
Program Scheduling in Look-Ahead Reconfigurable Parallel Systems with
Multiple Communication Resources

Eryk Laskowski
Institute of Computer Science
Polish Academy of Sciences

01-237 Warsaw, Ordona 21, Poland
laskowsk@ipipan.waw.pl

Abstract

The paper presents new graph structuring algorithms
for look-ahead reconfigurable multi-processor systems.
This architectural model is based on preparation of inter-
processor link connections in advance in redundant
communication resources (i.e. crossbar switches) in
parallel with program execution, which enables
elimination of connection reconfiguration time overheads.
Application programs are partitioned into sections, which
are executed using connections prepared in redundant
communication resources. Parallel program structuring
for execution in such systems incorporates task
scheduling and graph partitioning problems. Presented
algorithms apply two-phase approach, in which program
task scheduling is solved by modified ETF heuristics and,
in a second phase, a new iterative clustering heuristics is
used for graph partitioning. The experimental results are
presented, which compare performance of several graph
partitioning heuristics for such environment.

1. Introduction

sections are prepared in spare crossbar switches.
Preparing link connections in advance in parallel with
program execution allows reduction (or total elimination)
of connection reconfiguration time overheads, thus it can
provide a time-transparent dynamic link connection
reconfiguration.

Efficient execution of programs in the look-ahead
reconfigurable system requires appropriate program
structuring, which consists in task scheduling and
program partitioning. The algorithm presented
determines, at the compile time, the program schedule,
partition into sections and the number of crossbar
switches that provide time transparency of inter-processor
connection reconfiguration. It is based on list scheduling
and iterative task clustering heuristics. The article focuses
on the partitioning phase, for which we present a new,
refined section clustering heuristics. The new algorithm,
intended for application in multi-crossbar systems, is
controlled by communication resource utilization
estimation functions, which allow to adapt its functioning
to system and program parameters. The paper presents
several new variants of such functions.

The paper consists of four parts. The first part
describes the idea of look-ahead dynamic link
reconfiguration. In the second part new parallel program
execution paradigms and their impact on the scheduling
methodology are presented. In the third part program
graph scheduling and partitioning algorithms are
discussed. The last part presents experimental results
obtained with the use of proposed scheduling algorithms.

2. The look-ahead reconfigurable multi-
processor systems

Proceedings of
0-7695-2080-4
The paper is related to a new kind of parallel system
model, based on dynamically reconfigurable connections
between processors. This new approach, called look-
ahead dynamic inter-processor connection
reconfiguration [3, 5] is a multi-processor architectural
model, which has been proposed to eliminate connection
reconfiguration time overheads. It is based, at the
hardware level, on multiple, redundant communication
resources. These resources (multiple crossbar switches)
are used for dynamic link connection setting in parallel
with program execution and run-time look-ahead
reconfiguration. It is combined with the new program
execution control strategy. Application programs,
designated for execution in such systems, are scheduled
and partitioned into sections. During execution of some
sections of a program, connections for the next program
 the International Conference on Parallel Computing in Electrical En
/04 $ 20.00 IEEE
The look-ahead dynamic reconfigurable parallel
system, investigated in the paper, contains multiple
crossbars as redundant communication resources. It is a
multiprocessor system with distributed memory and with
point-to-point communication based on message passing
(Fig. 1).
gineering (PARELEC’04)

end of section points. In the asynchronous processor-
restraint strategy, process states in selected subsets of
processors are synchronized when they reach the end of
use of all links in a section. In the asynchronous link-
restraint strategy, the end of use of links in pairs of
processors has to be synchronized. In this paper we
assume the asynchronous processor-restrained strategy.

A parallel program is represented by a Directed Acy-
clic Graph (DAG), where nodes represent computation
tasks and directed edges represent communication. The
weight of node represents task execution time, the weight
of edge is a communication cost. The graph is assumed to
be static and deterministic. Program is executed according
to the macro-dataflow [4] model.

