factor.

In view of these considerations, the significance of re-
dundancy in any effort to enhance the self-repairing
capability of a system becomes very large. It is, there-
fore, necessary to discuss briefly the needs for a method
to optimize the employment of redundant structures.

2.1.1 The Need for a System Effectiveness Measure
(SEM)

As indicated in Section 1, all redundancy, whether
symbolic or physical, parallel or standby, reduces to two
distinct types: configurational redundancy and func-
tional redundancy. Besides the distinctions among
types of redundancy, it is useful to distinguish between
levels of redundancy. At least two levels may be artic-

24

ulated: digital network redundancy, that is, redun-
dancy at the level of gating networks; and system and
/or subsystem redundancy, that is, redundancy at the
level of system organization.

Employment of redundancy at the first level leads al-
most certainly to a consideration of the powerful tech-
nique of interwoven networks, with the concomitant
problem of maximizing the number of errors detected
and corrected while minimizing the number and net-
work levels of switching devices used. Employment of
redundancy on the second level leads to the problems
associated with double or triple subsystems, possibly
involving decision logic, and to the optimization of soft-
ware techniques for diagnosis and checkout.

All of these problems can be subsumed, however,
under the single most significant design problem in-
volved with the use of redundant structures at any level.
This problem is one of accurate evaluation of the effects
of different kinds of redundant structures and the allo-
cations of such structures. This is to say that there is no
adequate and uniform method, within most of the open
literature, that may be employed so as to optimize the
use of redundant structures either to preclude error, or
to compensate for it, or both. It is true that several in-
vestigators have developed results that are impressive
solutions to some of the more straightforward subprob-
lems of system optimization with respect to redundancy.
Thus, Dick [8], [9], Einhorn [11], and Kletsky [14]
have addressed themselves with some success to decid-
ing which configurationally redundant technique, taken
singly, provides the greatest improvement in system re-
liability. Pierce [18], by deriving limit theorems for sys-
tems displaying exponential degradation, has de-
termined the optimum configurational redundancy to
achieve “on-line” self-repair. It would seem, however,
that the methods proposed by these men apply only to a
specific type of redundancy (configurational), assume
statistical independence with respect to the occurrence
of error, and assume that the underlying statistical dis-
tribution for system failure is identical to that for its
respective classes of components.

2.1.2 Description of the SEM to be Employed—Per-
formance Capability Measure (PCM)

As a result of these and other considerations, several
new techniques for measuring the effects of different
kinds and allocations of redundant structures have been
developed by Dorrough [19], [20] and applied on the
system level [10]. Of these techniques, one that indi-
cates a large application potential has been further de-
veloped and is used to accomplish the following:

1) Imply, initially, both the type of redundancy on
the system organization level and the type of re-
dundancy on the logical network level for several
types of gating devices.

2) Provide a means for evaluating the effects of both
configurational and functional redundancy, at
both levels, on system and/or network self-repair.

IEEE TRANSACTIONS ON COMPUTERS, JANUARY 1969

The technique indicated is best described in terms of a
Performance Capability Measurement (PCM). Thus, if
some nominal value for each critical system parameter
(that is, some constant which bounds the performance
of a dynamical system, and which if exceeded, would be
a sufficient condition for task failure), as well as the
maximum allowable error in that parameter, can be
formulated, PCM can be defined in the following way:

PCM = 3 Pi(E:(8p < e/ui o, b (1)
=0

where

P,(t) =probability that a system (or network) occupies
the <th degraded state at time ¢

E.(AP < é/[.l.,', g L, 6)

= probability that the error Ap in a critical system
parameter is less than some maximum allowable
¢, given that the system isin the 7th state at time ¢
and that yu; and ¢; are the mean and standard
deviations, respectively, of the error in that criti-
cal system parameter
n=number of noncatastrophic system states.

It should be noted that the term “system state” is not
restricted in meaning to that of a single performance
mode but may also indicate sequences and/or combina-
tions of such modes. It is evident that if system states
are restricted to single performance modes, the contri-
bution of error from modes, that is, states, occupied
previous to time ¢ will be ignored. To account for alter-
nate system histories and those error contributions
caused by previously occupied modes, it would be neces-
sary (in most cases, for computation reasons) to define
system states as sequences and/or combinations of
performance modes. In order to handle such sequences
and combinations, it would be necessary to utilize the
technique of partitioned stochastic matrixes first
examined and proposed in 1964 by Dorrough ([19], pp.
25-28) and later ramified and rigorized by Pierce ([18],
pp. 162-170).

In evaluating the PCM [Equation (1)] it is clear that
the E; function could be set to one in those cases where
the quantity of error generated by any particular state
is either unknown or is irrelevant. This, of course, would
permit concentration upon the P;(¢) function. Where
system degeneration is assumed to be Markovian in
nature, the method for evaluating P;(¢) can be set forth
in terms of the following three cases.

Case 1: Solution of & failures out of # identical com-
ponents or subsystems, called single sequential flow
(Fig. 1).

Case 2: Difference-equation formulation of a sequen-
tial state flow graph or multiple sequential flow (Fig. 2).

Case 3: Matrix formulation of arbitrary flow equa-
tions.

Fig. 1 shows Case 1, the simplest configuration for
state transitions. The values of \ are the transition rates
per some unit of time, When all of the N'sare equal (that

DORROUGH: METHODICAL APPROACH TO SELF-REPAIRING COMPUTER 25

% A A My
0 1 2 3 N1 N
A, TRANSITION RATE FROM ONE STATE TO ANOTHER

Fig. 1. Single sequential flow.

STATEL A, STATE 2 /\2_ 3 STATE 3

STATE W)

Ao

STATE N (FINAL STATE)

Fig. 2.

Sequential state flow.

is, with respect to failure rate, all components or sub-
systems are identical) and the system is initially in
state 0, the state occupancies expressed as a function of
\ are as follows:

(ke
I'(k+ 1) (2)
= P (occupancy of kth state at time ¢)

= (A)ke M M YN—1-XgX
P =3 = [
= Tk + 1) 0 I'(N)
ADE-1g e

I'(k) “)
= P (time { required to reach kth state).

Px(t;\) =

©)

QuK;N) =

Note that Pg(¢; N) is the Poisson distribution and that
Q.(k; \) is the Poisson’s dual, the gamma distribution.

When the values of \ are not equal, as in Case 2, a set
of simultaneous equations must be solved. Under such
conditions, let us assume that \;, ;53—\ and that X, —u;
in Fig. 2. The states are ordered according to their proba-
ble occurrence, and hence are sequential. Accordingly,
if a short time interval At is considered, the occupancy
probabilities may be written as

Pt + A1) = (1 — AL — pAY) Pi(h) ®)
+ NiaAtP; 4 (f) + €
where 1 <7< N.
Pyt + Af) = (1 — MAL— wADP1(H) + e (6)
N—2
Py(t + Al = Py(D) + 22 pAtPi() o
=1
+ Av_1AtPN_1Af + €

€
lim {—} = 0.
a—0 LAf
Rearranging terms and letting At—0 results in the
following differential equations:
dP;(t)
dat
where 1 << N,

when

= N1 Pia() — (s + o) Pi(?) 8)

dPy(t)

e SR S10) 9)
dPN(l) N—2
= ;0 wiPi(f) + Ay—1Py_1(0) 0

+ Px(?).

These are most easily solved by reformulating the
equations as a Laplace transform:

N1 Pia(S)

P;S =
2 S|+ u) + S|

(11)

where 1 <7< N.

The same reformulation can be effected for P;(S) and
Pyx(S). The expressions for P;(f) are easily found by the
initial values of state occupancy and the technique of
partial fraction expansions. For (11), P;(¢) is a sum of
the terms of the form «; exp { —()\]-+,u,-)t} when they
are the coefficients from the partial fraction expansion.

Case 3 has the following matrix formulation:

(1 — 2\l AoAf -+ - AxoAt
AorAt (1 — SApAY) - - - AniAl
Aozl A2Af <« - AN2AL
Y AyAl - 1 2
Po([) €0 Po(t + At)_‘
Py € Pi(t + A?)
. Pz(t) + €2 = Pz(t + At)
Pn (1) e Px(t + Ab)
This, in turn, gives the differential equation
—2ZXo: Ano < Ano | [Po(f) Py(t)
Mr —2Au o Aw || Pa(®) Py(1)
)\02)\12 M >\N2 Pz(t) = -d—t' Pg(t) (13)
I_ Av A -+ O Px() Px(®)

which can be transferred into the Laplace matrix form:

S+ 2N —Ap « =Axno | [Pol(S)
—Xor S+ 2 - =w1 || Pi(S)
—}02 —'AIZ ‘ —‘ANZ P2(S)
[TP I |)
Py(0+) s
Py(0+)
= P2(9+)

L pwo)

26

These are solved by standard Laplace transform meth-
ods and inverted, with P;(0+) as the initial condition of
state <.

In describing the kind of stochastic process discussed
in this paper, it is necessary that something be said about
hazard functions. The hazard function of a transition
probability is always defined as the conditional probabil-
ity k(t) of a transition if one has not occurred at time ¢.
In (12) through (14), X corresponds to the hazard func-
tion. Constant hazard functions lead to exponential dis-
tributions. Other distributions, such as the Weibull or
the extreme value, are given by nonconstant hazard
functions. The form of (13) is unchanged, except that the
A factors are replaced by the new hazard function.

With respect to the evaluation of E;(Ap <e/us, 0, &, €)
under conditions of Markov degeneration, one must first
consider the probability of an 7th state at time ¢, P;(¢).
The time derivative of this quantity is generally two-
fold: 1) the rate at which the given system or network
enters the state P;+(¢), and 2) the rate at which it leaves
the state P;=(¢). This is given by

L i) = Py — PO, (15)

dt

For example, if the states are Poisson distributed, then

(AD)* :
Pi(t) = 5 e =TI\, 451), (16)
7!
and for a gamma distribution,
P-+(t) = Me—)\t = 7(}\ i t) (17)
2 I‘(,i) ’)
A .
P(¥) — M = y(\, 7+ 1;0). (18)

TG+

Assume that fi(r; ¢) is the probability density func-
tion of the time to transition from state ¢ if the system
entered state 7 at time {. Here 7 is the time to transition
from £ Assuming that all input terms to state 7 are re-
moved, the expression f;(r; £) is found from the general
occupancy probability of (13), where the initial condi-
tions are P;(t) =1, and P;(t) =0 when 75j. If the above
conditions are fulfilled, then P,(x), with x>, is the re-
quired f;(x —t; ¢). The probability of the system enter-
ing state 7 at time 7 and leaving at time ¢, t>7, is then
given by

Pr(n)fi(t — 73 1) = ai(t — 75 7). (19)
The quantities P;(f) and P;(¢), respectively, are given
by

P,(t) = f tf eoPﬁ(x)f;(y — x; x)dydx (20)

and

P = [Pyt — s s (21)

IEEE TRANSACTIONS ON COMPUTERS, JANUARY 1969

P;*(t) is derived from the initial conditions associated
with the transition matrix (13) when outputs from state
1 are removed. Then P;(f) gives the required P;+(¢). If a
path exists from state ¢ through intermediate states to
state j, removing the outputs of state 7 is not allowed,
and the inputs to state 7 alone must be considered with-
out removing the outputs.

