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Chapter1
Introduction

The PERPLEXUS project aims to develop a scalable hardware platform made of
custom reconfigurable devices endowed with bio-inspired capabilities that will
enable the simulation of large-scale complex systems and the study of emer-
gent complex behaviors in a virtually unbounded wireless network of computing
modules.

At the heart of these ubiquitous computing modules (ubidules), we will use
a custom reconfigurable electronic device capable of implementing bio-inspired
mechanisms such as growth, learning, and evolution. This ubidule bio-inspired
chip (ubichip) will be associated to rich sensory elements and wireless com-
munication capabilities. Such an infrastructure will provide several advantages
compared to classical software simulations: speed-up, an inherent real-time in-
teraction with the environment, self-organization capabilities, simulation in the
presence of uncertainty, and distributed multi-scale simulations.

The strong interaction between our hardware infrastructure and the real
environment circumvent the need to simulate the environment and ease the oc-
currence of unexpected emergent phenomena. The observation of such emergent
phenomena will be now facilitated by the shorter simulation time, brought by
the hardware speed-up.

One of the major difficulties of a complex system simulation is to define
the structural organization of the modules composing the model. The self-
organization and bio-inspired capabilities of our platform will bring an inno-
vative solution to this problem: an evolving and hierarchical structure. The
function of each ubidule can be dynamically and autonomously determined by
the simulation itself: it can be an independent agent or a part of a largest entity.

We have identified three domains where our modeling infrastructure will
prove its usefulness as a powerful and innovative simulation tool: biologically-
plausible developing neural networks modeling, culture dissemination modeling,
and cooperative collective robotics modeling. We will perform qualitative and
quantitative comparisons between classical software implementations of these
three target modeling applications and their implementation running on a net-
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work of ubidules, our PERPLEXUS platform.
The PERPLEXUS platform will thus provide an unprecedented modeling

framework thanks to the pervasive nature of the hardware platform, its bio-
inspired capabilities, its strong interaction with the environment, and its dy-
namical topology.

We envision three strategic objectives to be addressed

1. Design and development of a scalable hardware platform made of cus-
tom reconfigurable devices endowed with bio-inspired capabilities that
will enable the simulation of large-scale complex systems and the study of
emergent complex behaviors in a virtually unbounded wireless network of
computing modules.

2. Simulation of complex phenomena in the domains of realistic neural mod-
els, social sciences, and collective cooperative robotics, taking advantage
of the features of our modeling hardware platform: speed-up, distributed
computing, an inherent real-time interaction with the environment, self-
organization capabilities, and simulation in the presence of uncertainty.

3. To study the emergent phenomena arising from the strong interaction
between our ubiquitous computing modules and the real environment.

PERPLEXUS, Contract number 034632 4



Chapter2
Bio-inspired hardware

2.1 About Bio-inspiration
Living organisms, from bacteria to giant sequoias, including animals such as
insects and humans, have successfully survived on earth for billions of years. If
one were to propose but one key to explain such a success, it would certainly
be adaptation. In contrast with nature, adaptation has been very elusive to
human technology. The most relevant examples of adaptive systems are not
among human’s creations, but among nature’s. Biological organisms show a
striking capacity to adapt to changing circumstances, thus ensuring their con-
tinued functionality.

Nature has always stimulated the imagination of humans, but it is only very
recently that technology is allowing the physical implementation of bio-inspired
systems. They are man-made systems whose architectures and emergent be-
haviors resemble the structure and behavior of biological organisms [22]. Arti-
ficial neural networks (ANNs), evolutionary algorithms (EAs), and fuzzy logic
are some representatives of a new, different approach to artificial intelligence.
Names like "computational intelligence", "soft computing", "bio-inspired sys-
tems", or "natural computing", among others, are used to denominate the do-
main involving these and other related techniques. Whatever the name, these
techniques exhibit the following features: (1) their role models, to different
extents, are natural processes such as evolution, learning, development, or rea-
soning; (2) they are intended to be tolerant of imprecision, uncertainty, partial
truth, and approximation; (3) they deal mainly with numerical information
processing using little or no explicit knowledge representation.

How to model life? How to integrate all these bio-inspired techniques to a
single model? How to merge these techniques in order to create an entity able
to mimic living beings? These are open questions that are still far from being
completely answered. There exist several research fields deeply studying and
proposing computational models of specific aspects of biological systems. Neu-
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rocomputing, evolutionary computation, and fault-tolerant systems are some
examples of them. However, modelling life implies including them all in a single
model, for which the POE model proposes a well structured framework, which
is also well suited to the implementation of real systems.

2.1.1 The POE model
If one considers life on Earth since its very beginning, then the following three
levels of organization can be distinguished [37]: (1) Phylogeny, concerning the
temporal evolution of a certain genetic material in individuals and species, (2)
Epigenesis, concerning the learning process during an individual’s lifetime, and
(3) Ontogeny, concerning the developmental process of multicellular organisms.

Analogous to nature, the space of artificial bio-inspired systems can be par-
titioned along these three axes: phylogeny, ontogeny, and epigenesis; we refer
to this as the POE model [37, 38]. The distinction between the axes cannot
be easily drawn where nature is concerned. We therefore define each of the
above axes within the framework of the POE model as follows: the phyloge-
netic axis involves evolution, the ontogenetic axis involves the development of a
single individual from its own genetic material, essentially without environmen-
tal interactions, and the epigenetic axis involves learning through environmental
interactions that take place after formation of the individual. As an example,
consider the following three paradigms, whose hardware implementations can be
positioned along the POE axes: (P) EAs are the simplified artificial counterpart
of phylogeny in nature, (O) self-replicating and self-repairing cellular automata
are based on the concept of ontogeny, where a single mother cell gives rise,
through multiple divisions, to a multi-cellular organism, and (E) ANNs embody
the epigenetic process, where the system’s synaptic weights change through in-
teractions with the environment. Within the domains collectively referred to as
bio-inspired systems, which often involves the solution of ill-defined problems
coupled with the need for continual adaptation or evolution, the above para-
digms yield impressive results, frequently improving upon those of traditional
methods.