3. Program structuring algorithms in the
look-ahead configurable environment

In the look-ahead reconfigurable environment the
schedule determines task execution order and program

Proceeding
0-7695-208
.........

Crossbar switch S1

links

P1 P2 PN

...

...

...

Processor link set switch

config.

links

PS

Communication Control Path

Synchronization Path

control

Crossbar switch S2

Crossbar switch SX

... ...

...

......

config.

config.

links links

links links

......

Fig. 1. Look-ahead reconfigurable system with
multiple connection switches
Worker processors (P1 – PN) have sets of
communication links (L1 – LK) connected to the crossbar
switches S1 … SX. by the Processor Link Set Switch. This
switch is controlled by the Control Processor (PS). The
switches S1 … SX are interchangeably used as the active
and configured communication resources. PS collects
messages on the section execution states in worker
processors (link use termination) sent via the Control
Communication Path. The simplest implementation of
such path is a bus but more efficient solution can assume
direct links connecting worker processors with the PS.
Depending on the availability of links in the switches
S1… SX, PS prepares connections for execution of next
program sections, in parallel with current execution of
sections. Synchronization of states of all processors in
clusters for next sections is performed using the hardware
Synchronization Path [6]. When all connections for a
section are ready and the synchronization has been
reached, PS binds all links of processors, which will
execute the section, with the look-ahead configured
connections in a proper switch. Then, it enables execution
of the section in involved worker processors.

Three program execution control strategies can be
identified which differ in granularity of control:
1) synchronous, with inter-section connection
switching controlled at the level of all worker processors
in the system,
2) asynchronous processor-restrained, where inter-
section connection switching is controlled at the level of
dynamically defined worker processor clusters,
3) asynchronous link-restrained, with granularity of
control at the level of single processor links.
In the synchronous strategy, processes in all processors in
the system have to be synchronized when they reach the

partitioning into sections. Schedule is defined as task-to-
processor and communication-to-link assignment with
specification of starting time of each task and each
communication. Partition is defined as communication-to-
resources assignment. Both schedule and partition have to
preserve the precedence constraints coming from the
program graph and from assumed execution model.

3.1. The program schedule representation

In the paper, a program with specified schedule is
expressed in terms of the Assigned Program Graph
(APG), see Fig 2a. APG assumes the synchronous
communication model (CSP-like). Two kinds of nodes are
used in an APG: the code nodes (which correspond to
tasks in DAG, rectangles in Fig. 2a) and communication
instruction nodes (circles in Fig. 2). Activation edges are
shown as vertical lines in Fig. 2a, communication edges
as horizontal lines (solid for inter-processor, dashed for
intra-processor communications).

Asynchronous, non-blocking communications in a
look-ahead reconfigurable environment are modeled in
APG as activation paths on the sender processor. They are
used for sending a message to the link subgraph and as
activation paths on the receiver processor, which transmit
a message from a link to the processor. The processor link
works independently of the processor and others links, so
it is modeled as a subgraph (marked as Li1 on Fig. 2a),
parallel to the computation path.

The Communication Activation Graph (CAG) is a
program graph partitioning representation. CAG contains
information necessary for graph partitioning, thus it
enables an easier partitioning analysis. This graph is
composed of nodes, which correspond to external
communication edges of the APG program graph, and of

s of the International Conference on Parallel Computing in Electrical Engineering (PARELEC’04)
0-4/04 $ 20.00 IEEE

P1 P2 L21L11

2

1

4

a

7

b

a

b d

c

e

1 2

3 4

5

Section 1: a

Section 2: b

Section 3: d

Section 4: c,e

a) b)
Fig. 2. a) Modeling of scheduled macro-dataflow
graph by the APG. b) Communication Activation
Graph partitioned into sections.

edges, which correspond to activation paths between
communication edges of the APG. Exemplary partitioning
is shown in Fig. 2b (edges, which are section boundaries
are denoted by dashed lines).