Assume that Dy(r; t) is the error in a critical system
parameter when the system is in state & for 7 seconds
after entering at time ¢. Then the expected mean of this
error is

w @ = [2Dt~ 20 [y - x5y

o (22)
= fo ft ar(y — x;) Di(t — x; x)dydx
and the expected variance is found by:
0r'2(f) = f tf °°ozk(y — x; %) D2t — x; x)dydx
oV
— w2 (1), (23)

Note that these quantities are already weighted by the
probability of the system occupying state & at time ¢;
hence, the expected error and error variance, respec-
tively, at time ¢ are

' (1)
ui(t) = ?k(—t)* (24)
and
i o’ 2(8)
ox2(t) = Pl) (25)

Now, the probability that the error caused by the kth
state is less than e is found from

I =f ge(%; e, o) dx (26)

where g (x; ui, 01) is the density function of error in the
kth state whose mean is u; and whose standard devia-
tion is ¢;. This may be approximated by a normal dis-
tribution or by a Gram—Charlier expansion of the
density function in terms of its moments. Additional
moments are found by

Pkl(t) fotf‘wak(y — x; %)

. {Dk(t — x;x) — uk(t)}jdydx.

I-lkj =

(27)

Normally, only a few of the moments are required be-
cause only a few items of the Gram—Charlier expansion
need be used.

After Ex(Ap <€/us, o, t, € is found, the PCM may
be easily evaluated. Note that nothing has been said
about whether the states are individual, or sequences,
or combinations of performance modes. All that is neces-

DORROUGH: METHODICAL APPROACH TO SELF-REPAIRING COMPUTER 27

sary is that the expression of Di(r;) be in some form
suitable for integration. This may be done by simula-
tion with curve fitting or by analytical methods. In
practice, the function Di(r; ¢) is usually simulated, ex-
pressed as a low-order polynomial, and integrated. In
the case of exponential distributions, evaluation of the
necessary integrals is remarkably straightforward.

For a method of evaluating the PCM discussed here-
in under those conditions where a system’s degradation
is non-Markovian, that is, where consideration of sys-
tem history during task accomplishment is necessary,
the reader is referred to the Extended Performance
Capability Measure discussed in [20].

2.1.3 Application of PCM to the Evaluation of a Sys-
tem

The application of the PCM to evaluating the system
effectiveness of a large computer-based system is
demonstrated in the Appendix of this paper. There a
typical ground-mode ballistic mission is presupposed,
and an inertial system for accomplishing that mission is
described and simulated. Three different computers,
each employing integrated circuitry, are involved in
three respective simulations of the control loop: 1) a
minimal computer composed entirely of irredundant
subsystems, 2) a computer whose redundancy was allo-
cated on a purely intuitive and pragmatic basis and
whose self-repair capability is off-line, and 3) a com-
puter (described in Section 3) whose redundancy allo-
cation was decided in terms of PCM and the methods of
Section 2.1.4 and whose self-repair potential is both on-
line and off-line.

Among the many results of these simulations, the fol-
lowing should be mentioned: 1) the minimal computer’s
contribution to platform misalignment began to equal
those of the other subsystems in the control loop after
the elapse of 12 000 hours, 2) the pragmatic computer,
whose self-repair function was accomplished off-line,
took 34 000 hours before its contributions to misalign-
ment equalled that of the other subsystems, and 3) the
computer whose self-repairing capability was optimized
by the techniques previously and subsequently dis-
cussed ran 124 000 hours before its contributions to
misalignment were equivalent to those of the other sub-
systems. These results become even more significant
when it is realized that the third computer gave the
highest PCM value only among a total of three possible
organizations and/or designs. With a higher number to
consider and where networks with learning capability
and multifunction logic ability are considered, even
larger PCM values can be expected. Because all of these
considerations involve applications of the PCM at the
digital network level as well as at the system organiza-
tion level, the error states may be quite numerous.
Hence, some method of partitioning the Markov transi-
tion matrices must be devised and utilized in order to
obtain some upper bound on the hazard rate and there-

by determine P;(t). The general method for doing this is
the next consideration.

Consider a network composed of two tiers of ran-
domly connected redundancy modified gates (Fig. 3),
that is, a configurationally redundant network. The
function of the network is to use the redundant informa-
tion on its »# input channels so as to produce more reli-
able information on its #z output channels. Further, z(r)
shall be defined as a random variable denoting the num-
ber of zero state inputs for the rth redundancy-modified
gate, and ¢;(r) =p[2(r) =i]. Now if an average is ob-
tained over all possible redundancy-modified gates and
over all possible errors within those gates, then the
transition matrix 7 is given by

do(r + 1) ¢o(7)
ou(r + 1) _ ¢1.(") . (28)
$u(r + 1) u(r)

Under the conditions of relatively small #, where the
number of performance states is not too large, (28) can
be easily solved so as to evaluate P;(t). However, with
the condition that # is relatively large, some technique
for collecting and/or partitioning the various states into
manageable sets must be devised. For the particular
problem at hand, the computation could be reduced by
trichotomizing the possible performance states into the
following: D =the one state in which the number of zeros
lies between 0 and A; E=the error state in which the
number of zeros lies between A and 1—A; and F=the
zero state in which the number of zeros lies between
1—A and 1.

Combining a theorem developed by Pierce ([18],
pp. 162-168) with the inequality information about the
cumulative sums of the columns of the 7" matrix of (28),
one can produce the U and S matrices of that theorem:

[Upp Upr Ubpr

U={({Ugp Ugr Usr (29)
LUrp Ure Urr
[Sop Spe Sbpr

S =1S8Sep Ser Skr|. (30)
LSFI) Sre Srr

The hazard rate N is then the probability of transition
from one of the nonerror states D or F to the error state
E. In this case A\ is not unique unless further specified.
However, the combining of all possible performance
states so as to have only three sets of such states pro-
vides an upper bound for A:

A< ma.x[(uED + pp) Gppt sEF)].

Within this upper bound it is possible to set A to any
one of several arbitrary values and then utilize such
values in (12) through (14) to obtain the quantity P;(¢)
in (1), which is the PCM.

28

It is clear that the technique of combining and/or
partitioning performance states indicated by (29) and
(30) allows for an effective method for computing € in
the function E;(Ap <e/ui, 05, t, €) of the PCM (1). This
is done by first assuming that the network in question is
of a certain size (where ¢ denotes the number of re-
dundancy modified gates within the network). The max-
imum number of multiple critical, subcritical, or criti-
cal/subcritical errors that a network, of size ¢, of such
gates corrects is then computed by conventional tech-
niques. (Critical error on the input of a redundancy
modified gate can be defined as the minimum number
of such errors sufficient to give an output error; subcriti-
cal error is any error which is not critical.) The value
obtained from this computation is the value assigned to
€. This means that during the time of accomplishment
of some task assigned to the network (such as conven-
tional digital logic perhaps involving computation), the
various single and multiple errors (that is, a single set or
multiple sets of zeros between A and 1—A) cannot at
any time ¢ combine so as to exceed e without the net-
work being declared in an intolerable, and hence catas-
trophic, performance state. Thus, it is clear by defini-
tion that the Ap [Equation (1)] of the various # number
of performance states are all less than ¢, and hence the
E; function of the PCM can be set to the value of
1 with PCM being evaluated solely in terms of the eval-
uation of P(¢) by the method previously described. In
such cases it is obvious that PCM =1—P,(¢).

2.1.4 Application to PCM to System Synthesis

The next problem that must be considered is the de-
velopment and employment of some procedure for de-
ciding the amount and allocation of redundancy which
will be best at each redesign step. Moreover, this pro-
cedure must permit the synthesizing of both optimal
netwroks and optimal systems. All of this, of course, as-
sumes that for every step some figure-of-merit, for a sys-
tem and/or network, is available. This figure-of-merit
would be used as a criterion for optimizing tradeoff be-
tween the improvement of a system’s or network’s PCM
value and some penalty such as cost, where the latter
term is construed generically in terms of weight, size, or
power consumption, as well as in terms of monetary
value.

One of the figures-of-merit that will be considered
here is denoted by M, and for networks is given by the
ratio

M =limln

R—ow

[P:(0)]
2 (31)

where R =number of redundant elements or subsystems.
For computer systems other than networks, M would
be given by
P,‘tEiA <e) ,-te
M=11mln[() (v = /I""a'; ’)] .
R—w

(32)

On the network level, where PCM =1—P,(¢), and

IEEE TRANSACTIONS ON COMPUTERS, JANUARY 1969

where a simple log failure probability with equal expo-
nential survival probabilities for, say, redundancy modi-
fied gating structures is assumed, the PCM for the unim-
proved network of such structures would be

In (PCM) = 3 In[1 = Pi()]

t=1

(33)

where 7 now denotes failure state ¢, for example, the
production of a critical error at the output of the ¢th
redundancy-modified gate.

Because the objective of the synthesis procedure is to
increase In (PCM) as cheaply as possible, it can be
asserted that in adding the allocated redundancy, that
step is optimal which gives the greatest ratio
{In[1=P/(®)]—In[t—Pi(®)]} /{c’ —ci}, where ¢ de-
notes cost.

Thus, if the redundancy R on some original network is
increased by k elements (where element denotes chan-
nels or switching nodes), and the figure-of-merit M also
changes to M’, then the optimal ratio « is

_exp [RiMiw)] — exp [(R. + DM sz, + B)]
- (Ri + k)ei — Ry

_€xp [RiM i) — exp [(Ri + B) M ()]

- (R: + k)ei — R '

[44

(34)

This holds, of course, for a network of redundancy-
modified gates in which only one input channel on one
gate need be operational (free of error) in order for the
network to be operational. This could easily be extended
to those cases where more than one operational channel
or gate is required for an operational network.

For the case in which R; is changed to R;+1 without
any change in M; the approximation given in (33)
becomes

- exp [RiM o)) {1 — exp [Mi(wy]} .

Ci

(35)

To completely clarify the procedure generated by
these considerations, the following steps can be articu-
lated:

Step 1: Synthesize the least costly network to do the
job.

Step 2: Generate #n sets of redundancy improvements.

Step 3: Order the sets of improvements according
to the decreasing ratio of {In 1—P/(f)—In
1—P,~(t)}/{c."—c,~}.

Step 4: Select the highest-order set for the first rede-
sign step toward improving the original net-
work.

Step 5: Return to Step 2, and start over for the next
improvement.

It is evident that Steps 1 through 5 can be accom-
plished, at least in part, by means of a computer pro-
gram in which the original network is simulated. The
optimality of such a program can be gleaned by first
considering a function ¢(k) which denotes the rate of

DORROUGH: METHODICAL APPROACH TO SELF-REPAIRING COMPUTER 29

increase of In[1 —P,(t)] per cost, evaluated at an incre-
mental cost of k. Select any set of improvements at ran-
dom and order it according to the decreasing ratio of
{[In(1—P/(®)]—In[1—Pi#)]}/{c/—ci}, giving the
function ¢ (k). The difference in incremental In [1 — P;(?)]
between this set of improvements and the optimum
¢’ (k) selected in order of decreasing ratio is the integral

Ac
— [Tlew - sw)a

the latter being nonpositive since ¢’(k) > ¢ (k).