2.1.2 Phylogeny
The first level concerns the temporal evolution of the genetic program, the
hallmark of which is the evolution of species, or phylogeny. The multiplication
of living organisms is based upon the reproduction of the program, subject to
an extremely low error rate at the individual level, so as to ensure that the
species of the offspring remain unchanged. Mutation (asexual reproduction)
or mutation along with recombination (sexual reproduction) gives rise to the
emergence of new organisms. The phylogenetic mechanisms are fundamentally
nondeterministic, with the mutation and recombination rate providing a major
source of diversity. This diversity is indispensable for the survival of living
species, for their continuous adaptation to a changing environment, and for the
appearance of new species.
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The idea of applying the biological principle of natural evolution to artificial
systems, introduced more than three decades ago, has seen impressive growth
in the past few years. Usually grouped under the term evolutionary algorithms
(EAs) or evolutionary computation, we find the domains of GAs, evolution
strategies, evolutionary programming, and genetic programming [4, 10, 21, 27].
EAs can be also considered as a family of stochastic global optimization al-
gorithms, mainly differing from their deterministic counterparts [32] in lower
knowledge requirements of the problem at hand and in the absence of math-
ematical proofs of convergence given their stochastic nature. For highly non-
linear search spaces, EAs have exhibited faster convergence than deterministic
methods, given their population-based approach.

Evolutionary computation makes use of a metaphor of natural evolution ac-
cording to which a problem plays the role of an environment wherein lives a
population of individuals, each representing a possible solution to the problem.
The degree of adaptation of each individual to its environment is expressed by
an adequacy measure known as the fitness function. The phenotype of each in-
dividual, i.e., the candidate solution itself, is generally encoded in some manner
into its genome (genotype). EAs potentially produce progressively better solu-
tions to the problem. This is possible thanks to the constant introduction of new
"genetic" material into the population, by applying so-called genetic operators
which are the computational equivalents of natural evolutionary mechanisms.

As they combine elements of directed and stochastic search, evolutionary
techniques exhibit a number of advantages over other search methods. First,
they usually need a smaller amount of knowledge and fewer assumptions about
the characteristics of the search space. Second, they are less prone to get stuck
in local optima. Finally, they strike a good balance between exploitation of the
best solutions, and exploration of the search space.

EAs are common at present, having been successfully applied to numer-
ous problems from different domains as diverse as optimization, circuit design,
disease diagnosis assistance, precision agriculture, self-organizing systems, au-
tomatic programming, machine learning, economics, immune systems, ecology,
population genetics, studies of evolution and learning, and social systems [21].

2.1.3 Ontogeny
Upon the appearance of multi-cellular organisms, a second level of biological
organization manifests itself. This level constitutes the developmental process
of multi-cellular organisms, best known as ontogeny. The successive divisions
of the mother cell, the zygote, into newly formed cells each possessing a copy
of the original genome, is followed by a specialization of the daughter cells in
accordance with their surroundings, i.e. their position within the ensemble.
This latter phase is known as cellular differentiation. The ontogenetic process is
essentially deterministic: an error in a single base within the genome can provoke
an ontogenetic sequence that results in notable, possibly lethal, malformations.

Ontogeny comprises several mechanisms of high interest for inclusion in
human-designed systems. Self-replication and self-reparation are two key char-
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acteristics of living beings that are still far from being implemented in engi-
neered systems with an efficiency comparable to nature. However, some key
factors from multicellular beings have been identified for use in the design of
ontogenic machines: a cell’s function depends upon its relative position, the
physical neighborhood is relevant for chemical interactions between cells, time
scales are determinant during cellular reproduction, and the fundamental role
played by protein’s regulation and cell’s differentiation, which is driven by reg-
ulatory and differentiation genes.

Research projects as Embryonics [25] (embryonic electronics) and POEtic
[47, 42, 41, 45] have studied the issues related to hardware implementations of
such mechanisms.

The Embryonics project take inspiration from the genome interpretation
done by each cell composing living beings. This project aims to build robust
integrated circuits endowed with two fundamental properties of living beings:
self-repair and self-replication. For achieving this, they propose a hardware
system with several levels of organization. The lowest level is a molecule con-
sisting in a multiplexer. The next level consists in a cell, represented by a set
of molecules forming a processor with its memory. Then, a set of cells forms an
organism, or in hardware, a multiprocessor system. Finally, this organism can
itself replicate, generating in this way a population of organisms.

2.1.4 Epigenesis
The ontogenetic program is limited in the amount of information that can be
stored, thereby rendering the complete specification of the organism impossible.
A well-known example is that of the human brain with some 1011 neurons and
1014 synapses, far too large a number to be completely specified in the four-
character genome with an approximate length of 3 109. Therefore, upon
reaching a certain level of complexity, there must emerge a different process
that permits the individual to integrate the vast quantity of interactions with
the outside world. This process is known as epigenesis and primarily includes the
nervous system, the immune system, and the endocrine system. These systems
are characterized by the possession of a basic structure that is entirely defined by
the genome (the innate part), which is then subjected to modification through
lifetime interactions of the individual with the environment (the acquired part).
The epigenetic processes can be grouped under the heading of learning systems
and, in bio-inspired systems, it is mainly represented by the domain of ANNs.