Program sections are defined by identification of such
subgraphs in the APG or in CAG that the validity
conditions hold. The following validity conditions assure
correct execution of many sections in parallel in the
system with the look-ahead created connections:
a) Section subgraphs corresponding to program sections
are mutually disjoint in respect to external communication
edges. Each communication belongs to one and only one
section.
b) The edges, which connect nodes contained in a section
subgraph define a connected subgraph when considered as
undirected.
c) All nodes on each path, which connects two nodes
belonging to a section subgraph belong to the same
section.
d) A correct partition shows stability of inter-processor
link connections inside sections. Processor link
connections inside section subgraphs do not change.

3.2 The new scheduling algorithm

Program structuring algorithms, presented in the paper,
apply a two-phase approach to solve the problem of
scheduling and graph partitioning in the look-ahead
reconfigurable environment [2]. In the first phase, a list
scheduling algorithm is applied to obtain a program
schedule with a reduced number of communications and
minimized program execution time. In the second phase,
scheduled program graph is partitioned into sections for
execution in the assumed environment.

The scheduling algorithm, used in the first phase of
program structuring, is based on the ETF /Earliest Task
First/ heuristics, proposed by Hwang et al. [1]. In our

Procedure Ready(ni, Pi)
Time := 0

For each nj ∈ Predecessors ni
TArrive := finishing time of task nj

 Pj := processor which task nj is scheduled on
If Pj ≠ Pi Then

TArrive := TArrive + cj,i {cost of comm. from Tj to Ti}
If Pi and Pj are connected Then

 send := link of Pj connected to Pi
 recv := link of Pi connected to Pj
 Else
 send := last recently used link of Pj
 recv := last recently used link of Pi
 If time since last use of link Lj,send or
 link Li,recv in previous configuration < cR
 Then
 TArrive := TArrive + cR

EndIf
 Allocate communication ej,i on
 links Lj,send and Li,recv
 EndIf
 If Time < TArrive Then
 Time := TArrive
EndFor
Return Time

Fig. 3. The Ready procedure used in scheduling
algorithm.

implementation of ETF a system with look-ahead
dynamically created connections is assumed. We take into
account links contention and the limited number of links
in each processor.

Modification of ETF consists in new formula used for
evaluation the earliest starting time (Ready procedure,
see [1] for details). The flow chart of Ready procedure
used in our modified ETF algorithm is given in Fig. 3.
Ready (ni, Pi) returns the time when the last message for
task ni will arrive at processor Pi. Additional time
overhead (cR in Fig. 3) represents the start delay of
communication when network topology should be
changed and there is no sufficiently long time gap after
last communication to do reconfiguration in advance and
without delaying program execution. These link
reconfiguration time overheads are minimized by
reduction of the number of link reconfigurations.

3.3. The partitioning algorithm

A second phase of the program structuring is the graph
partitioning algorithm (Fig. 4). It finds program graph
partitioning into sections and assigns a crossbar switch to
each section. It also finds the minimal number of
switches, which allow program execution without
reconfiguration time overheads. The algorithm starts with
an initial partition, in which each section is built of a
single communication and all sections are assigned to the
same crossbar switch. In each step, a vertex of CAG is
selected and then the algorithm tries to include this vertex
to a union of existing sections determined by edges of the
current vertex. The heuristics tries to find such a union of
sections, which doesn’t break rules of graph partitioning.
The union, which gives the shortest program execution
time is selected.

Proceedings of the International Conference on Parallel Computing in Electrical Engineering (PARELEC’04)
0-7695-2080-4/04 $ 20.00 IEEE

Begin
B := initial set of section, each section is composed of
 single communication and assigned to crossbar 1
curr_x := 1 {current number of switches used}
finished := false
While not finished

Repeat until each vertex of CAG is visited and there
 is no execution time improvement during last β steps
 v := vertex of CAG which maximizes the selection
 function and which is not placed in tabu list
 S := set of sections that contain communications
 of all predecessors of v
 M := Find_sections_for_clustering(v, S)

If M ≠ ∅ Then
 B := B - M
 Include to B a new section built of v and com-
 munications that are contained in sections in M

Else
 s := section that consists of communication v
 Assign crossbar switch (from 1..curr_x) to
 section s
 If there are time overheads Then
 curr_x := curr_x + 1
 Break Repeat
 EndIf

EndIf
EndRepeat

 finished := true
EndWhile
End

Fig. 4. The general scheme of the graph
partitioning algorithm.