It is clear from the definitions of P;(f) and M that re-
design Steps 1 through 5 can be applied on the network
level to both functional and configurational redundancy.
Hence, the synthesizing of networks using bias devices
and microprogramming suggested later (Section 2.2.2)
can be methodically and optimally accomplished.

- This five-step procedure describes a “deterministic”
search process which results in a system with the highest
PCM evaluation. More efficient procedures, based on
learning theory, have been developed in connection with
research on learning control systems. These procedures
are used to determine a vector which describes the
optimal state of a learning controller [21]-[23]. The ex-
tension and application of these procedures will be re-
ferred to as “probabalistic” because they involve those
stochastic variables associated with learning.

Extension of Matyas' simple adaptive random opti-
mization algorithm [24] has been found to have the best
convergence characteristics for high-dimension prob-
lems. A development of this algorithm is presented here
in an application to the present synthesis problem.

Let Step 1 in the above five-step procedure represent
the initial state of the system. Let this state be denoted
by a vector S(0) whose components s, sz, - - +, S, are
associated with elementary logic functions. (An elemen-

tary logic function here is the lowest-order network for

which redundancy will be considered; it may be a two-
input AND gate or an entire storage register.) The prob-
lem may now be stated as one in which a search is made
for a vector S for which

PCM(Sopt) = PCM(S), for all S.

Let S(k) denote the kth state of the system and
PCM [S(k)] an evaluation of the PCM function at S(&).
Let 8(k) be a stochastic vector process with variable
mean value and variable correlation matrix; that is

8(k) = d(k) + T(k)¢
where

E{s(k)} = d(®),

T'(k) is a transformation matrix, and £ is an #-dimen-
sional normal random vector with zero mean value and
unit correlation matrix. Consider now perturbations in
the state of the system of the form

S(k) + 6W(k)

where the notation 6® (k) denotes a realization of the
random process at the kth step. If

PCM[S(k) + 6™ (k)] > PCM[S(R)]

the step is considered a success and is denoted by Y (k)
=1; if, on the other hand,

PCM[S(k) + sM (k)] < PCM[S()]

the step is considered a failure and is denoted by V(%)
=0. The next state of the system is determined by the
decision rule

S+ 1) = S(k) when Y(k) =0
k+1)= {S(k) + 6M(k) when Y(£) = 1

and the parameters d(k+1) and T'(k+1) are a function
of their value at the kth step whether or not this step
was a success.

A specific application of the above is now offered. Let
the elements of S be odd integers, s;=1, 3, 5, - - -,
(¢=1, 2, - - -, n) which denote the number of inputs to
a majority element. The starting configuration S(0) will
include no redundancy; that is, s;=1 (=1, 2, - - -, n).
Adaptive random optimization may now be applied to
determine the vector S which results in a maximum
PCM evaluation. This vector specifies the amount of
redundancy and its distribution (that is, the number of
inputs to each majority device under consideration).

2.2 The Implementation of Self-Repairing Systems

In considering the reliability improvement of a digital
computer system, one can assume that such a system
consists of electronic components such as resistors and
transistors; logical function networks such as decoders,
counters, and registers; and subsystems such as memory
units and adder units. Therefore, in order to signifi-
cantly improve the reliability of the computer, all levels
of the computer structure must be improved. Some re-
search has been devoted to redundancy on the level of
individual components. Most of the results, however,
are seriously inadequate by reason of the cost, size, and
power consumption constraints of the system. More-
over, achieving statistical independence for error occur-
rence is almost impossible (see [20], pp. 47-50). As the
digital system becomes more complex, it demands com-
ponents of unrealistically high reliability to yield a reli-
able system. Thus, the levels at which reliability im-
provement can be advantageously applied are on the
network, subsystem, and system levels. Configurational
and functional redundancies in the forms of multi-
processor and multicomputer systems are some of the
approaches that have been taken to improve the com-
puter on the subsystem and system levels. On the net-
work levels, reliability improvement techniques have
been discussed in various places [5], [18], [25], [26].
All of these techniques, however, are limited to con-
figurational redundancy. Certain approaches such as
parallel, stand-by, redundant networks require addi-

30

tional detecting and switching circuits which themselves
contribute to the unreliability of the computer. The
network reliability improvement techniques described
in this paper are directed towards functional redun-
dancy as well as configurational redundancy. In par-
ticular, for configurational redundancy, interwoven
redundant logic will be considered, and for functional
redundancy, the use of multifunction logic will be dis-
cussed. It should be stated at this point that except for
parity checking, little attention is given to error codes
because their value in systems involving computation
is, at best, marginal (see [18], pp. 132-145). Finally,
the set of techniques briefly discussed is not a closed one.

2.2.1 On-Line Monitoring

Interwoven redundant logic is a form of configura-
tional redundancy that promises to be a valuable aid for
a logic design engineer in executing a self-repairing net-
work. An interwoven network is a logical network in
which the redundant input signals are interconnected
so that a maximum amount of statistical independence is
obtained between the various redundant inputs. The
error correction is achieved by inhibiting the propaga-
tion of the signal of the error-causing logical element.
The corrected signal is obtained with the aid of redun-
dant logical elements. Interwoven redundant logic can
be divided into the following two types: 1) redundancy-
modified gating, and 2) redundancy-using decision ele-
ments. The first type uses only regular logical gates.
The second uses such decision elements as threshold
devices and majority devices, either instead of or in
addition to regular gates. Two examples of each type
will be given. In all cases the monitoring and correction
of error is done on-line while performing regular digital
logic.

A simple logical network for achieving Z=A4B+4C,
which illustrates the error-correcting properties of the
first type of interwoven redundant logic, is shown in
Fig. 3. The signals 4, B, and C are quadrupled. The
logical functions performed by the gates shown are
such that D1=A41-42-B1-B2 and Z1=D14D24C1
+C2. Each output labeled Z is correct for any single
error in A< or Bi, some multiple-input errors, or a 1—0
errorin C1. For example, if a 0—1 error occursin 41, B1,
or both, D1 and D3 are still the correct value for 4 B. If
a 1—0 error occurs in A1 when the correct value of B is
1, the value of D1 and D3 will incorrectly be 0, but the
correctness of D2 and D4 will still result in each Z:
being the correct value of 4B+ C. The only time a Zi
output is incorrect for a single error is when the correct
value of AB is 0 and there is a 0—1 error in one Ci.

Frequently, a logic designer wishes to use NAND and
NOR gates rather than AND and OR gates. A network in
which the redundancy-modified gates are NAND and NOR
gates is also possible as, for example, in the network for
Z=ABC shown in Fig. 4. Each output labeled Z is
correct for any double error in A7 or Bi, any double

IEEE TRANSACTIONS ON COMPUTERS, JANUARY 1969

< <day RIS = I=8 L33
0 02 03 D4
3358 3 S 3 233 3 33
2 22 z 7
Fig. 3. AND/OR self-correcting network.

22 Jas

02
03
C1
c2
c3
01
D3
C4
C5
Cé
)]

02

c1
88
9

21 22 2

Fig. 4. Double error correction employing
redundancy-modified NAND/NOR gates.

1—0 error in C7, and some errors of greater multiplicity.
For example, if a 0—1 error occurs in 41 and 42, D1
is still correct. If a 1—0 error occurs in A1 and A4 when
the correct value of B is 1, D1 and D2 will incorrectly
be 0, but the correctness of D3 will result in each Zz
being correct. The only single or double error which will
cause an erroneous Zz output is a 0—1 error in one or
two Cz when AB is 1.

A threshold logic element is shown in Fig. 5. The out-
put Zis 1 if

Z Xi = 0’
=1

where the X ; are the inputs and 6 is the threshold value.
The X; may have a value which produces the effect of
a—1 in addition to the usual 0 and 1 inputs. In the
following example there are no —1 inputs. The synthe-
sis of the function Z=4B+C is given in Fig. 6 to illus-
trate the second type of interwoven logic using threshold
devices. The signal Di is correct for any single error in
Az or Bi; similarly, Zi is correct for any single error in
Ci. The threshold logic is triplicated because the gate
itself may be unreliable.

In each of the above examples it should be noted that
an error in A%, Bi, or Ci may represent an earlier error
in a gate, and at the analysis of an error in (7 is the same
as for an error in the first layer of gates.

DORROUGH: METHODICAL APPROACH TO SELF-REPAIRING COMPUTER 31

Xy X3 ... Xg

4

Fig. 5. Threshold logic element.

— 81
— B2
— 83

Al
| — A2
— A3
| B!
— B2
— 83

] (] 05
AND AND AND

L Cl
— C2

c3
| DI
— 03
—l
—— C2
—C3
— D1
— D2

0.2 0.2 0-2
OR OR OR

Pl 22 3

Fig. 6. Threshold element synthesis for Z=A4B+C.

The majority vote taker is a special form of a thresh-
old logic device which provides a means of deciding
which signal to use if signals which should be the same
are not. The synthesis of Z=A4B+ C using three-input
majority voters is shown in Fig. 7. The signal Zi is the
correct value of AB+C for any single error in A4, Bz,
Ci, D1, or E; since the other two correct Ez will result in
each Zi being correct. The two-out—of-three voters are
triplicated to increase the reliability of the output Zz.

Rules for interconnecting error-correcting elements
and the approximate reliability improvement obtained
thereby were developed by Pierce [18]. In general, for
a logic network to correct # errors, its redundancy-
modified gates must have (#+1) redundant inputs
yielding (n+1)? such gates. For example, the cost of
correcting two errors in a redundant network is nine
times that of a nonredundant network. Because of the
greatly increased cost for error correction using re-
dundancy-modified gates, it appears that the use of
threshold logic is the most economical means of net-
work configurational redundancy. Use of threshold logic
also offers the possibility of incorporating some of the
work now being done on adaptive networks to increase
reliability (see [27] and [28]).

2.2.2 Off-Line Monitoring

Besides on-line monitoring and/or correction, there
are off-line techniques that comprise programmed
check-routines, configurationally redundant structures
in stand-by mode, and multifunction logic devices. All
of these techniques are considered off-line since they re-
quire the interruption of normal system functioning in
order to isolate and correct the errors due to subsystem
failure.

Al Bl A2 B2 A3 B3

Dl 02 03
Cl c2 c3

g U

El E2 E3
E2E3 El | E3 El E2

[[11

2'3VOTER

2 3VOTER 2 3VOTER

l I 1

pal 22 Z3

Fig. 7. Single error correction employing majority logic.

With respect to the use of any programmed automatic
device for isolating faults that have occurred in a sys-
tem, the task of developing a search program is con-
siderable. Essentially, the problem reduces itself to two
subproblems: 1) the estimation of the probabilities of
error-generating failures lying in respective parts of the
system, and 2) devising optimum search policies based
upon these estimates. Although some work in this area
has been done and reported [29], [30], it has been en-
tirely confined to systems whose error-producing situa-
tions do not involve conditional probabilities. In this
respect, some present [31] and projected research in-
volves considerable effort in the direction of developing
a set of estimators which can be used in arriving at
adequate search policies for highly complex systems.