Artificial neural networks (ANNs) are massively parallel distributed comput-
ing units made up of very simple basic elements. They provide the feature of
storing experiential knowledge making it available for future use. ANNs takes
inspiration from animals’ brains in several aspects: they benefit from a mas-
sively parallel cellular architecture, a learning process allows acquiring a certain
knowledge, and this knowledge is stored in the form of synaptic weights inter-
connecting neurons. Among other computation features, ANNs provide nonlin-
earity (an ANN made up of nonlinear neurons has a natural ability to compute
nonlinear input-output functions), they are universal approximators (ANNs can

PERPLEXUS, Contract number 034632 8



D2.1: Specification of Bio-inspired features to be supported by the device

approximate input-output functions to any desired degree of accuracy, given an
adequate computational complexity), they are adaptable (adjustable synaptic
weights and network topology can adapt to its operating environment and track
statistical variations), they are fault tolerant (an ANN has the potential to be
fault-tolerant, or capable of robust performance, in the sense its performance
degrades gradually under adverse operating conditions), and they can mimic
real neurons (neurobiologists look to neural networks as a research tool for the
interpretation of neurobiological phenomena. By the same token, engineers look
to the human brain for new ideas to solve difficult problems) [13].

2.2 POEtic chip
There has been considerable research involving one or more of these three life-
axes. Most of it is done in software, due to the lack of a real hardware platform
specifically designed for such applications. However, hardware implementations
can dramatically improve the speed of neural networks and fuzzy logic systems,
for instance, by taking advantage of the inherent parallelism of hardware sys-
tems. Furthermore, self-repair mechanisms can only be realized in hardware, as
a single microprocessor is intrinsicaly not fault-tolerant, due to its centralized
calculation.

The POEtic chip [29] is a reconfigurable hardware platform for rapidly pro-
totyping bio-inspired systems that employ POE principles, developed in the
framework of the european project POEtic. In this section we briefly describe
the chip, with a special attention on its bio-inspired capabilities. We then de-
scribe four applications which take advantage of the special features of POEtic,
and conclude by addressing the potential improvements that could be proposed
concerning its architecture. The special features can be summarized as:

• combination of a microprocessor and a reconfigurable array

• parallel configuration

• partial reconfiguration

• dynamic routing

The POEtic chip has been specifically designed to ease the development of
bio-inspired applications. It is composed of two main parts: a microprocessor,
in the environmental subsystem, and a 2-dimensional reconfigurable array called
the organic subsystem (figure 2.1). This array is made of small elements, called
molecules, that are essentially composed of a 4-input look-up table and a flip-
flop.

Although being oriented for bio-inspired systems, its architecture makes it
an appropriate candidate for any general design as the microprocessor can access
the reconfigurable array very rapidly. This can be useful for both configuration
and state retrieval.

The final chip contains an array of 18x8 molecules and the microprocessor.
This ASIC prototype uses a CMOS 0.35 µm 1P-5M technology.
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Figure 2.1: The POEtic chip, showing the microprocessor and the reconfigurable
array. In the organic subsystem, the molecular plane (bottom) is connected to
the routing plane (top). Many elements connected to the AMBA bus, (an-
other timer and serial and parallel ports) are omitted in order to simplify the
schematics.

2.2.1 The Microprocessor
The microprocessor is a 32-bit RISC processor, specifically designed for the
POEtic chip. Its purpose is to control the organic subsystem, including the
configuration of molecules, as well as to execute evolutionary processes. During
the design process, particular attention was paid to the microprocessor size so
as to leave more room for the reconfigurable array.

The main features of the POEtic microprocessor are as follows:

• The architecture is LOAD/STORE.

• Every instruction is 32 bits.

• Every instruction is executed in one clock cycle.

• A five-stage pipeline implements the datapath, with the following states:
Fetch, Decode, Execute, Memory, and Writeback.

• 57 instructions are defined, two of which give access to a hardware pseudo-
random number generator (a read instruction, and the load of an initial
seed) which can be very useful for evolutionary processes. This generator
has been implemented using a 32-bit linear feedback shift register.

• Up to 5 interrupt sources can be handled by the microprocessor.

• An AMBA bus [2] allows communication with all internal elements, as
shown in figure 2.1, as well as with external devices. It also permits the
interconnection of many POEtic chips, in order to realize a larger virtual
reconfigurable array.
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The microprocessor can configure the array, and also retrieve its state. Ac-
cess is made in parallel, so configuration and partial reconfiguration are very
fast. The retrieved state can be used to calculate the fitness of an individual,
in the case of an evolutionary process, or simply to debug any design running
on POEtic. For genetic algorithms, evolution can be performed by the micro-
processor. This obviates the need for slow data transmission to and from a host
computer.

2.2.2 The Reconfigurable Array
The organic subsystem is composed of two layers: the molecular layer, that is
reconfigured by the microprocessor, and the routing layer which implements a
dynamic routing algorithm managed by the molecules.

The molecular layer is a grid of basic elements, called molecules. Although
being similar to standard FPGA elements, molecules have special features which
are useful for bio-inspired systems. The main components are a 4-input look-up
table, a flip-flop, and a switch box, as depicted in figure 2.2.

Figure 2.2: On the left, 9 molecules of the reconfigurable array. In the centre,
a molecule in 4-LUT mode. On the right, the switch box of a molecule.

