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Abstract 

The paper presents new graph structuring algorithms 
for look-ahead reconfigurable multi-processor systems. 
This architectural model is based on preparation of inter-
processor link connections in advance in redundant 
communication resources (i.e. crossbar switches) in 
parallel with program execution, which enables 
elimination of connection reconfiguration time overheads. 
Application programs are partitioned into sections, which 
are executed using connections prepared in redundant 
communication resources. Parallel program structuring 
for execution in such systems incorporates task 
scheduling and graph partitioning problems. Presented 
algorithms apply two-phase approach, in which program 
task scheduling is solved by modified ETF heuristics and, 
in a second phase, a new iterative clustering heuristics is 
used for graph partitioning. The experimental results are 
presented, which compare performance of several graph 
partitioning heuristics for such environment. 

1. Introduction 

sections are prepared in spare crossbar switches. 
Preparing link connections in advance in parallel with 
program execution allows reduction (or total elimination) 
of connection reconfiguration time overheads, thus it can 
provide a time-transparent dynamic link connection 
reconfiguration. 

Efficient execution of programs in the look-ahead 
reconfigurable system requires appropriate program 
structuring, which consists in task scheduling and 
program partitioning. The algorithm presented 
determines, at the compile time, the program schedule, 
partition into sections and the number of crossbar 
switches that provide time transparency of inter-processor 
connection reconfiguration. It is based on list scheduling 
and iterative task clustering heuristics. The article focuses 
on the partitioning phase, for which we present a new, 
refined section clustering heuristics. The new algorithm, 
intended for application in multi-crossbar systems, is 
controlled by communication resource utilization 
estimation functions, which allow to adapt its functioning 
to system and program parameters. The paper presents 
several new variants of such functions. 

The paper consists of four parts. The first part 
describes the idea of look-ahead dynamic link 
reconfiguration. In the second part new parallel program 
execution paradigms and their impact on the scheduling 
methodology are presented. In the third part program 
graph scheduling and partitioning algorithms are 
discussed. The last part presents experimental results 
obtained with the use of proposed scheduling algorithms. 

2. The look-ahead reconfigurable multi-
processor systems 
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The paper is related to a new kind of parallel system 
model, based on dynamically reconfigurable connections 
between processors. This new approach, called look-
ahead dynamic inter-processor connection 
reconfiguration [3, 5] is a multi-processor architectural 
model, which has been proposed to eliminate connection 
reconfiguration time overheads. It is based, at the 
hardware level, on multiple, redundant communication 
resources. These resources (multiple crossbar switches) 
are used for dynamic link connection setting in parallel 
with program execution and run-time look-ahead 
reconfiguration. It is combined with the new program 
execution control strategy. Application programs, 
designated for execution in such systems, are scheduled 
and partitioned into sections. During execution of some 
sections of a program, connections for the next program 
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The look-ahead dynamic reconfigurable parallel 
system, investigated in the paper, contains multiple 
crossbars as redundant communication resources. It is a 
multiprocessor system with distributed memory and with 
point-to-point communication based on message passing 
(Fig. 1). 
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end of section points. In the asynchronous processor-
restraint strategy, process states in selected subsets of 
processors are synchronized when they reach the end of 
use of all links in a section. In the asynchronous link-
restraint strategy, the end of use of links in pairs of 
processors has to be synchronized. In this paper we 
assume the asynchronous processor-restrained strategy. 

A parallel program is represented by a Directed Acy-
clic Graph (DAG), where nodes represent computation 
tasks and directed edges represent communication. The 
weight of node represents task execution time, the weight 
of edge is a communication cost. The graph is assumed to 
be static and deterministic. Program is executed according 
to the macro-dataflow [4] model. 