2.2.2.1 Teaming of Multifunction Logic: The tradi-
tional approach to building a logical function into a
computer has been to write the function in terms of the
logical operations AND, inclusive-OR, and NOT, and then
build the function from gates which realize these three
functions as well as from gates which realize the nega-
tion of the first two functions. Another approach is to
incorporate multifunction devices which, with a slight
adjustment, called biasing, can realize any one of a set
of functions. For example, such a device might be one
with three inputs which forms one function of two vari-
ables when the third input is 0, but a different function
of two variables when the third input is 1. Using micro-
programming to replace a failed logical network with a
network of biased multifunction devices is a form of
functional redundancy which seems to have promise as
a means of self-repair for networks for which no meth-
ods for the correction of failures by interwoven logic are
known, or for which known methods are too compli-
cated or expensive to be worthwhile. The advantage of
using multifunction devices rather than a traditionally
built new network is that one multifunction device can
be built into a computer as a possible replacement for
several different logical networks.

Among the existing multifunction devices are adders,
Rutz commutator transistors, integrated-circuit counter
adapters, and integrated-circuit half adders. Dunham

32

[32] discusses the use of the first two of these, and Doc-
tors [33] discusses the use of the others. In both of
these works and in the second part of [34], the relative
efficiency of different ways of forming logical functions
is discussed. However, very few general conclusions are
drawn and many factors which should be considered in
developing a criterion of optimality are not, although
many of them are mentioned. Hence, research needs to
be done to decide the criterion for selecting devices and
to find, if possible, an analytical means of determining
what kind of multifunction devices meet this criterion.
Investigation of this area is in progress [35].

As an example of biasing, the following shows how
logical functions can be formed from adders. All logical
functions can be formed from three basic functions: the
AND (-), inclusive-or (+), and NoT (—). However, it is
as easy to get two more—the exclusive-oR (Vv) and the
“if, and only if” (=)—from an adder as it is to get the
three basic ones, and these two can be used to simplify
some expressions. For example, (p-g) - (p+¢) is the same
as pvq, and (p-g)+(p+gq) is the same as p=g. These
five basic functions are achieved by biasing an adder.
Biasing an adder means that one or two of the adder’s
inputs are always fixed to either a 0 or a 1. For the in-
puts p, ¢, and 7, the adder produces the sum s and the
carry ¢ shown in the following table:

2 q 7 s c
1 1 1 1 1
0 1 1 0 1
1 0 1 0 1
0 0 1 1 0
1 1 0 0 1
0 1 0 1 0
1 0 0 1 0
0 0 0 0 0

When 7 is biased to 0, s=pwvq and c¢=p-¢g. When 7 is
biased to 1, s= (p=¢) and c =p-+¢. Hence, if 7 is biased
toland g to 0, s=p and c=p.

A logical network can be replaced by adders by mak-
ing the following one-to-one replacements: replace each
AND gate by an adder with 7 biased to 1, and replace the
output of the gate by the carry output of the adder.
Replace each or gate by an adder with r biased to 1, and
replace the output of the gate by the carry output of
the adder. Replace each inverter with an adder with r
biased to 1 and g to 0, and replace the output of the in-
verter with the sum output of the adder. Schematically,
it can be said that Fig. 8 may be replaced by Fig. 9.

One feature of Fig. 9 immediately noticed is that the
three outputs, AvB, C, and (4 -B)=C are not used; it
cannot be avoided in this case. However, in some cases
these extra outputs can be used so that the number of
adders in the new network is less than the number of

IEEE TRANSACTIONS ON COMPUTERS, JANUARY 1969

A.B
8

c_{>c,‘c

Synthesis of 4-B+C with gates.

(A-B* T

Fig. 8.

AVB

[A.B =

A.B1=C
|
1

ADDER

s

Fig. 9. Synthesis of 4-B+C with adders.

A AB
]

A-B

{A.B . (A-B)=AVB

Fig. 10. Synthesis of 4 ¥V B with gates.

A
B8 ADDER

0

A.B

Fig. 11. Synthesis of 4 V B with an adder.
ave AVBYC
A € — aooer
B ADDER - (A¥B).C (A-B) =[(AVB).C]
. A8 ADDER
' [(A¥B)-C) + (A-B)
Fig. 12. Synthesis of (4 Y B)-C+(4 - B).

gates and inverters in the old network. As a trivial exam-
ple, Figs. 10 and 11 show how the network for an ex-
clusive-oR can be replaced by one adder. Less trivially,
the logical function (4w B)C+(4 - B) requires six gates
or three adders (Fig. 12), while the equivalent function
(A-C)+(B-C)+(4-B) requires five gates or five add-
ers. Hence, the function is normally designed with five
gates, but if this network fails it can be replaced by only
three adders.

Normally, a check for failure will be made in each sub-
system either constantly or at fixed intervals of time.
When such a check shows a failure, a diagnostic pro-
gram will be run automatically. If the diagnosis shows
that a network in the subsystem, such as the network
shown in Fig. 8, has failed, a microprogram would re-
channel signals destined for that network through an
equivalent system of adders. In the example of Figs. 8
and 9, the microprogram would rechannel 4, B, and C
from the locations shown in Fig. 8 to those shown in
Fig. 9. The program would also bias the three adders in
Fig. 9, would direct the outputs of two of the adders to
the third, and would channel the (4-B)+C output of
the third adder to the location where the output of the
network had been channeled. In order to replace logical

DORROUGH: METHODICAL APPROACH TO SELF-REPAIRING COMPUTER 33

SR

iti?—i’zil

Fig. 13.

Matrix of majority function elements.

networks with adders, the computer must be capable of
being microprogrammed.

Many other schemes for building logical functions
have been devised. Some of these are similar to biasing
and have the advantages of biasing; that is, the same
devices are possible replacements for similar devices and
for several logical networks. Hence, these schemes can
be considered for use in functionally redundant designs.

For example, one such scheme due to Canaday [6]
uses a matrix of three-input and one- or two-output de-
vices for which the output is the majority function; that
is, the inputs 4, B, and C result in the output AB+AC
+BC. The matrix is always connected as shown in Fig.
13 with external inputs at the circles.

It is possible to build the matrix so that all functions
of a certain number of variables can be realized. For
example, all logical functions of three variables can be
realized by a 3X3 matrix and all logical functions of
four variables can be realized by a 4 X6 matrix. How-
ever, if only one or a few functions are wanted from the
matrix, the size of the matrix required can frequently
be reduced. The inputs necessary to have the matrix act
as a given function are discussed by Canaday, and
others.

The problems for study in this area include but do not
exhaust such things as how to check for failure, how
much increase in performance capability is provided by
various possible schemes in return for how much addi-
tional hardware, and what specific combinations of
single-function and multifunction logic produce optimum
self-repair.

3. DESIGN OF A SELF-REPAIRING COMPUTER

Various interrelated reliability improvement tech-
niques have been presented and discussed. The problem
now is how to apply these techniques to various equip-
ments within the computer so that maximum improve-
ment in reliability may be realized. In this respect, the
first (deterministic) synthesis technique previously dis-
cussed (Section 2.2.4) is employed here to produce a
highly reliable computer.

‘A digital computer may be classified into the following
four major units: 1) memory, 2) control, 3) arithmetic,
and 4) input-output. Each of these units has its own

problems and peculiarities. In fact, no single reliability
technique is best for all applications. Parity check, for
example, is effective in checking memory error but is
useless in improving the reliability of arithmetic opera-
tions. On the other hand, either an interwoven logic ap-
proach or residue checking has potential for error cor-
rection in arithmetic operations. The problem in the
design of a reliable digital computer lies then in simula-
tion and the use of those synthesis methods articulated
earlier in Section 2 in order to know which reliability
techniques to apply and where to apply them in the
logical design. Paper design of a sample computer is
undertaken here to illustrate the application of different
types of redundancy and to give the reason for the choice
of techniques employed. Furthermore, it is hoped the
design will adequately demonstrate the feasibility of the
self-repair program described earlier.

3.1 Design Philosophy

The fact that any degree of reliability may be ob-
tained by a corresponding increase in logical hardware
redundancy has been discussed earlier. However, the
added cost, size, and so forth, normally do not justify
the degree of reliability achieved. This is another way of
saying that ¢ in our previously discussed ratio, [1 — P/ (¢)]
— [1=Pi(t)]/c/ —cs, is unduly high in value. In certain
applications, such as airborne control computers, the
increase in weight, size, and power consumption is highly
undesirable. It has been decided, therefore, to adopt the
approach which combines hardware redundancy and
computer software ability to achieve a more reliable sys-
tem without the large penalty in hardware. The system
design will be able to tolerate at least a single failure in
most subsystems, and in certain critical areas two or
more failures, without decrease in performance. Also,
more failures can be tolerated with a certain amount of
degradation in computing capabiity.

As stated in Section 1, a self-repairing computer
should have the capability of reorganizing its own struc-
ture and should retain the ability to perform diagnosis.
That is, the computer should be able to perform at least
the following basic instructions upon any occurrence of
malfunction:

1) Add

2) Subtract

3) Transfer

4) Test and jump
5) Store.

There is a portion of the machine in which failures
cannot be tolerated. This hard-core portion must, of
course, be kept as small as possible in order to attain a
reasonaby high PCM value. The hard-core logics may
be those of the memory address-selection circuits, the
parity checker, the instruction-execution-control se-
quence circuits, or any other logics which do not lend
themselves easily to reliability improvement techniques.

Fig. 14 (figure abbreviations are noted in Table I) is

34

MAIN MEMORY

COMMUNICATION BUS

MEMORY UNIT

'—-—-DI | 0 CONTROLLER i

1 0 CONTROLLER @

Fig. 14. Self-repair computer.

TABLE I
LEGEND FOR THE SELF-REPAIR COMPUTER

Abbreviation Meaning
MMAR main memory address register
MMR main memory register
SPMAR scratch-pad memory address register
SPM scratch-pad memory
SPMR scratch-pad memory register
AR arithmetic register
ROMAR READ-only memory address register
ROM READ-only memory
ROMR READ-only memory register
CTR counter
Pe parity checker
Pc/G parity checker and/or generator

a schematic block diagram of a proposed self-repairing
computer. The value of self-repair is highly dependent
upon the machine structure, the amount of hardware
required to implement the techniques, and the number
of failures which the machine can tolerate in various
subsystems. Thus, the computer must be simulated to
evaluate the design techniques of self-repair computers
—to determine whether the techniques employed do
improve the reliability, or if the gain is offset by the
extra logics needed to implement the techniques.

3.2 Computer Organization

The computer organization chosen for the demonstra-
tion of self-repair techniques has the following main

IEEE TRANSACTIONS ON COMPUTERS, JANUARY 1969

characteristics:

1) random-access core main memory—primary data
storage,

2) two’s complement parallel arithmetic unit;

3) scratch-pad memory—intermediate data shortage;

4) READ-only memory—microprogram control.