The switch box allows the connection of molecules that are not adjacent
to one another. It is composed of eight multiplexers — two in each direction.
Each multiplexer can select from the two signals coming from each direction, the
output of the molecule, or a second output. The second output is, in most cases,
the inverse of the first. The switch box has been designed with multiplexers,
rather than with anti-fuse or RAM bits, in order to avoid any short-circuit.
This feature means that a developer can use POEtic as platform for evolvable
hardware without any risk, as no randomly generated bitstream configuration
can destroy the chip.

The molecule can act in different operating modes (figure 2.3):

• In 4-LUT mode, the output is any function of the four inputs.

• In 3-LUT mode, two outputs are computed, each from any 3-input func-
tion.
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• In Comm mode, the LUT is split into a 8-bit shift register and a 3-input
LUT.

• In Memory mode, the LUT is used as a 16-bit shift register, and can be
used to implement a serial access memory.

• In Input mode, the molecule retrieves a value from the dynamic routing
layer.

• In Output mode, the molecule sends a value to the dynamic routing layer.

• In Configure mode, the molecule can partially reconfigure a neighbouring
molecule.

• In Trigger mode, the molecule serves as a trigger to synchronize the dy-
namic routing process.

Figure 2.3: 3 bits define the operational mode of a molecule. On the left, a
molecule in 4-LUT mode. On the right, a molecule in 3-LUT mode.

One of the special features of the reconfigurable array is that molecules
can be partially reconfigured without microprocessor intervention. A molecule
configuration is described by 76 bits, split into 5 blocks. The molecule can allow
a reconfiguration of each of its blocks, and chooses the source of the configuration
data. A partial reconfiguration is processed when a molecule in Configure mode
is active; this is when its first input is active. In this state, configuration bits are
shifted on every clock cycle, with the second input of the Configure molecule
being sent out as the new configuration bitstream. This feature allows LUT
content or dynamic routing addresses to be changed at runtime. It can be very
useful for self-repair systems, in which the array can partially reconfigure itself
without needing an external agent.

The routing layer is a grid of routing units, which can dynamically create
paths between different points of the circuit at runtime. It implements a distrib-
uted pseudo-dynamic routing algorithm, based on addresses (interested readers
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can see a description of this algorithm in [46]). This algorithm is dynamic in the
sense that a process creates the paths at runtime, but it is not fully dynamic
as when a path has been defined, the data from the source to the target always
follow the same path. It can be used to create connections between any parts
of the circuit, by using the input/output molecules. In a cellular system (e.g.
a neural network), for instance, cells could be identified by a unique ID and
then connected to other cells by means of this mechanism. As the path creation
is made at runtime, and can be made incrementally, POEtic is an appropriate
architecture on which to grow neural networks, or any other system involving a
changing topology.

2.2.3 Sample applications
The POEtic circuit has been evaluated with different applications bringing cel-
lular systems into play. We briefly describe five of them that show phylogenetic,
ontogenetic and epigenetic concepts.

1. Evolvable hardware. Evolvable hardware consists of letting a system
find a solution to a given problem, without human intervention. It can be done
by supplying inputs and analysing the outputs to evolve to a design satisfying
all cases. A demonstration of how POEtic can be used for gate-level evolvable
hardware is proposed in [43]. A subset of the possible configurations allow to
see POEtic as if it was a XC6200 FPGA, the most often used reconfigurable
circuit for these kinds of applications.

2. Evolvable hardware and ontogeny. Concerning ontogeny, the con-
cept of hardware evolution mixed with growth and differentiation of a cellular
system has been developed in [35]. In this application, for the evaluation of
each individual, the reconfigurable part of the circuit is loaded with identical
cells. The microprocessor launches the growth process by connecting to a cell,
and then the cells are able to differentiate to acquire a specialization that cor-
responds to a part of the genome stored in the cell (identical in every cell).

3. Self-reproducing system. Partial self-reconfiguration allow the mole-
cules to change the configuration bits of other molecules of the circuit. A cell,
composed of molecules, can therefore build a copy of itself, somewhere in the
circuit, at the only condition of the presence of some molecules (around 10) that
are capable to retrieve a configuration chain and to configure their neighbors. A
demonstration of this concept can be found in [36], where the reconfigurable part
of POEtic has been implemented on the BioWall [40], a giant wall of FPGAs
with interaction capabilities.

4. Artificial Neural networks. The model of an artificial spiking neuron
capable of learning has been presented in [28]. Implemented onto the mole-
cules of the POEtic chip, it allows for the observation of unsupervised learning
performed by the neural network.

5. Vocal tract synthesis. As a last example, [8] describes how to exploit
the capabilities of POEtic to implement a voice tract model using a mesh.
Composed of cells connected to their four neighbors, evolution is applied to the
shape of the individual. The mesh receives noise as input, and has to create a
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sound corresponding to the voice of a human. Evolution is therefore exploited
to find a good solution for each different sound, and the cellular system is
implemented in the reconfigurable part of POEtic.

2.2.4 Conclusion
Common reconfigurable circuits lack adaptability, as their configuration is fixed
once, by an external processor, for a specific application. In this section we
presented POEtic, an electronic circuit that proposes special features particu-
larly useful for applications that bring cellular applications into play, and that
require hardware adaptation. This adaptation can act at different levels: a
microprocessor has the possibility of applying evolutionnary algorithms to the
system and the reconfigurable part can partially self-configure itself and change
its connection topology at runtime.

The circuit, as a prototype, does not contain an impressive amount of logic
(144 molecules). However, it is possible to connect many chips on a board to
have a virtually larger array at one’s disposal. On the neural networks side,
the chip allows for the realization of neural networks that would need to change
their topology at runtime. Taking advantage of the pseudo-dynamic routing
algorithm of POEtic, neurons can ask for the creation of new datapaths within
the chip, and by using self-reconfiguration, they can change their behavior by
directly act on the content of look-up tables contained in the basic building
blocks (the molecules) of the neuron.