3. Program structuring algorithms in the 
look-ahead configurable environment 

In the look-ahead reconfigurable environment the 
schedule determines task execution order and program 
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Fig. 1. Look-ahead reconfigurable system with 
multiple connection switches 
Worker processors (P1 – PN) have sets of 
communication links (L1 – LK) connected to the crossbar 
switches S1 … SX. by the Processor Link Set Switch. This 
switch is controlled by the Control Processor (PS). The 
switches S1 … SX are interchangeably used as the active 
and configured communication resources. PS collects 
messages on the section execution states in worker 
processors (link use termination) sent via the Control 
Communication Path. The simplest implementation of 
such path is a bus but more efficient solution can assume 
direct links connecting worker processors with the PS.
Depending on the availability of links in the switches 
S1… SX, PS prepares connections for execution of next 
program sections, in parallel with current execution of 
sections. Synchronization of states of all processors in 
clusters for next sections is performed using the hardware 
Synchronization Path [6]. When all connections for a 
section are ready and the synchronization has been 
reached, PS binds all links of processors, which will 
execute the section, with the look-ahead configured 
connections in a proper switch. Then, it enables execution 
of the section in involved worker processors. 

Three program execution control strategies can be 
identified which differ in granularity of control: 
1) synchronous, with inter-section connection 
switching controlled at the level of all worker processors 
in the system, 
2) asynchronous processor-restrained, where inter-
section connection switching is controlled at the level of 
dynamically defined worker processor clusters, 
3) asynchronous link-restrained, with granularity of 
control at the level of single processor links. 
In the synchronous strategy, processes in all processors in 
the system have to be synchronized when they reach the 

partitioning into sections. Schedule is defined as task-to-
processor and communication-to-link assignment with 
specification of starting time of each task and each 
communication. Partition is defined as communication-to-
resources assignment. Both schedule and partition have to 
preserve the precedence constraints coming from the 
program graph and from assumed execution model. 

3.1. The program schedule representation 

In the paper, a program with specified schedule is 
expressed in terms of the Assigned Program Graph 
(APG), see Fig 2a. APG assumes the synchronous 
communication model (CSP-like). Two kinds of nodes are 
used in an APG: the code nodes (which correspond to 
tasks in DAG, rectangles in Fig. 2a) and communication 
instruction nodes (circles in Fig. 2). Activation edges are 
shown as vertical lines in Fig. 2a, communication edges 
as horizontal lines (solid for inter-processor, dashed for 
intra-processor communications). 

Asynchronous, non-blocking communications in a 
look-ahead reconfigurable environment are modeled in 
APG as activation paths on the sender processor. They are 
used for sending a message to the link subgraph and as 
activation paths on the receiver processor, which transmit 
a message from a link to the processor. The processor link 
works independently of the processor and others links, so 
it is modeled as a subgraph (marked as Li1 on Fig. 2a), 
parallel to the computation path. 

The Communication Activation Graph (CAG) is a 
program graph partitioning representation. CAG contains 
information necessary for graph partitioning, thus it 
enables an easier partitioning analysis. This graph is 
composed of nodes, which correspond to external 
communication edges of the APG program graph, and of  
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Fig. 2. a) Modeling of scheduled macro-dataflow
graph by the APG. b) Communication Activation 
Graph partitioned into sections. 

edges, which correspond to activation paths between 
communication edges of the APG. Exemplary partitioning 
is shown in Fig. 2b (edges, which are section boundaries 
are denoted by dashed lines). 

Program sections are defined by identification of such 
subgraphs in the APG or in CAG that the validity 
conditions hold. The following validity conditions assure 
correct execution of many sections in parallel in the 
system with the look-ahead created connections: 
a) Section subgraphs corresponding to program sections 
are mutually disjoint in respect to external communication 
edges. Each communication belongs to one and only one 
section. 
b) The edges, which connect nodes contained in a section 
subgraph define a connected subgraph when considered as 
undirected. 
c) All nodes on each path, which connects two nodes 
belonging to a section subgraph belong to the same 
section. 
d) A correct partition shows stability of inter-processor 
link connections inside sections. Processor link 
connections inside section subgraphs do not change. 