The machine uses a data bus for all the data transfers
in order to provide organizational flexibility. Thus, any
spare register or memory location can replace the failed
units. In addition, common error-detection logics can be
employed for all data transmission.

To ensure high reliability, fast error detection, and
diagnosis, the machine operation, such as register-to-
register data transfer or register-to-register data modifi-
cation, is controlled by simple microcommands. Each
microstep of operation operates serially; virtually all
data transfer must pass through the adder and be sub-
jected to accuracy checking. Further, the sequence of
each operation is performed by microprograms stored
in the READ-only memory. The number of integrated-
circuit hardware registers is kept to only the essential
registers; all other registers used to store data and inter-
mediate results, such as program counter, accumulators,
index registers, and so forth, are stored in the scratch-
pad memory.

3.2.1 Memory Unit

The memory is a high-speed random-access magnetic-
core memory used for primary data and program stor-
age. The following reliability techniques are incorpo-
rated in the memory system.

3.2.1.1 Parity Checking: The transfer of data be-
tween core memory and main memory register (MMR)
is checked for odd parity. Parity is generated when in-
formation is written into memory and checked when it is
read out to MMR.

3.2.1.2 Memory Protection: Each block of 128 mem-
ory words is assigned a code-lock number. The assign-
ment is under program control. The block can be
entered with new information only when the key fits
the code lock.

The memory protection feature, therefore, provides
identification for different programs and data. In addi-
tion, it helps detect program error, loss of program se-
quencing operation, and malfunction of memory ad-
dressing logic.

To facilitate the program execution of supervisory
control and diagnostic routines, it is necessary to be
able to have access to all the storage locations without
having to reassign the code lock to the same number.
For this, a master key code can be provided for entering
any coded area.

3.2.1.3 Secondary Storage Location: In certain ap-
plications such as real-time data computation, critical
data errors cannot be tolerated. Additional alternate
storage area is provided in memory locations (0000-
0128)10. As the data are written into the desired memory

DORROUGH: METHODICAL APPROACH TO SELF-REPAIRING COMPUTER 35

location, the same data are also regenerated in the cor-
responding location in the (0000-0128);p memory area.
For example, if the real-time data are being entered into
the memory locations (1250-1300);,, the same data are
also written into memory locations (0098-0020);,. This
feature can be implemented with very little increase in
hardware and with no requirement for additional com-
puter time.

3.2.2 Central Processing Unit

The central processing unit (CPU) consists of two
parts: a scratch-pad memory for local storage of inter-
mediate results and data registers, and an arithmetic
unit for parallel data manipulation.

3.2.2.1 Scratch-Pad Memory: The scratch-pad
memory (SPM) is used as a local storage for internal
data manipulation within the CPU. It is a destructive
read-out, high-speed, random-access core storage. Its
operation may be overlapped with the main storage.

The scratch-pad memory, with its relatively low cost
and inherently better reliability (than the comparable
transistorized flip-flops), is a highly desirable local stor-
age for computer implementation. Also, the reliability
of data in the SPM is improved by means of a central-
ized parity check unit.

The replacement of failed registers with spare regis-
ters is normally a costly and complicated process if con-
ventional transistorized registers are used, because all
the input and output signals of the failed registers must
then be transferred to the replacement registers. By
keeping as many as possible of the working and spare
registers in the SPM, the problem of register replace-
ment is reduced. Also, the spare registers form a pool of
replacement registers, any one of which is able to re-
place any failed register rather than just a limited type
of failed register. Thus, the reliability is maximized.

13.2.2.2 Arithmetic Unit: The arithmetic unit per-
forms arithmetic and logical operations. It consists of a
parallel binary adder, a shifter, and an arithmetic regis-
ter (AR). Since the adder and the shifter are the center
of all data manipulation in the computer system, it is
desirable to optimize their reliability. Therefore, inter-
woven logic techniques employing redundancy-modified
gates will be used to implement the arithmetic unit.
With this technique, each logic gate in the nonredun-
dant version may fail before the unit fails.

3.2.3 Control Unit

The control unit executes micro-operations of the
microprograms. It provides the timing control to per-
form these operations in proper sequence. It also con-
trols interrupt processing, error detection, and opera-
tions involving input, output, and storage. The control
unit consists of a READ-only memory, control counters,
a state register, and any other timing and control cir-
cuits.

3.2.3.1 READ-Only Memory (ROM): To achieve
high reliability, flexibility, and simplicity, the control

commands are implemented in the READ-only memory.
The correctness of the command word is checked by a
parity checker. The microcommand register (ROMR)
can also accept the micro-operation from the main
memory, thus providing the programmer with the abil-
ity to control the computer operation down to the hard-
ware logic level. In this way, diagnosis checking is made
easier and more accurate. Also, this technique provides
additional flexibility. The programmer can flow-chart
many error instructions, or can reflow-chart the existing
instructions to bypass the malfunctioning units, thereby
achieving functional redundancy.

Triple majority redundancy and interwoven logic will
also be employed in major critical areas where uninter-
rupted operation is required. The areas of critical im-
portance are those that are needed to sustain the com-
puter operation for diagnostic routines. These critical
networks may be timing, pulse generators, and counters.

3.2.3.2 State Register: The state register is used to
define machine organization. It specifies which registers
or redundant units are being used to form the computer
organization, and provides the computer capability to
perform self-repair.

3.2.4 Input-Output Unit

The buffer data registers for the input—-output chan-
nels, together with the control words, are assigned to the
scratch-pad storage. The data transfer between the main
storage and input-output is controlled by the micro-
command stored in the READ-only memory. In this
manner, extra registers available in the spare pool in
the SPM can be called upon to replace the malfunction-
ing buffer and control word registers.

3.3 Remarks

It is clear that the foregoing computer design does
not represent the ultimate in self-repair. Although it has
a very high PCM value among the set of three con-
sidered, no attempt was made to optimize the diagnostics
employed nor was there any consideration given to other
more modular types of organization. Moreover, the tech-
nique for synthesis was deterministic (Section 2.1.4).
The probabilistic technique of random optimization is
known to give better results. Finally, no attempt to in-
corporate a learning network or to use multifunction
logic was made.

APPENDIX

PERFORMANCE ANALYSIS OF A VELOCITY-DAMPED
ScHULER LooP wiTH MALFUNCTIONS

As an example of the application of the theory de-
scribed earlier, a control loop problem, that is, a
velocity-damped Schuler loop, is analyzed. Platform
rotation of an otherwise inertially stabilized orientation
through gyrotorquing, based on integration of relative
acceleration which is contaminated by a component of g,
can be considered a basic mission. This mission must

36

be accomplished in every terrestrial inertial navigation
system, for example, in airplane navigation or in the
ground mode of a ballistic missile. These missions may
" take hours, days, or even weeks, and it would appear
valuable to consider such a mission to obtain quantita-
tive information about platform misalignment caused
by a malfunction in the electronics of the loop (espe-
cially the digital subsystem). Also, the derivation of the
error equations seem sufficiently complicated and non-
uniform to offer general conclusions for the theory. To
avoid unnecessary complications, the loop was con-
siderably simplified, but only to the extent that the
characteristic properties were still apparent.

A1l. ASSUMPTIONS FOR SYSTEM

The vehicle motion is assumed to occur along a static
great circle (no Earth rotation). The x—y plane isiden-
tical with the trajectory plane, the z axis is oriented to
local vertical, and the y axis is perpendicular to the x—2
plane.

The accelerometer input is mounted parallel to x; the
mating gyro to be torqued (w,) has its case-input axis
normal to that accelerometer input axis.

The position of the vehicle is determined on the great
circle by an actual angle 8¢. The calculated value for
this angle is 6. Assuming a spherical Earth, the misalign-
ment in the trajectory plane is given by the difference

e,,=0g—-00

The eutput is velocity damped; the total magnitude of
the velocity is measured by either an odometer or Dop-
pler radar, and the velocity components (x,) are com-
puted in the digital computer by means of additional
gimbal angle measurements.

A flow diagram, in Laplace transform representation,
of the single-channel Schuler loop with velocity damp-
ing is shown in Fig. 15. Fig. 16 shows the loop after the
malfunctions were introduced.

The accelerometer output (or better, interface input)
contains a scale factor and a fictitious term

a = a,;(1 + k) + ao

The digital subsystem contributes to the inaccuracy of

45, %¢, and w,

x’c = xcl(l + k:) + xc?
%s = Vgzkp + Vbps with kp = kpl(l + Akn) (36)

and
1
wy, = | % + kop (e — %5)¢ — TI'E + wya)-
Thus, the stabilization gyro output becomes

8, = (f wydt) (1 + &) + 6o

All the scale factor errors are assumed to be caused by
instrument anomalies or by truncation or roundoff in

IEEE TRANSACTIONS ON COMPUTERS, JANUARY 1969

rl X (ODOMETER OR DOPPLER RADAR)

L2l

GX

Fig. 15.

Single-channel Schuler loop with damping.

Fig. 16. Single-channel Schuler loop with malfunctions.

the digital computer during the failure-free mode. Only
the fictitious terms (Vp., as, Xc, Wya, O) and the time
lags 71 and T are caused by failures. For dynamic con-
siderations, the malfunctions are introduced as step
functions. Their magnitude can be determined only in a
statistical manner which is detailed in Section A5. The
hardware responsible for this kind of failure is listed, to-
gether with the failure rates, in Table II.

The effect of the failures on the system parameter e, is
studied within the following two problem areas.

1) Stability and time response: Its effect on misalign-
ment angle is not cumulative, and is therefore interest-
ing only at the time of failure occurrence.

2) Steady-state behavior: The steady-state misalign-
ment angle is cumulative and especially important in
long-range missions. Its probability density function
will be derived in Section AS.

The component failure rates are as follows:

Component
Transistor A=0.01/10°% hour

Diode A=0.002/10% hour

Resistor A=.005/10¢ hour
Integrated Circuit

Element A=0.025/10¢ hour.

A2. AssuMPTIONS CONCERNING FAILURE CLASSES

The term failure is understood here to denote a per-
manent breakdown of hardware elements and, there-
fore, permanent sources of error. Failure states are
usually determined by the muliplicity of failing ele-

DORROUGH: METHODICAL APPROACH TO SELF-REPAIRING COMPUTER 37

TABLE II
HARDWARE FAILURE RATES
Malfunctions N Nivn
7 (Output Failure for for Class
Quantities) 10® hours 108 hours
Y register 0.35
torque amplifier 0.12 1.07X10* 3
1 wa digital-analog
converter 0.30
total 0.77
acceleration
encoder 0.22
sampler 0.10
2 Aa E, F register 0.53 1.6X10™ 3
adder with input
and output gates
DD,) 0.30
total 1.15
odometer and
gimbal angle
3 AV encoder 0.50
G, H register 0.53 1.85X10* 3
adder with input
and output gates
(ADD,) 0.30
odometer ——
total 1.33
every noncata-
strophic failure in 2
the digital sub- (type
system which d
4 Ty does not destroy 200.0 278X10~* or 3

any input quan-
tity: arithmetic
unit, control
unit, and core
memory

ments in the various subsystems. However, every failure
state can be related to a certain degradation in system
performance, measured in terms of output errors (X).
This relationship suggests reduction of the extremely
large number of failure states to malfunction classes,
each characterized by the type of effect on system per-
formance.