The program execution time is estimated by simulated
execution of the partitioned graph in a modeled look-
ahead reconfigurable system. An APG graph with a valid
partition is extended by subgraphs, which model the look-
ahead reconfiguration control. The functioning of the
Communication Control Path, Synchronization Path and
the Control Subsystem PS are modeled as subgraphs
executed on virtual additional processors. Weights in the
graph nodes correspond to latencies of respective control
actions, such as crossbar switch reconfiguration, bus
latency, and similar.

When section clustering doesn’t give any execution
time improvement, the section of the current vertex is left
untouched and crossbar switch is assigned to it. The
choice of the switch depends on program execution time.
When the algorithm cannot find any crossbar switch for
section that allows creation of connections with no
reconfiguration time overhead, then current number of
switches used (curr_x in Fig. 4) is increased by 1 and the
algorithm is restarted.

The vertices can be visited many times. The algorithm
stops when all vertices have been visited and there hasn’t
been any program execution time improvement in a
number of steps. The heuristics manages a list of last
visited vertices (tabu list, Fig. 4), which prevents the algo-
rithm from frequent visiting small subset of all vertices.

A vertex selection heuristics is applied at each iteration
step. It selects vertex, which maximizes the value of
selection function Z(v). The following APG and CAG
graph parameters are taken into account during
computation of value of selection function:

a) the critical path CP of APG,
b) the delay D of vertex of CAG,
c) value of reconfiguration criticality Q for the

investigated vertex,
d) the dependency on links use between communications.

Critical path of APG is established in the graph
partitioned into sections according to the best recent
partition found.
The delay D(v) of vertex v is defined as follows:

D(v) = Iv / (suv – max(euP(v)))
where (as shown in Fig. 5):
Iv = (sv – max(eP(v))) – the length of reconfiguration
interval of vertex v
P(v) – parents of vertex v,
ev – finishing time of vertex v,
sv – starting time of vertex v,
su, eu are starting and finishing times, respectively, in
APG with reconfiguration time overheads neglected.

The choice of the vertex for visiting depends on the
reconfiguration time overheads. These overheads are
measured by applying the critical point of reconfiguration
heuristics. For every communication v, the value of
reconfiguration burden C(v) is computed:

C(v) = Iv / tR

where tR is reconfiguration overhead.
The value Q of reconfiguration criticality function for

vertex v is equal to sum of reconfiguration burden of all
vertices whose reconfiguration interval is overlapping
with reconfiguration interval of v (see Fig. 5):

B(t) = C(vi) : i = 1 ... n, si > t > max(eP(i))
Q(v) = max(B(t): sv > t > max(eP(v)))

The communication vertices of CAG are classified into
three disjoint sets depending on their relationship in
processor link use. The first set G1 contains vertices which

B(t)0

time

Links Use Graph

2

proc. 2, link 1
proc. 3, link 1

e1

e2

s2

s3

P2 = {1} P3 = {1, 2}
I3 =(s3 – max(e1, e2))
D3 =I3 / (su3 – max(eu1, eu2))
C3 = I3 / R

1

3

Critical Point of Reconfi-
-guration function

4

6

5

s4

e6

proc. 2, link 2
proc. 4, link 2

proc. 4, link 2
proc. 3, link 1

proc. 1, link 1
proc. 2, link 1

proc. 1, link 2
proc. 3, link 1

proc. 1, link 1
proc. 2, link 1

Fig. 5. Evaluation of the delay and critical point
of reconfiguration based on the link use graph.