Although being really different from the the commercial devices, this recon-
figurable circuit doesn’t constitutes the absolute chip for bio-inspired applica-
tion:

1. The pseudo-dynamic routing algorithm requires long-distance combina-
tional links. For scalability reasons, an algorithm working with more local
connectivity would better suite our goal of developing a scalable platform.

2. The partial self-reconfiguration of the molecules allows for replication of
part of the circuit. However, as there are 8 configuration bits per molecules
that cannot be modified, a replication process can be executed only if the
8 bits of the receiving molecules are already programmed. For a real self-
replication, the modification of all configuration bits of the programmable
elements would be mandatory.

3. Concerning the implementation of artificial neural networks, some special
hardware operations could be facilitated.

Taking into account these possible improvements, the ubichip could therefore
go further into the ultimate bio-inspired chip, allowing to better perform the
mechanisms needed for phylogenetic, ontogenetic and epigenetic applications.
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Bio-inspired features

The limitations exhibited by the POEtic tissue suggest several architectural and
configurability features to be improved. These improvements may lead us to a
reconfigurable platform better suited for supporting the bio-inspired principles
that we want our devices to mimic. Before discussing the hardware mechanisms
that we will be considered for the design of our ubichip, we will present the
desired features that we want them to support.

In the next sections we will delineate the bio-inspired features that will be
supported by our ubichip. Each of them is presented in the framework of the
POE model, more precisely, in the space of bio-inspired hardware systems.

3.1 Phylogeny
When we refer to the phylogenetic axis of bio-inspired hardware systems, we are
certainly talking about “evolvable hardware” (EHW). If one carefully examines
the work carried out to date under the heading EHW, one can identify several
levels at which the evolution is performed. According to [38], one can identify
four taxonomic subdivisions according to the level of bio-inspiration: extrinsic,
intrinsic, complete, and open-ended evolution. Our goal, concerning the phylo-
genetic features of the ubichip, is to provide the mechanisms for tackling these
four taxonomic subdivisions. It is important thus to examine the scope of each
of these subdivisions:

• At the bottom of this axis we find extrinsic evolution, what is in
essence evolutionary circuit design, where all operations are carried out
in software, with the resulting solution possibly loaded into a real cir-
cuit. Though a potentially useful design methodology, this falls completely
within the realm of traditional evolutionary techniques.

• Moving upward along the axis one finds intrinsic evolution, where a real
circuit is used during the evolutionary process for fitness computation,

PERPLEXUS, Contract number 034632 15



D2.1: Specification of Bio-inspired features to be supported by the device

though most operations are still carried out offline, in software. Examples
are [48, 49, 17], where fitness calculation is carried out on a real circuit.

• Still further along the phylogenetic axis, one finds systems in which genetic
operations (selection, crossover, mutation), as well as fitness evaluation,
are carried out intrinsically, in hardware. This category has been called
complete evolution by Haddow and Tufte [12]. The main motivation
is to attain adaptive systems that are able to accomplish difficult tasks,
possibly involving real-time behavior in a complex, dynamic environment.
This approach has a special interest since it greatly enhances the autonomy
of the circuit, allowing the EHW to adapt to a changing environment
during its lifetime. The major aspect missing, compared with biological
evolution, concerns the fact that evolution is not open ended, i.e., there
is a predefined goal and no dynamic environment to speak of. In this
category we find two subdivisions: centralized and population-oriented.
The main characteristic of the centralized approach is the existence of a
single evolvable circuit and a single evolvable algorithm computation. The
centralized approach implements an on-chip genetic machine. This genetic
machine can be implemented in the form of a hardwired EA or an on-chip
processor running the EA [52].
A hardware implementation of the full population, and not only of one
individual (as was the case for previous categories), is the distinctive fea-
ture of the population-oriented approach. An example of this approach
is the work of Goeke et al. [11], where an evolving cellular system was
implemented in which evolution takes place completely on-chip, and each
cell comprises a genetic machine that updates its own genetic description.

• Open-ended evolution, the last subdivision situated at the top of the
phylogenetic axis, involves a population of hardware entities evolving in
an open-ended environment. When the fitness criterion is imposed by the
user in accordance with the task to be solved (currently the rule with
artificial evolution techniques), one attains a form of guided, or directed,
evolution. This is to be contrasted with open-ended evolution occurring in
nature, which admits no externally imposed fitness criterion, but rather
an implicit, emergent, dynamical one (that could arguably be summed
up as reproducibility). Open-ended undirected evolution is the only form
of evolution known to produce such devices as eyes, wings, and nervous
systems and to give rise to the formation of species.

The ubichip must provide thus the capabilities for performing each of the
aforementioned levels of evolution. The capability of evolving at these four levels
will allow our ubidules to evolve, in a completely autonomous way, under a real-
time interaction with the environment and under the presence of uncertainty.
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3.2 Ontogeny
As described in subsection 2.1.3, ontogenetic features correspond to the way an
organism develops from a single cell to an entire body (self-replication), as well
as to the capability of self-repair. Both processes of self-replication and self-
repair require cellular replication and differentiation. Although differentiation
can act at system level, to simply express a particular functionality depending
on some factors, replication requires specific hardware mechanisms.

3.2.1 Replication
In order to implement cellular growth or self-repair, some parts of the circuit
must be replicated. It could be an entire cell, or part of a cell, and for both cases
there must be a unit responsible for the control of the replication. Previous work
on replicating circuits have been done with the POEtic chip [3, 36]. However,
in POEtic, replication was possible with two limitations:

1. A configuration path had to be pre-configured in the receiving molecules.
This path determined the cellular morphology.