In the case of an inertial guidance system, there are
five classes. They can be defined in the following man-
ner.

Class 1: The failure causes a permanent decreased
computation speed, but no error in any input quantity.

Example: Replacement of the multiplication control

by a multiplication subroutine.

Class 2: The failure causes an intermittent decreased
computation speed resulting in a single exceeding of the
schedule time for the outputs, but no error in any input
quantity.

Example: The failing part is replaced, and the pro-
gram proceeds with the speed of the failure-
free mode after partial repetition of wrong
computations.

Class 3: The failure causes an intermittent malfunc-
tion in the computation of output quantities and re-

sults in a permanent error of at least one system
parameter.

Example: Permanent failure in one of the buffers of
the interface equipment. After replacing
the faulty element, the interface is again
functioning properly.

Class 4: The failure causes a permanent malfunction
in the computation of at least one output quantity. The
error will be accumulated from the time of occurrence
until completion of the mission.

Example: Failure in one of the accelerometers.

Class 5: The effect of the failure is unpredictable and,
therefore, not tolerable. This type is catastrophic.

Both Classes 1 and 2 may occur at any time in the
mission; Class 2 may also occur with any multiplicity.
Note that after the occurrence of Class 2 malfunctions,
the computer is used to improve the reliability of the
system. Permanent failures may have intermittent effect
only and do not necessarily contribute to degraded per-
formance. Transient malfunctions fall also into Classes
2 and 3. The effect of these malfunctions on performance
will be treated with the same mathematical tools as
those malfunctions derived in subsequent sections.

Classes 3, 4, and 5 are assumed to be mutually exclu-
sive, that is, statistically independent from the stand-
point of occurrence. In the system and computer pro-
gram organization, provisions are made so that no fail-
ure state can contribute to more than one class of mal-
function. If these provisions are not made, then the
assumption is true, at least in a first approximation. The
effect of off-schedule times on accuracy degradations is
negligible if the same failure state, in addition, causes
loss of input quantities.

A3. FREQUENCY RESPONSE OF THE MISALIGNMENT
ANGLE AND CHARACTERISTIC EQUATION

The frequency response for the misalignment angle is
obtained from the block diagram in Laplace transform
and is

23+ slea+ a1
s+ sAs+ 45

with the partial transcendent coefficients

y (37

63=—00{,

Vs 1+ %
T (L + kwg — T

C2 -Ag— O Ay

VG:
=14 &)k (—E -1+ ko)yd)

1
——E A+ k) + ky) (ki (Vs + kpVgz)e T1tTs

+ (1 4 k2p)ase ™)

As = kip(1 + k)

>
I

%(1 T Bap)(1 - E)(+ ko)2eTee.

38

The characteristic equation of the loop becomes

1
s? + skip(1 + k) + 2 (1 + k2p) (38)

I+ k) ky)%ge T = 0.

1t is apparent that only the scale factor errors of the off-
schedule time 7 of the feedback path appear in the
equation, and not the fictitious terms and 73, which
appear only as perturbation functions in the denomi-
nator of (37). To simplify the stability considerations,
the transcendental term ¢~T jn (38) is approximated
by a rational function, usually called the Padé approxi-
mation
1 — 0.5 T]_S

e 1. 39
1 + Tis (39)

The coefficients of the rational function are determined
so that the first three terms of the series obtained by
carrying out the division become equal to the first three
terms of the series expansion of the ¢ function.

Thus

83T1 + 52(1 + T1A4) + S(A4 — 0.5 T1D0) + Do =0 (40)

with
A4 = (1 + ki)le

D, = % (A + k) (1 + E)(A + E)2

A4. StAaBILITY CONSIDERATIONS

The simplest way to get some quantitative informa-
tion from the third-order characteristic (40) seems to
be by means of the Routh criterion. From the theorem
that the number of sign changes in the first column of
the Routh scheme determines the number of roots in
the right half of the s plane, a condition can be derived
for the limit case, where stable oscillations exist

Fa(l + (0 + k)kipTD) = 0.5% G+ Tikw(l + £2))

(41)
T1(1 + k2p)(1 + k) (1 + &j).

If the time lag 7} is equal to 0, undamped oscillations
are possible only for k;p=0. If 7150, the relationship
between the critical value for T}, the loop constants, and
the scale factor errors is given by (41). In the special
case where no scale factor error exists, the critical time
lag is determined by

Two= =t g/ +N
with

8.31-10-3(1 + kap) — kip?

T 278:10% (1 +)

(42)

IEEE TRANSACTIONS ON COMPUTERS, JANUARY 1969

and
1
N = .
2.78-10-3(1 + ksp)

From (42) it follows that the effect of Class 1 and Class 2
malfunctions can be at least partially compensated for
by changing the sorted constants k;p and k:p (see also
Section AS) for that computation cycle in which the
malfunction has occurred. From the critical upper bound
of T, certain conclusions can be drawn for the maximal
tolerable time difference between check routines, or for
the critical length of the operating program periods. The
downtimes in this production line model consist of the
following:

1) The operation of check routines and failure local-
ization procedures. Their length is, in general, a
random variable.

2) Partial program repetitions.

3) The time interval between failure occurrence and
start of the check routines which in the worst case
is equal to the total length of one operating period.

The maximum length of the bad period must be sig-
nificantly smaller than the critical time lag 7.

It isnot claimed here that the previous considerations
about the effect of malfunctions on stability are com-
plete. Especially missing is a study about the effect of
intermittent off-schedule times (only constant time lags
are considered) and the relationship between the damp-
ing ratio and the magnitude of the various malfunctions.

A5. TIME RESPONSE AND STEADY-STATE
BEHAVIOR

To obtain the time response for the various malfunc-
tions (output quantities), the inverse Laplace transform
has to be conducted for (37). Because of the transcen-
dental nature of the coefficients, the transformation be-
comes

—_ eTc

(43)
where
T =sampling rate

and was introduced in (37) with the transformed quo-
tient developed in a continued fraction in
z7t (¢=0, 1, - - -). The coefficients of 2% are the ampli-
tudes of the time response at the sampling instants 27
This procedure is described in Section 4 of [10].

Some of the curves are shown in Figs. 17 and 18, but
only to the extent that it is necessary to obtain informa-
tion about the frequency of the damped oscillations and
to confirm the results of the stability considerations. The
frequency of the oscillations is approximately 15 min-
utes; damping out occurs after about 30 minutes. It
seems justifiable for long-range missions to study mainly
the cumulative steady-state error.

The steady-state values of the misalignment angle
caused by malfunctions can easily be derived by means

DORROUGH: METHODICAL APPROACH TO SELF-REPAIRING COMPUTER 39

)
b “~)
0
4
= _._._,/ e S e e e [t—)
\\ﬂ/ I
] -2 S~ a
0 \
-3 A a) T,=T, =05SEC —
\c 1=Tp =0
4 X by T,=T, = IMN ||
\) T,- T,-SMN
o . |
4 [
] 12 13 16 18— L MIN

1 . _ . . 5 _C
kip=0.30 hgp = T4.32 kg = 0.999; Vg, 10 T:’;l_

PERTURBATION: ""yD =+ 1 (AND NO OTHER MALFUNCTION ALLOWED
EXCEPT OFF SCHEDULE TIMES)

Fig. 17. Platform misalignment caused by
malfunction in the digital subsystem.

45 T I [T
3) IDEAL CASE, o= 7.13x 1073
b) WORST CASE,0? = 1.85
35 MISSION LENGTH 5 HOURS -
b\ xio!
fle,) \ \\ l
25
T~

\

N
0
[R R T T 15 8 10 12
¢y (SEC)

Fig. 18. Probability density of platform misalignment.

of the final value theorem

lim f(t) = lim sF(s)

—w §— 0
if
F(s) = L(f(?)) - - - Laplace transform of f(¥).

These values are listed for the various perturbation
functions in Table III. It is evident that neither 7 nor
T appears in any of the formulas, which leads to the
conclusion that off-schedule times do not decrease the
system’s value as long as the system remains stable and
has sufficient damping. Only if 7; becomes too large and
has to be compensated for by changing the gain con-
stants (kip, kap) will the steady-state error be automati-
cally increased and the system’s value affected.

The total error in the system parameter ¢, can be ac-
cumulated from the various expressions in Table III,
assuming 1) all of the malfunctions can occur, 2) there
is no limit on the multiplicity of malfunctions in the
mission, and 3) two malfunctions cannot occur at the
same time.

Thus

lim ey(t) = klwd + sza + szV = AW],

{— o

(44)

TABLE III
STEADY-STATE VALUES OF MISALIGNMENT ANGLE

Perturbation Function Steady State

_ _1_ kip 1
Vor = Vo] Ve X md + 7z (1 + 2, + k")
—w L g FDR
Gud T @ “TF o + kag
Xez = AV i 0
S
Aot A —
as = Ad K a (1 + k,,)g
kip
Var = AV — AV —
#= A A AT b A T R)e
Bop = 00—1- 0
s
with
k R
b= —— 2 =431
14+ k2p I
1
ks = — = 0.0010
g
k 1
By = — 2 . = 0.676-10~7
1+ k2p g
for
kip = 0.005, kop = 74.32.

The semi-invariants for the variant AX;,

AX: = wa, AX;=Ag, AX;=AV
become
Hy; = AX;(1 — e M) = AX;-\¢

45
Hy;= AX2(1 — e Nt) = AX 20\ (45)

The semi-invariants for the final distribution become

H; = ky-Hy + koHis + ksHig (46)
Hy = ki* Hoy + ko?Hay + k3®Ho
with
AX,=20.1"/s
AX,221.964 X 103 cm/s?
AX3;=5 X 10¢cm/sand ¢ = 5 hours.

(47)

The mean and variance of f(¢,) become

oy = H]_ = 0.0017

48
o2 = Hy=7.13 X 1073 (48)

therefore

e112

0.0143

fle) = 4.76-exp

40

This curve (Fig. 18) represents the ideal case, namely,
that all the failures in the digital computer are in Class 2
and only the interface contributes to the steady state ¢,.
- It can be shown, on the same example, just how sig-
nificantly reliability programming can influence the
probability of mission success.

With less care in the program for redundant storing of
input quantities, the malfunctions will cause not only
an exceeding of the schedule time for the outputs, but
also accuracy degradations in the outputs. The mal-
functions will belong partially in Class 2 and partially
in Class 3. In the worst case, all failures in the computer
fall in Class 3 instead of Class 2. The semi-invariants in
this worst case become

H,
H,

43.1-1073

1.85 (49)

thus

(e — 0.043)2]

= 0.294
fe) exp[=

In (48) and (49) an ideal replacement organization is
assumed with an infinite supply of reserve elements. It
should be noted that the large difference in the disper-
sion between (48) and (49) was caused only by different
programming and different memory allocation.