3.2 The new scheduling algorithm 

Program structuring algorithms, presented in the paper, 
apply a two-phase approach to solve the problem of 
scheduling and graph partitioning in the look-ahead 
reconfigurable environment [2]. In the first phase, a list 
scheduling algorithm is applied to obtain a program 
schedule with a reduced number of communications and 
minimized program execution time. In the second phase, 
scheduled program graph is partitioned into sections for 
execution in the assumed environment. 

The scheduling algorithm, used in the first phase of 
program structuring, is based on the ETF /Earliest Task 
First/ heuristics, proposed by Hwang et al. [1]. In our  

Procedure Ready(ni, Pi)
Time := 0 

For each nj ∈ Predecessors ni
TArrive := finishing time of task nj

 Pj := processor which task nj is scheduled on 
If Pj ≠ Pi Then

TArrive := TArrive + cj,i {cost of comm. from Tj to Ti}
If Pi and Pj are connected Then 

   send := link of Pj connected to Pi
   recv := link of Pi connected to Pj
  Else 
   send := last recently used link of Pj
   recv := last recently used link of Pi
   If time since last use of link Lj,send or 
    link Li,recv in previous configuration < cR
   Then 
    TArrive := TArrive + cR

EndIf 
  Allocate communication ej,i on 
     links Lj,send and Li,recv
  EndIf 
 If Time < TArrive Then 
   Time := TArrive
EndFor 
Return Time

Fig. 3. The Ready procedure used in scheduling 
algorithm. 

implementation of ETF a system with look-ahead 
dynamically created connections is assumed. We take into 
account links contention and the limited number of links 
in each processor. 

Modification of ETF consists in new formula used for 
evaluation the earliest starting time (Ready procedure, 
see [1] for details). The flow chart of Ready procedure 
used in our modified ETF algorithm is given in Fig. 3. 
Ready (ni, Pi) returns the time when the last message for 
task ni will arrive at processor Pi. Additional time 
overhead (cR in Fig. 3) represents the start delay of 
communication when network topology should be 
changed and there is no sufficiently long time gap after 
last communication to do reconfiguration in advance and 
without delaying program execution. These link 
reconfiguration time overheads are minimized by 
reduction of the number of link reconfigurations. 

3.3. The partitioning algorithm 

A second phase of the program structuring is the graph 
partitioning algorithm (Fig. 4). It finds program graph 
partitioning into sections and assigns a crossbar switch to 
each section. It also finds the minimal number of 
switches, which allow program execution without 
reconfiguration time overheads. The algorithm starts with 
an initial partition, in which each section is built of a 
single communication and all sections are assigned to the 
same crossbar switch. In each step, a vertex of CAG is 
selected and then the algorithm tries to include this vertex 
to a union of existing sections determined by edges of the 
current vertex. The heuristics tries to find such a union of 
sections, which doesn’t break rules of graph partitioning. 
The union, which gives the shortest program execution 
time is selected. 
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Begin
B := initial set of section, each section is composed of 
   single communication and assigned to crossbar 1 
curr_x := 1  {current number of switches used} 
finished := false 
While not finished 

Repeat until each vertex of CAG is visited and there 
 is no execution time improvement during last β steps 
  v := vertex of CAG which maximizes the selection  
    function and which is not placed in tabu list 
  S := set of sections that contain communications 
       of all predecessors of v 
  M := Find_sections_for_clustering(v, S) 

If M ≠ ∅ Then
   B := B - M 
   Include to B a new section built of v and com- 
   munications that are contained in sections in M 

Else 
   s := section that consists of communication v 
   Assign crossbar switch (from 1..curr_x) to  
             section s 
   If there are time overheads Then
    curr_x := curr_x + 1 
    Break Repeat
   EndIf 

EndIf 
EndRepeat 

 finished := true 
EndWhile 
End 

Fig. 4. The general scheme of the graph 
partitioning algorithm. 

The program execution time is estimated by simulated 
execution of the partitioned graph in a modeled look-
ahead reconfigurable system. An APG graph with a valid 
partition is extended by subgraphs, which model the look-
ahead reconfiguration control. The functioning of the 
Communication Control Path, Synchronization Path and 
the Control Subsystem PS are modeled as subgraphs 
executed on virtual additional processors. Weights in the 
graph nodes correspond to latencies of respective control 
actions, such as crossbar switch reconfiguration, bus 
latency, and similar. 