2. Two reconfiguration units had to be loaded in the circuit by the micro-
processor, one for the replicating cell, and one for the creation of the new
cell.

Although being quite useful for growth and self-repair, simple replication is
limited in the sense that the circuit has to be preprogrammed to accept this
replication. A full replication, without any requirements will therefore be a plus
in our new PERPLEXUS device.

3.2.2 Self-replication
The concept of self-replication, in the case of a reconfigurable circuit, is illus-
trated by the following example:

We have to configure a section of the circuit that we will call a cell. Then,
based on ontogenetic processes, this cell will self-replicate, by creating a real
copy of itself somewhere else on the reconfigurable array. The main advantage
of self-replication over replication is that there is no need to prepare the remain-
ing part of the reconfigurable array, and that it would be possible to create a
Von Neumann universal constructor [53]. The difference with the realization of
Von Neumann is that instead of using a tape describing the constructor, the
replication is performed through self-inspection of the cell.

In the Von Neumann cellular automata, a universal constructor is com-
posed of a functional part and a tape containing its description. The replication
process acts in two steps: (1) the functional part creates a copy of itself by using
the tape information, and (2) the cell duplicates the tape and inserts it at the
same relative place to the new functional part.

The concept of self-inspection acts in a different way. Instead of using a tape
describing the cell, the replication directly inspects the content of the cell. In
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the case of reconfigurable circuits, this content corresponds to the configuration
bits of the reprogrammable elements. The advantage of this approach is that
there is no need to duplicate information, because the cell content is directly
scanned. However this gain in term of data storage leads to a more complex
hardware, capable of supporting this inspection.

Considering the limitation of simple replication, the architecture of the PER-
PLEXUS chip will allow to perform real self-replication. This self-replication
process can be viewed at three different abstraction levels:

1. At organism level, a cell simply creates a copy of itself.

2. At cellular level, cellular structure is decomposed in three organelles,
mandatory to further analyse the requirements of a self-replication by
self-inspection.

3. Finally, at molecular level, special hardware mechanisms are needed to
allow the implementation of real self-replication.

The self-replication at organism level corresponds to the high-level vision of
the self-replication - i.e. the final goal of our mechanism - and does not require
more description. The molecular level will be treated in detail in section 4.3,
and we here propose a description of self-replication at cellular level.

3.2.3 Self-replication at cellular level
In a general way, self-replication implementations can be considered at different
levels of abstraction. It is not easy to define a level where everyone is satisfied.
A good example of this is the case of self-replicating robots, where a robot must
build its exact copy after providing him the necessary building blocks. The
highest level can be considered as a robot able to assemble two blocks: a battery
and an unpowered robot. The result from this assemblage will be a functional
robot. On the other extreme we find the lowest level case: the unrealistic
scenario where a robot builds its exact copy by assembling atoms from scratch.

In the world of configurable digital systems one can also envision two extreme
cases. The highest level can be an FPGA able to configure another FPGA
with the same configuration bitstream. And the lowest level can be a logic
cell able to fully configure its neighbor logic cells with its own configuration,
and still provide a differentiation mechanism allowing it to perform any useful
computation. Although the lowest level approach could lead to an easy use
of such mechanisms by an end user, it would impose an impressive hardware
overhead.

In our case, we consider an intermediate level where a molecule contains the
basic functionalities required for the self-inspection process, letting the control
to be executed by other molecules not affected by this self-inspection. This
approach implies also a less important hardware overhead. Its basic problem,
if there is no duplicated information in the cell, is that it is not possible to
replicate itself while managing its own replication. A subdivision of the cell is
therefore needed to allow decomposition of the replication process.

PERPLEXUS, Contract number 034632 18



D2.1: Specification of Bio-inspired features to be supported by the device


































  

Figure 3.1: Self-replication process divided in three phases.

We split the cell into three organelles, as shown on figure 3.1: a functional
unit (FU), and two replication units (RU0 and RU1) responsible for the self-
replication process.

The self-replication algorithm is decomposed into three steps:

1. RU0 creates a copy of RU1 somewhere on the reconfigurable array. The
choice of the place where to put RU1 is not considered in this paper, as it
is closely related to the dynamic routing algorithm that will be included
in a further work.

2. RU1 creates a copy of RU0, by connecting to the newly created RU1.

3. RU0 creates a copy of FU, by connecting to the newly created RU0.

This algorithm, while being quite simple, requires special hardware support
(for instance, in the POEtic chip, it was not possible to implement it):

1. Connections have to be created at runtime, letting the old cell connect to
the new one, to send the configuration bitstreams. This mechanism could
correspond to the dynamic routing.

2. The programmable elements have to allow for a self-inspection process
to retrieve all the configuration bits, and to allow the creation of the
configuration path (the way the new cell is created).

3.3 Epigenesis
From an implementation point of view, an artificial neural network (ANN) can
be seen as a system that maps a function from an input vector to an output
vector. It consists of a set of simple units called artificial neurons, where each
neuron has an internal state which depends on its own input vector. From this

PERPLEXUS, Contract number 034632 19



D2.1: Specification of Bio-inspired features to be supported by the device

state the neuron maps an output that is sent to other units through parallel
connections. Each connection has a synaptic weight that multiplies the signal
travelling through it. So, the final output of the network is a function of the
inputs and the synaptic weights of the ANN.