The contribution of the self-correcting digital subsys-
tem to platform misalignment seems quite small com-
pared with the contribution of instrument anomalies.
The variance for the latter is approximately 7 to 10
seconds and does not increase with the length of the
mission. On the contrary, the variance caused by the
digital subsystem is proportional to the length of the
mission

0dig.s.? « mission length.

In the ideal case (48), the contribution of the digital sub-
system to misalignment equals that of instrument anom-
alies only after 34-102 hours have elapsed. In the worst
case (49), such contribution equals that of instrument
anomalies by the time 133 hours have elapsed.

ACRKNOWLEDGMENT

The author gratefully acknowledges his indebtedness
to two of his colleagues, M. Arya and F. Veal. To the
former goes the credit for the detailed logic design of the
self-repairing computer organization presented in Sec-
tion 3; to the latter goes the credit for saving the author
from several mathematical inelegancies by a careful and
critical reading of the original text.

REFERENCES

[1] W. R. Ashby, “The self-reproducing system,” 1962 Proc. 1st
Internat'l Symp. on Biosimulation, pp. 9-18.

[2] H. S. Balaban, “Some effects of system redundancy,” 1960
Proc. 6th Nat'l Symp. Reliability and Quality Control, pp. 388~
402.

IEEE TRANSACTIONS ON COMPUTERS, JANUARY 1969

[3] —, “Redundancy and switching failure,” Electronic Design,
vol. 10, pp. 72-75, 1962.

4] , “Some effects of redundancy on system reliability,” Re-
search and Development Reliability,” Electronic Division,
American Society for Quality Control, pp. 119-141, 1961.

[5] W. G. Brown, J. Tierney, and R. Wasserman, “Improvement
of electronic-computer reliability through the use of redun-
dancy,” IRE Trans. Electronic Computers, vol. EC-10, pp. 407—
416, September 1961.

[6] R. H. Canaday, “Two-dimensional iterative logic,” 1965 Fall
Joint Computer Conf., AFIPS Proc., vol. 27, pt. 1. Washing-
ton, D.C.: Spartan, 1965, pp. 343-353.

[7] J. D. Cowan, “Many-valued logics and reliable automata,” in
Principles of Self-Organization, H. von-Foerster and G. W.
Zopf, Eds. New York: Pergamon Press, 1962, pp. 135-180.

[8] R. S. Dick, “The reliability of repairable complex systems,
pt. A: The similar machine case,” 1961 Proc. 5tk Mil-E-Con.
Symp. on Military Electronics, pp. 111-150.

[9] ——, “The reliability of repairable complex systems, pt. B:
The dissimilar machine case,” IEEE Trans. Reliability, vol.
R-12, pp. 1-8, March 1963.

[10] D. C. Dorrough, “A reliability model for digital guidance sys-
tems,” Douglas Aircraft Company, Inc., Santa Monica, Calif.,
SM-47657, June 1964.

[11] S. J. Einhorn, “Reliability prediction for repairable redundant
systems,” Proc. IEEE, vol. 51, pp. 312-317, February 1963.

[12] J. D. Esary, “The reliability of coherent systems,” in Re-
dundancy Technigues for Computing Systems, R. H. Wilcox and
\7}77. C. Mann, Eds. Washington, D. C.: Spartan, 1962, pp.
47-61.

[13] E. J. Kletsky, “Self-repairing machines,” Syracuse University
Research Institute, Syracuse, N. Y., Rept. RADC-TR-61-914,
1961.

[14] ——, “Upper bounds on mean life of self-repairing systems,”
IRE Trans. Reliability and Quality Conirol, vol. RQC-11, pp.
43-48, October 1962.

[15] R. R. Landers, “Achieving higher reliability through self-re-
paixg” IEEE Trans. Aerospace, vol. AS-1, pp. 735-747, August
1963.

[16] W. C. Mann, “Restorative processes for redundant computing
system,” in Redundancy Technigues for Computing Systems,
R. H. Wilcox and W. C. Mann, Eds. Washington, D. C.:
Spartan, 1962, pp. 267-284.

[17] 1. G. Wilson and M. E. Wilson, Information, Computers, and
System Design. New York: Wiley, 1965.

[18] W. H. Pierce, Failure-Tolerant Computer Design. New York:
Academic Press, 1965.

[19] D. C. Dorrough, “Model theoretic approach to evaluating and
enhancing the reliability of complex systems,” Douglas Air-
craft Company, Inc., SM-47767, December 1964.

, “Redundancy and system reliability,” Douglas Aircraft
Company, Inc., Douglas Paper 3513, November 1965 (to be
published in Technometrics).

[21] J. M. Mendel, “Self-organizing control systems, vol. 2: Open-
loop time-optimal control of a stable maneuverable re-entry
veh‘iscle,” Douglas Aircraft Company, Inc., SM-47904, June

96

[20]

1965.

[22] J. M. Mendel and J. J. Zapalac, “Self-organizing control sys-
tems, vol. 3: Off-line training of time-optimal, fuel-optimal and
minimum-energy controllers,” Douglas Aircraft Company,
Inc., SM-51975, February 1966.

[23] J. J. Zapalac, “Self-organizing control systems, vol. 1: On adap-
tive computers,” Douglas Aircraft Company, Inc., SM-47857,
July 1965.

[24] J. Matyas, “Random optimization,” Aufomation and Remote
Control, vol. 26, February 1965.

[25] R. E. Barlow and F. Proschan, Mathematical Theory of Re-
liability. New York: Wiley, 1965.

[26] J. D. Esary and F. Proschan, “Coherent structures of non-
identical components,” Technometrics, vol. 5, no. 2, pp. 191-209.

[27] M. V. Wilkes, “Self-repairing computers,” IRE Trans. Elec-
tronic Computers (Correspondence), vol. EC-10, pp. 93-94,
March 1961.

[28]). J. Zapalac, “Adaptive processes in decision making,”
Douglas Aircraft Company, Inc., SM-45921, April 1964.

[29] S. I. Firstman and B. Gluss, “Optimum search routines for
automatic fault location,” Operations Research, 1960.

[30] B. Gluss, “An optimum policy for detecting a fault in a complex
system,” Operations Research, 1959.

[31] D. C. Dorrough, “Minimizing diagnostic time by optimizing
the sequence of testable items,” Douglas Aircraft Company,
Inc., Paper 4262 (in preparation).

DORROUGH: METHODICAL APPROACH TO SELF-REPAIRING COMPUTER 41

[32] B. Dunham, “The multipurpose bias device, I: The commu-
tator transistor,” IBM J. Research and Develop., vol. 1,
pp. 116-129, April 1957.

[33] S. Doctors, “Multipurpose logic devices, pt. I,” AC Spark
Plug, El Segundo, Calif., Memo. 3249-1.A-52, April 1961.

[34] B. Dunham, “The multipurpose bias device, II: The efficiency
of logical elements,” IBM J. Research and Develop., vol. 3,
January 1959.

[35] E.F. Veal, “On symmetry in Boolean functions and the sizes of
interchange classes,” Douglas Aircraft Company, Inc., Douglas
Paper 4486, May 1967.

BIBLIOGRAPHY

This bibliography is not exhaustive of the field but is merely a list of
those works in self-repair and redundancy which are most relevant to
this paper. For a more comprehensive listing of references on redundancy
techniques, see Pierce, Failure-Tolerant Computer Design, or Barlow
and Proschan, Mathematical Theory of Reliability.

[36] M. J. Abzug and W. G. O’Neil, “Application of adaptive con-
trol techniques to aero/space vehicles,” Douglas Aircraft Com-
pany, Inc., Douglas Paper 947, 1960.

[37]1 M. C. Arya, “Reliability improvement techniques for digital
computers,” Douglas Aircraft Company, Inc., SM-49378,
April 1966.

[38] W. R. Ashby, “The self-reproducing system,” 1962 Proc. 1st
Internat'l Symp. on Biosimulation, pp. 9-18.

[39] H. S. Balaban, “Some effects of system redundancy,” 1960
Proc. 6th Nat'l Symp. on Reliability and Quality Conirol,

pp. 388-402.

[40] ——, “Redundancy and switching failure,” Electronic Design,
vol. 10, p. 72-75, 1962.

[41] ——, “Some effects of redundancy on system reliability,” Re-

search and Development Reliability, Electronic Division,
American Society for Quality Control, pp. 119-141, 1961.

[42] R. E. Barlow and L. C. Hunter, “Mathematical models for
system reliability,” Electronic Defense Lab., Mountain View,
Calif., ASTIA Doc. AD-228-131, 1959.

, “System efficiency and reliability,” IRE Nat'l Conv.

Rec., pt. 6, pp. 104-110, 1959.

, “Criteria for determining optimum redundancy,” IRE
Trans. Reliability and Quality Control, vol. RQC-9, pp. 73-77,
April 1960.

[45] R. E. Barlow, L. C. Hunter, and F. Proschan, “Optimum re-
dundancy when components are subject to open and short
circuit failures,” Boeing Scientific Research Lab., Seattle,
Washington, Math Note 233, 1961.

[46] , “Optimum redundancy when computers are subject to
two different kinds of failure,” SIAM J., vol. 2, March 1963.

[47] R. E. Barlow and F. Proschan, Mathematical Theory of Reli-
ability. New York: Wiley, 1965.

[48] 1. Bazovsky, Reliability Theory and Practice. Englewood Cliffs,
N. J.: Prentice-Hall, 1961.

[49] R. Bellman and S. Dreyfus, “Dynamic programming and the
reliability of multicomponent devices,” Operations Research,
vol. 6, no. 2, pp. 200-206, 1958.

[50] Z. W. Birnbaum, J. D. Esary, and S. C. Saunders, “Multi-
component systems and structures and their reliability,” Tech-
nometrics, vol. 3, pp. 55-77, 1961.

[51] G. Black and F. Proschan, “Optimal redundancy,” Operations
Research, vol. 7, no. 4, pp. 581-588, 1959.

[52] W. G. Brown, J. Tierney, and R. Wasserman, “Improvement
of electronic computer reliability through the use of redun-
dancy,” IRE Trans. Electronic Computers, vol. EC-10, pp. 407-
416, September 1961.

[53] M. W. Burt and D. C. James, “How much does redundancy
improve reliability?” Control Engineering, vol. 10, no. 6,
pp. 71-76, 1963.

[54] R. H. Canady, “Two-dimensional iterative logic,” 1965 Fall
Joint Computer Conf., AFIPS Proc., vol. 27, pt. 1. Washing-
ton, D. C.: Spartan, 1965, pp. 343-353.

[55] R. R. Carhart, “A survey of the current status of the electronic
reliability problem,” Rand Corporation, Santa Monica, Calif.,
Corp. Memo. 1131, 1953.

[56] J. D. Cowan, “Many-valued logics and reliable automata,”
in Principles of Self-Organization, H. von-Foerster and G. W.
Zopf, Eds. New York: Pergamon Press, 1962, pp. 135-180.

, “Toward a proper logic for parallel computation in the
presence of noise,” Proceedings of Wright Air Development
Division Bionics Symposium, WADD Tech. Rept. 60-600,
pp. 93-152, 1960.

[58] J. D. Cowan and S. Winograd, “Minimally redundant reliable
neural nets,” in Seminar on Computation in the Presence of

[43]
[44]

[57]

Noise. Cambridge, Mass.: M.L.T. Press, 1961.