Proceedings of the International Conference on Parallel Computing in Electrical Engineering (PARELEC’04)
0-7695-2080-4/04 $ 20.00 IEEE

use the same links as one of their parent vertices (two
edges between vertices v5, v6; Fig. 5). The second set G2

contains vertices, which cannot be clustered into single
section with their parents because of conflicting link
connection requirements. The third set G3 contains
vertices which do not belong to any of previous sets.
When visiting a vertex, the set G1 is first considered,
because it is advised to include such communication
vertices into the same section. The set G3 is next
considered. The set G2 is considered as the last one.

By considering the described APG graph parameters
and the link use dependencies between communication
vertices, several vertex selection heuristics have been
identified (iter0÷iter4). They select a vertex with the
biggest value of selection function Z, which is computed
as follows:
iter0 – Z = Q,
iter1 – Z = c1 Q + c2 D + c3 CP /linear combination of
CP, D, Q; c1, c2, c3: arbitrary constants/,
iter2 – sort vertices according to value G, CP, D, Q, then
assign first vertex the biggest Z value,
iter3 – Z = D,
iter4 – Z = CP.

4. Experimental results

The experiments concerned with this paper evaluated
the execution efficiency of programs for different
program execution control strategies and system
parameters and the influence of the number of redundant
link connection switches on reduction of reconfiguration
time overheads. During experiments, the performance of
presented graph structuring algorithms and the usability of
vertex selection heuristics was investigated.

The results were obtained for two families of
exemplary program graphs: test7 (randomly generated
graphs, which model applications with irregular commu-
nication patterns), test8 (graph with communication
patterns of numeric applications), executed in the look-
ahead and in on-request system, with parameters: number
of processors 4, 8, 12, number of proc. links 2, 4,
synchronization via bus or a hardware barrier,
reconfiguration time of a single connection tR and section
activation time tV in range 1-100.

The program execution speedup as a function of
parameters of reconfiguration control (tR and tV), on the
example of test7 and test8 graphs is shown in Fig. 6, 7.
For low values of control overhead tV crossbar
redundancy has big influence on total program execution
time. Multiple crossbar switches used with the look-ahead
control strongly reduce reconfiguration time overheads.
When tV is bigger, the look-ahead strategy suffer from
section activation time overheads and reduction of
execution time is not so substantial. The larger is the
number of links in a processor, the look-ahead method is

1
5

20
50

100

3
12

24
48

96

0

1

2

3

4

5

6

7

8

9

10

tR

tV

9-10
8-9
7-8
6-7
5-6
4-5
3-4
2-3
1-2
0-1

a) – 6 crossbars

1
5

20
50

100

3
12

24
48

96

0

1

2

3

4

5

6

7

8

9

10

tR

tV

9-10
8-9
7-8
6-7
5-6
4-5
3-4
2-3
1-2
0-1

b) – 2 crossbars
Fig. 6. Speedup for test8 program in the look-
ahead environment (12 proc., 4 proc. links) for
different values of system parameters tR, tV.

1
5

20
50

100

3
12

24
48

96

0

1

2

3

4

5

6

7

8

9

10

tR

tV

9-10
8-9
7-8
6-7
5-6
4-5
3-4
2-3
1-2
0-1

Fig. 7. Speedup for test7 program in the look-
ahead environment (12 proc., 4 proc. links, 6
crossbars) for different values of tR, tV.

successfully applicable for wider range of reconfiguration
and activation time parameters than with the on-request
reconfiguration.

Fig. 8 shows the relative performance of structuring
algorithm with different versions of vertex selection

Proceedings of the International Conference on Parallel Computing in Electrical Engineering (PARELEC’04)
0-7695-2080-4/04 $ 20.00 IEEE

heuristics used. Our experiments show that the
performance depends mainly on parameters of program
graphs (their granularity) and parameters of
reconfiguration control subsystem (tR and tV). For
programs with fine-grain parallelism and intensive
reconfiguration during execution (i.e. all graphs from
test7 family in our experiments) there is only a small
difference between iter0÷iter4 heuristics. The difference
in total execution time of partitioned program was up to
6.5%. For such graphs reconfiguration control subsystem
is overloaded by incoming reconfiguration requests and
changing of the order of selection of vertices during
program structuring could not improve the performance.