Most neural models are conceived for being implemented in software plat-
forms, making them unsuitable for hardware implementations. Most of these
models, such as perceptrons or radial basis functions, encode information by us-
ing continuous values, which are processed using logistic or gaussian functions
as activation function [13]. They don’t take care about data resolution, about
floating point operations overhead, or about the number of multiplications to be
executed, since the overall overhead in software implementations due to these
facts is negligible or nonexistent.

However, these aspects turn out to be very expensive when one considers
their implementation as a hardware architecture. There are two main critical
levels to be considered when proposing a model: node complexity and inter-
neural connectivity. Node complexity is directly related to the arithmetic opera-
tions to be computed in the node: a simple exponential function or a multiplica-
tion can require a prohibitive amount of logic resources. In addition to this, the
fact of using a floating point representation instead of fixed point can triplicate
the amount of logic resources. The inter-neural connectivity constitutes also a
critical aspect in terms of routing resources. The fact of coding information as
a continuous value of n-bits requires a bus of size n in order to connect every
two neurons. Such implementation requires an important amount of routing
resources, which are indeed the most valuable resource in commercial FPGAs.

Some previous works have focused on optimizing the implementation of such
types of models, and they end up being a coarse approximation to the original
model. Other works have focused on proposing original models that exploit
better the hardware specificity of the implementation. A good example to take
inspiration is that of biological neurons, where information is coded in spikes in-
stead of continuous values. Spiking neuron modelling, which is one of the three
applications proposed in the PERPLEXUS project, provide a good framework
for these implementations. Spiking neurons allow resource-efficient implemen-
tations at both levels: node complexity and inter-neural connectivity. At node
complexity level, they allow simplistic hardware implementations [34, 50, 51].
At inter-neural connectivity level, the simple fact of coding a spike as an event
allows to interconnect neurons through a single line instead of a bus.

Pulse stream neural models can be considered as a superset of spiking neu-
rons. These are quasi-periodic streaming signals, where information is coded
in timing instead of amplitude [33]. Several types of coding are allowed, ac-
cording to the type of modulation used to represent data. Among the most
common types of modulation one can find pulse frequency modulation, pulse
width modulation, stochastic pulse modulation, and pulse code modulation.

Pulse stream models feature the same advantages exhibited by spiking neu-
rons concerning the resource-efficiency given node complexity and inter-neural
connectivity [14, 15, 16, 23]. Additionally, unlike spiking neural models, these
models support the application of a vast number of supervised, reinforcement,
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and unsupervised learning algorithms. The enhanced adaptability provided by
learning, along with the low-resource requirements of the implementation, make
pulse stream neural models a good candidate for being used in PERPLEXUS
applications. More specifically in the collective robotics and culture dissemina-
tion applications.

It would be desirable thus for our ubichip to provide the resources for imple-
menting the aforementioned neural models in an efficient way. This efficiency
will be provided by a neural-friendly architecture, that will allow the implemen-
tation of important amounts of neural units in a single ubichip.
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Hardware mechanisms

4.1 Dynamic placement
One of the major limiting factors for the development of actual self-adaptive
hardware is given by the lack of programmable architectures endowed with self-
configuration abilities. Even if the dynamic reconfiguration capabilities present
in current programmable devices allow for a partial on-line modification of the
system functionality, they are still far from permitting to redefine in real time
the system structure. This is due to the fact that the processes that determine
the physical location (placement) and the physical connectivity (routing) of
the elementary building blocks that constitute a system are mostly based on
complex and time consuming compilation processes that take place off-chip.

The dynamic routing features present in the POEtic chip offer a partial solu-
tion for achieving actual self-configurable hardware, since the cells that consti-
tute the system may establish their connections autonomously and in real time
without the need for an external compiler. However, the placement of the cells
within the physical substrate has still to be defined externally.

A new on-chip autonomous dynamic placement mechanism is being devel-
oped within the framework of the AETHER project [1]. This mechanism is being
investigated as one of the possible features to be included in future hardware
substrates able to support actual self-adaptive hardware.

The dynamic placement algorithm has been conceived for a homogeneous
architecture constituted by a regular array of elementary programmable cells.
These cells provide some basic programmable functionality and contain commu-
nication resources that permit to establish both dedicated and programmable
paths between them.

The dynamic placement method is totally distributed, since it is based on
local interactions between the elementary cells. A few global communication
resources (basically a shared bus) are included in order to facilitate some of
the processes on which it is based. The goal of this placement method is to
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automatically determine the best position in the array for the cells that define
a given functionality. In determining the position of a cell within the array two
major metrics are considered: the distance to the already placed cells with which
the cell has to connect (in order to minimize the overall delay of the system)
and the utilization of the communication resources at a given position (so as
to minimize the possibility of congestion problems during the routing process).
Once a cell has been placed in the array it is connected to the cells that have
been previously placed using the dynamic routing mechanism presented in [30].
Therefore, the combination of dynamic self-placement and dynamic self-routing
features in the same substrate will permit the autonomous construction of a
given functionality without the need for an external compiler.

Additionally, since both the dynamic placement and routing processes rely
on dedicated resources that do not affect the functional part of the system,
they may constitute the basis for supporting some of the bio-inspired features
(growth, self-replication and self-repair) to be included in the Ubichip.

The AETHER project is only concerned with the development and test of
the dynamic placement method and the proposal of a suitable hardware archi-
tecture able to support it. Within the framework of the PERPLEXUS project,
this dynamic placement method will be carefully assessed from a physical imple-
mentation point of view, and the feasibility of developing the necessary hardware
resources for its integration in the final Ubichip will be evaluated.