[S9] J. A. Daly, R. D. Joseph, and D. M. Ramsey, “An iterative
design technique for pattern classification logic,” Astropower,
Inc., Newport Beach, Calif., EL-6320, July 1963.

[60] D.J. Davis, “An analysis of some failure data,” J. Am. Statist.
Assoc., vol. 47, no. 258, pp. 113-150.

[61] R. S. Dick, “The reliability of repairable complex systems,
pt. A: The similar machine case,” 1961 Proc. 5th Mil-E-Con.
Symp. on Military Electronics, pp. 111-150.

[62] ——, “The reliability of repairable complex systems, pt. B:
The dissimilar machine case,” JEEE Trans. Reliability, vol.
R-12, pp. 1-8, March 1963.

[63] S. Doctors, “Multipurpose logic devices, pt. I,” AC Spark
Plug, El Segundo, Calif., Memo. 3249-LA-52, April 1961.

[64] D. C. Dorrough, “A reliability model for digital guidance sys-
tems,” Douglas Aircraft Company, Inc., SM-47657, June 1964.

[65] , “Model theoretic approach to evaluating and enhancing

the reliability of complex systems,” Douglas Aircraft Company,

Inc., SM-47767, December 1964.

, “Redundancy and system reliability,” Douglas Aircraft

Company, Inc., Douglas Paper 3513, presented at the Fall

SIAM Meetings, Seattle, Washington, November 1965.

, “The logic of reliability measurement,” (to be published

in Am. J. of Math.)

, “Minimizing diagnostic time by optimizing the sequence
of testable items,” Douglas Aircraft Company, Inc., Douglas
Paper 4262 (in preparation).

[69] B. Dunham, “The multipurpose bias device, I: The commu-
tator transistor,” IBM J. Research and Develop., vol. 1,
pp. 116-129, April 1957.

[70] ——, “The multipurpose bias device, II: The efficiency of
logical elements,” IBM J. Research and Develop., vol. 3
January 1959.

[71] S. J. Einhorn, “Reliability prediction for repairable redundant
systems,” Proc. IEEE, vol. 51, pp. 312-317, February 1963.

[72] B. Epstein and J. Hosford, “Reliability of some two unit re-
dundant systems,” 1960 Proc. 6th Nat'l Symp. on Reliability and
Quality Control, pp. 469-477.

[73] B. Epstein and M. Sobel, “Life testing,” J. Am. Statist. Assoc.,
vol. 48, no. 263, pp. 486-502, 1953.

[74] J. D. Esary, “The reliability of coherent systems,” in Re-
dundancy Techniques for Computing Systems, R. H. Wilcox and
W. C. Mann, Eds. Washington, D. C.: Spartan, 1962,

pp. 46-61.

[75] J. D. Esary and F. Proschan, “Further results on the reliability
of multicomponent structures,” presented at the 2nd Conf. on
Mathematical Statistics for Reliability, Boeing Scientific Re-
search Laboratory, 1961.

[76] , “Relationship between system failure rate and compo-
nent failure rate,” Technometrics, vol. 5, no. 2, pp. 183-189.

77] , “Coherent structures of non-identical components,” Tech-
nometrics, vol. 5, no. 2, pp. 191-209.

[78] S. I. Firstman and B. Gluss, “Optimum search routines for
automatic fault location,” Operations Research, 1960.

[79] B. Gluss, “An optimum policy for detecting a fault in a complex
system,” Operations Research, 1959.

[80] J. Goldberg, R. C. Minnick, and W. H. Kautz, “Development
of techniques for improving the reliability of digital systems
through logical redundancy,” Stanford Research Institute for
Jet Propulsion Laboratory, Pasadena, Calif., Contract M-
44501, 1963.

[81] W. Gore, “System redundancy and information theory,” in
Redundancy Techniques for Computing Systems, R. H. Wilcox
and W. C. Mann, Eds. Washington, D. C.: Spartan, 1962,
pp. 294-303.

[82] R. D. Joseph, P. M. Kelley, and S. S. Viglione, “An optical
decgsion filter,” Proc. IEEE, vol. 51, pp. 1098-1118, August
1963.

[83] E. J. Kletsky, “Self-repairing machines,” Syracuse University
Research Institute, Syracuse, N. Y., Rept. RADC-TR-61-914,
1961.

[84] ——, “Upper bounds on mean life of self-repairing systems,”
IRE Trans. Reliability and Quality Control, vol. RQC-11,
pp. 43-48, October 1962.

[85] R. R. Landers, “Achieving higher reliability through self re-
p;iré ?» IEEE Trans. Aerospace, vol. AS-1, pp. 735-747, August
1963.

[86] R. E. Lyons and W. Vanderkulk, “The use of triple-modular
redundancy to improve computer reliability,” IBM J. Research
and Develop., vol. 6, no. 2, pp. 200-209, 1962.

[87] A. Madansky, “Approximate confidence limits for the reli-
ability of series and parallel systems,” Rand Corporation,
Santa Monica, Calif., Res. Memo RM-2552, 1960.

{66]

(671
[08]

42

[88] W. C. Mann, “Systematically introduced redundancy in
logical systems,” IRE Internat'l Comv. Rec., vol. 9, pt. 2,
pp. 241-263, 1961.

, “Restorative processes for redundant computing system,”

in Redundancy Technigues for Computing Systems, R. H. Wilcox

and W. C. Mann, Eds. Washington, D. C.: Spartan, 1962,

pp. 267-284.

[90] J. Matyas, “Random optimization,” Automation and Remote
Control, vol. 26, no. 2, pp. 244-251, February 1965.

[91] W. S. McCulloch, “The utility of anastomatic nets,” in Re-
dundancy Technigques for Computing Systems, R. H. Wilcox and
W. C. Mann, Eds. Washington, D. C.: Spartan, 1962, pp. 62—
65.

[92] J. McReynolds, “Evaluation of the majority principle as a
technique for improving digital system reliability,” Hycon
Eastern, Inc. (now Hermes Electronic Company, a Division
of Itek), Cambridge, Mass., HEI Publication M-577, 1958.

[93] J. M. Mendel, “On applications of biological principles of the
design of feedback control systems,” Douglas Aircraft Com-
pany, Inc., SM-47772, November 1964.

, “Self-organizing control systems, vol. 2: Open-loop time-
optimal control of a stable maneuverable re-entry vehicle,”
Douglas Aircraft Company, Inc., SM-47904, June 1965.

[95] J. M. Mendel and J. J. Zapalac, “Self-organizing control sys-
tems, vol. 3: Off-line training of time-optimal, fuel-optimal and
minimum-energy controllers,” Douglas Aircraft Company, Inc.,
SM-51975, February 1966.

[96] E. F. Moore and C. E. Shannon, “Reliable circuits using less
reliable relays,” J. Franklin Inst., vol. 262, pp. 191-208 and
281-297, 1965.

[97] A. A. Mullin, “On the nature of the reliability of automata,”
in Redundancy Techniques for Computing Systems, R. H. Wilcox
and W. C. Mann, Eds. Washington, D. C.: Spartan, 1962,
pp. 196-204.

[98] W. H. Pierce, “A proposed system of redundancy to improve
the reliability of digital computers,” Stanford Electronic
Laboratory, Palo Alto, Calif., Tech. Rept. 1552-1, 1960.

, “Improving reliability of digital systems by redundancy

and adaptation,” Stanford Electronic Laboratory, Tech. Rept.

1552-3, 1961.

, “Adaptive vote-takers improve the use of redundancy,”

in Redundancy Techniques for Computing Systems, R. H. Wilcox
and W. C. Mann, Eds. Washington, D. C.: Spartan, 1962,
pp. 229-250.
, “Adaptive decision elements to improve the reliability
og redungant systems,” IRE Internat’l Conv. Rec., pt. 4, pp. 124—
131, 1962.

[102] —, “Redundancy
vol. 210, no. 2, 1964.

189]

94

[99]

[100]

[101]

in computers,” Scientific American,

IEEE TRANSACTIONS ON COMPUTERS, JANUARY 1969

[103] ——, Failure-Tolerant Computer Design. New York: Aca-
demic Press, 1965.

[104] F. Proschan, “Redundancy for reliability,” in Statistical
Theory of Reliability. Madison, Wis.: University of Wisconsin
Press, 1963, pp. 55-57.

[105] F. Rosenblatt, Principles of Neurodynamics.
D. C.: Spartan, 1962.

[106] J. R. Rosenblatt, “On prediction of system performance from
information on component performance,” Proc. 1957 Western
Joint Computer Conf., pp. 85-94.

[107] S. Seshu, “Self-repairing machines, II,” Syracuse University
Research Institute, Syracuse, N. Y., AD-26396T, 1961.

[108] G. A. Thompson and W. K. Rapp, “A rapid reliability esti-
mator for redundant standby configurations,” 1964 Proc. 10th
Nat'l Symp. on Reliability and Quality Control, pp. 573-578,
1964.

[109] J.G. Tryon, “Redundant logic circuitry,” U.S. Patent 2 942 193
to Bell Telephone Labs., Inc., 1958.

[110] , “Reliability of redundant logic circuits,” Bell Telephone
Laboratories, N. J., Tech. Memo 59-4114-25, 1959.

[111] ——, “A redundant logical circuitry of high reliability,” Bell
Telephone Laboratories, N. J., Tech. Memo 59-4114-24, 1959.

[112] , “Quadded logic,” in Redundancy Technigues for Com-
puting Systems, R. H. Wilcox and W. C. Mann, Eds. Wash-
ington, D. C.: Spartan, 1962, pp. 205-228.

[113] E. F. Veal, “On symmetry in Boolean functions and the sizes
of interchange classes,” Douglas Aircraft Company, Inc.,
Douglas Paper 4486, May 1967.

[114] J. von Neumann, “Probabilistic logics and the synthesis of
reliable organisms from unreliable components,” in Automata
Studies, Ann. of Math. Studies, no. 34. Princeton, N. J.:
Princeton University Press, 1956.

[115] B. Widrow and J. B. Angell, “Reliable, trainable networks for
computing and control,” Aerospace Engineering, vol. 21, no. 27,
p. 78, 1962.

[116] B. Widrow and W. H. Pierce, “Improvements of reliability by
redundancy and adaptation,” Stanford Electronic Labora-
tories,OPalo Alto, Calif., Consolidated Quarterly Status Rept.
6, 1960.

[117] B. Widrow, W. H. Pierce, and J. B. Angell, “Birth, life, and
death in microelectronic systems,” IRE Trans. Military Elec-
tronics, vol. MIL-5, pp. 191-201, July 1961.

[118] M. V. Wilkes, “Self-repairing computers,” IRE Trans. Elec-
tronic Computers, vol. EC-10, pp. 93-94, March 1961.

[119] J. J. Zapalac, “Adaptive processes in decision making,”
Douglas Aircraft Company, Inc., SM-45921, April 1964.

[120] ——, “Self-organizing control systems, vol. 1: On adaptive
computers,” Douglas Aircraft Company, Inc., SM-47857,
July 1965.

Washington,