For programs with coarse-grain parallelism and small
reconfiguration requirements (i.e. test8), the choice of
vertex selection heuristics plays important role in optimal
program execution. When reconfiguration efficiency of
the system is low (Fig. 8a, tR = 100) the best results are
obtained by iter1 and iter2 heuristics, which combine

1
5

20
50

100
3

12

24

48

96

80,00%

85,00%

90,00%

95,00%

100,00%

105,00%

110,00%

115,00%

120,00%

tR

tV

115,00%-120,00%

110,00%-115,00%

105,00%-110,00%

100,00%-105,00%

95,00%-100,00%

90,00%-95,00%

85,00%-90,00%

80,00%-85,00%

a) test8 – iter1/2 against iter0/3/4

1
5

20
50

100
3

12

24

48

96

80,00%

85,00%

90,00%

95,00%

100,00%

105,00%

110,00%

115,00%

120,00%

tR

tV

115,00%-120,00%

110,00%-115,00%

105,00%-110,00%

100,00%-105,00%

95,00%-100,00%

90,00%-95,00%

85,00%-90,00%

80,00%-85,00%

b) test8 – iter4 against iter0/1/2/3

Fig. 8. Relative speedup obtained by graph
structuring algorithms for different vertex
selection heuristics (average – 100%) in system
with 12 processors, 4 proc. links, 6 crossbars.

several parameters during evaluation of the selection
function. The worst results are obtained by heuristics that
use only one parameter during evaluation of selection
function (i.e. iter4, iter0, iter3). For system with low
efficiency of section activation control (tV = 96) the iter4
heuristics gives the best results (Fig. 8b). The iter3
heuristics gives in almost all cases the worst results.

The analysis of experimental results for wider selection
of program graphs has shown that methods iter0, 1, 2
behaves better than others. These heuristics use
reconfiguration criticality, thus we could deduce that this
APG graph parameter is the most important.

Proceedings of the International Conference on Parallel Computing in Electrical E
0-7695-2080-4/04 $ 20.00 IEEE
5. Conclusions

Several iterative graph structuring algorithms for the
look-ahead reconfigurable multi-processor system have
been presented in the paper. During experiments we have
found the relationship between program time parameters,
number of switches and the effective speedup achieved.
Increasing the number of switches allows to reduce (or
even completely eliminate) time overheads connected
with connection creation. This effect is especially visible
in systems with low reconfiguration efficiency or for fine-
grain parallel programs with high reconfiguration
demands. For a program for which inter-processor
connection reconfiguration completely overlaps with
program execution, the multi-processor system behaves as
a fully connected processor structure. Experiments show
that reduction of time overheads, introduced by section
activation and termination control, is possible by
application of hardware synchronization at the system
architecture level. The future works will focus on
partitioning algorithm improvements and further
optimizations in section clustering and mapping of
communication to resources.
References

[1] Jing-Jang Hwang, Yuan-Chien Chow, Frank D. Angers,
Chung-Yee Lee; Scheduling Precedence Graphs in Systems with
Interprocessor Communication Times, Siam J. Comput., Vol.
18, No. 2, pp. 244-257, April 1989.
[2] E. Laskowski Fast Scheduling and Partitioning Algorithm in
the Multi-Processor System with Redundant Communication
Resources, PPAM 2001
[3] E. Laskowski, M. Tudruj, A Testbed for Parallel Program
Execution with Dynamic Look-Ahead Inter-Processor
Connections, Proc. of the 3rd International Conference on
Parallel Processing and Applied Mathematics PPAM '99, Sept.
1999, Kazimierz Dolny, pp. 427-436.
[4] El-Rewini H., Lewis T. G., Ali H. H. Task Scheduling in
Parallel and Distributed Systems. Prentice Hall 1994
[5] M. Tudruj, Look-Ahead Dynamic Reconfiguration of Link
Connections in Multi-Processor Architectures, Parallel
Computing '95, Gent, Sept. 1995, pp. 539-546.

ngineering (PARELEC’04)