When section clustering doesn’t give any execution 
time improvement, the section of the current vertex is left 
untouched and crossbar switch is assigned to it. The 
choice of the switch depends on program execution time. 
When the algorithm cannot find any crossbar switch for 
section that allows creation of connections with no 
reconfiguration time overhead, then current number of 
switches used (curr_x in Fig. 4) is increased by 1 and the 
algorithm is restarted. 

The vertices can be visited many times. The algorithm 
stops when all vertices have been visited and there hasn’t 
been any program execution time improvement in a 
number of steps. The heuristics manages a list of last 
visited vertices (tabu list, Fig. 4), which prevents the algo-
rithm from frequent visiting small subset of all vertices. 

A vertex selection heuristics is applied at each iteration 
step. It selects vertex, which maximizes the value of 
selection function Z(v). The following APG and CAG 
graph parameters are taken into account during 
computation of value of selection function: 

a) the critical path CP of APG, 
b) the delay D of vertex of CAG, 
c) value of reconfiguration criticality Q for the 

investigated vertex, 
d) the dependency on links use between communications. 

Critical path of APG is established in the graph 
partitioned into sections according to the best recent 
partition found. 
The delay D(v) of vertex v is defined as follows: 

D(v) = Iv / (suv – max(euP(v)))
where (as shown in Fig. 5): 
Iv = (sv – max(eP(v))) – the length of reconfiguration 
interval of vertex v
P(v) – parents of vertex v,
ev –  finishing time of vertex v,
sv – starting time of vertex v,
su, eu are starting and finishing times, respectively, in 
APG with reconfiguration time overheads neglected. 

The choice of the vertex for visiting depends on the 
reconfiguration time overheads. These overheads are 
measured by applying the critical point of reconfiguration
heuristics. For every communication v, the value of 
reconfiguration burden C(v) is computed: 

C(v) = Iv / tR

where tR is reconfiguration overhead. 
The value Q of reconfiguration criticality function for 

vertex v is equal to sum of reconfiguration burden of all 
vertices whose reconfiguration interval is overlapping 
with reconfiguration interval of v (see Fig. 5): 

B(t) =  C(vi) : i = 1 ... n, si > t > max(eP(i))
Q(v) = max(B(t): sv > t > max(eP(v))) 

The communication vertices of CAG are classified into 
three disjoint sets depending on their relationship in 
processor link use. The first set G1 contains vertices which 
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Fig. 5. Evaluation of the delay and critical point 
of reconfiguration based on the link use graph. 
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use the same links as one of their parent vertices (two 
edges between vertices v5, v6; Fig. 5). The second set G2

contains vertices, which cannot be clustered into single 
section with their parents because of conflicting link 
connection requirements. The third set G3 contains 
vertices which do not belong to any of previous sets. 
When visiting a vertex, the set G1 is first considered, 
because it is advised to include such communication 
vertices into the same section. The set G3 is next 
considered. The set G2 is considered as the last one. 

By considering the described APG graph parameters 
and the link use dependencies between communication 
vertices, several vertex selection heuristics have been 
identified (iter0÷iter4). They select a vertex with the 
biggest value of selection function Z, which is computed 
as follows: 
iter0 – Z = Q, 
iter1 – Z = c1 Q + c2 D + c3 CP /linear combination of 
CP, D, Q; c1, c2, c3: arbitrary constants/, 
iter2 – sort vertices according to value G, CP, D, Q, then 
assign first vertex the biggest Z value, 
iter3 – Z = D, 
iter4 – Z = CP.

4. Experimental results 

The experiments concerned with this paper evaluated 
the execution efficiency of programs for different 
program execution control strategies and system 
parameters and the influence of the number of redundant 
link connection switches on reduction of reconfiguration 
time overheads. During experiments, the performance of 
presented graph structuring algorithms and the usability of 
vertex selection heuristics was investigated. 

The results were obtained for two families of 
exemplary program graphs: test7 (randomly generated 
graphs, which model applications with irregular commu-
nication patterns), test8 (graph with communication 
patterns of numeric applications), executed in the look-
ahead and in on-request system, with parameters: number 
of processors 4, 8, 12, number of proc. links 2, 4, 
synchronization via bus or a hardware barrier, 
reconfiguration time of a single connection tR  and section 
activation time tV in range 1-100. 

The program execution speedup as a function of 
parameters of reconfiguration control (tR and tV), on the 
example of test7 and test8 graphs is shown in Fig. 6, 7. 
For low values of control overhead tV crossbar 
redundancy has big influence on total program execution 
time. Multiple crossbar switches used with the look-ahead 
control strongly reduce reconfiguration time overheads. 
When tV is bigger, the look-ahead strategy suffer from 
section activation time overheads and reduction of 
execution time is not so substantial. The larger is the 
number of links in a processor, the look-ahead method is 
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Fig. 6. Speedup for test8 program in the look-
ahead environment (12 proc., 4 proc. links) for 
different values of system parameters tR, tV.
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Fig. 7. Speedup for test7 program in the look-
ahead environment (12 proc., 4 proc. links, 6 
crossbars) for different values of tR, tV.

successfully applicable for wider range of reconfiguration 
and activation time parameters than with the on-request
reconfiguration. 

Fig. 8 shows the relative performance of structuring 
algorithm with different versions of vertex selection 
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heuristics used. Our experiments show that the 
performance depends mainly on parameters of program 
graphs (their granularity) and parameters of 
reconfiguration control subsystem (tR and tV). For 
programs with fine-grain parallelism and intensive 
reconfiguration during execution (i.e. all graphs from 
test7 family in our experiments) there is only a small 
difference between iter0÷iter4 heuristics. The difference 
in total execution time of partitioned program was up to 
6.5%. For such graphs reconfiguration control subsystem 
is overloaded by incoming reconfiguration requests and 
changing of the order of selection of vertices during 
program structuring could not improve the performance. 

For programs with coarse-grain parallelism and small 
reconfiguration requirements (i.e. test8), the choice of 
vertex selection heuristics plays important role in optimal 
program execution. When reconfiguration efficiency of 
the system is low (Fig. 8a, tR = 100) the best results are 
obtained by iter1 and iter2 heuristics, which combine 
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Fig. 8. Relative speedup obtained by graph 
structuring algorithms for different vertex 
selection heuristics (average – 100%) in system 
with 12 processors, 4 proc. links, 6 crossbars. 

several parameters during evaluation of the selection 
function. The worst results are obtained by heuristics that 
use only one parameter during evaluation of selection 
function (i.e. iter4, iter0, iter3). For system with low 
efficiency of section activation control (tV = 96) the iter4
heuristics gives the best results (Fig. 8b). The iter3
heuristics gives in almost all cases the worst results. 

The analysis of experimental results for wider selection 
of program graphs has shown that methods iter0, 1, 2
behaves better than others. These heuristics use 
reconfiguration criticality, thus we could deduce that this 
APG graph parameter is the most important. 
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5. Conclusions 

Several iterative graph structuring algorithms for the 
look-ahead reconfigurable multi-processor system have 
been presented in the paper. During experiments we have 
found the relationship between program time parameters, 
number of switches and the effective speedup achieved. 
Increasing the number of switches allows to reduce (or 
even completely eliminate) time overheads connected 
with connection creation. This effect is especially visible 
in systems with low reconfiguration efficiency or for fine-
grain parallel programs with high reconfiguration 
demands. For a program for which inter-processor 
connection reconfiguration completely overlaps with 
program execution, the multi-processor system behaves as 
a fully connected processor structure. Experiments show 
that reduction of time overheads, introduced by section 
activation and termination control, is possible by 
application of hardware synchronization at the system 
architecture level. The future works will focus on 
partitioning algorithm improvements and further 
optimizations in section clustering and mapping of 
communication to resources. 
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