4.2 Dynamic routing
As previously presented, ontogenetic processes require the ability of creating
paths at runtime, in order to connect newly created cells. Epigenetic systems
such as growing neural networks would also need to build connectivity during
the lifetime of the artificial network. Therefore the Ubichip has to propose a
hardware mechanism to handle this kind of dynamic routing.

For this intra-chip communication, two kinds of approaches could be ex-
ploited:

1. Packet switching or wormhole routing

2. Pseudo-dynamic routing

Packet switching or wormhole routing [31] are based on targets identified by
a unique identifier. Each routing node is connected to its nearest neighbors,
and owns a mechanism to identify where to send a message forward. It can be
a look-up table with the directions corresponding to each identifier, or simply a
system where the identifier is the coordinate of the target. In the first case, a
significant amount of storage elements are required to store the look-up table,
while the second is more simple in term of logic elements. If we consider the
hardware implementation of one of this routing mechanism, the hardware over-
head seems to be unacceptable, regarding the size of the final Ubichip. This is
also due to the size of the reprogrammable elements of the Ubichip. If each one
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is a full processor, then the ratio between the size of a routing node and the re-
programmable element stays acceptable. However, the Ubichip elements will be
really smaller than a processor, and so the ratio would not allow to implement
a reasonable number of elements.

Pseudo-dynamic routing is therefore a good alternative to packet switching
or wormhole routing. Instead of dynamically routing the information from a
source to a target everytime a message has to be sent, a path between a source
and a target is built once, and exploited by each message. It is dynamic in
the sense that the paths are built at runtime, and pseudo-dynamic because
the messages always follow the same route, after the creation of a path. This
approach has two main advantages:

1. First, it requires less logic than packet switching or wormhole routing.

2. Second, the routing process of path building is executed once for each
path. After that, sending a message only requires to send the data, as no
header is needed.

The hardware implementation of dynamic routing will be based on multi-
plexers passing information to the neighbors of a routing node. Following a
previous study of the neighborhood [44], we can argue that a 8-neighborhood
is a better candidate than a 4-neighborhood in terms of hardware per routing
capabilities (congestion troubles/number of transistors).

Finally, for ontogenetic processes such as the one described in section 3.2,
another routing feature is mandatory. A cell has to be capable of building a
copy of itself somewhere else in the circuit, and the abovementioned mechanism
only allows to connect two existing cells. Two options can be envisaged:

1. Possibility to create a path in a given direction, that is to indicate only
this direction, and to connect to the first empty reprogrammable element.

2. Possibility to indicate the coordinates of the target. By using serial arith-
metic it would be possible to find the shortest path between the source
and the destination.

Both options can solve the problem of cellular self-replication. However, the
first one, although being easier to implement, needs to be sure that the path
is available in order not to erase an existing path, and so the second option is
more flexible, considering the potential congestion of the network.

4.3 Self-reconfiguration
The process of self-replication, as presented in section 3.2, requires specialized
configurability mechanisms on the replicator and replica side. The replicator cell
needs to inspect itself to retrieve its genome, while the replica needs to create
itself. We start with the proposal of a creation mechanism, and we sketch some
ideas about the self-inspection mechanism.
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For clarifying terms we will line-out some analogies between the reconfig-
urable logic and the biologically-inspired terminology (Figure 4.1). We consider
a molecule to be the equivalent of a logic cell, being part of a programable logic
cell array. Analogous to biology an organelle will be considered as a set of mole-
cules, where each organelle has a specific task in the cell. Finally, a cell (very
different from a logic cell) will be considered as a set of organelles performing a
certain computation. In our case, two main types of organelles will be consid-
ered within the cell: a replication organelle and a computation organelle. A set
of cells will form a complete organism, which is equivalent to the configuration
of the whole device or several of them.

 













Figure 4.1: Hierarchical decomposition of an organism.

A cell’s functionality is defined by a genome, which describes the complete
organism. This genome provides the genetic material that will be further ex-
pressed by the organism in the form of a phenotype as a function computation.
In terms of reconfigurable hardware this genome is equivalent to the logic cells’
configuration bit-string.

The Ubichip will logically allow for cellular development and self-repair. The
idea behind these two concepts is to let the reconfigurable part of the chip to self-
organize, and to allow it to potentially support fault-tolerance mechanisms. The
developmental features of a cellular organism basically require two processes:
growth and differentiation, which interact during the organism construction.

The developmental process, derived from nature, allows to fully identify the
requirements for our reconfigurable circuit. Initially, a single cell is programmed
in the circuit. This is done by an external agent, that could be a microprocessor
capable of configuring the programmable elements. This single cell can then
self-replicate to start the construction of an organism. Keeping in mind the
concept of a genome present in every cell, this genome can contain the number
of cells of the organism, and so the self-replication can manage to end up with
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the correct number of cells. After the creation of the complete organism, or
when at least two cells ar present in the circuit, a differentiation process is
mandatory to let the cells express a different functionality depending on, for
instance, their place in the organism (An example of differentiation based on
unique identifiers is described in [35]). When all cells have been created and
differentiated, the artificial organism is ready to operate, and can be considered
as a fully functional system.

The configuration mechanism used by this developmental process can be
exploited by self-repair. A genome in every cell means that a faulty cell could
be replaced by another one, simply by creating a new cell and by differentiate
it.

The reconfigurable array is intrinsically a distributed system, each molecule
functioning in parallel with the others. In a standard device, an external agent
is responsible to load a configuration bit-string describing the entire circuit at
startup. The idea behind ontogenetic hardware is to only configure a part of
the organism, a cell, letting this artificial organism to grow on the electronic
substrate. So, the reprogrammable array itself has to manage the dynamic
incremental configuration of the cellular array. For this purpose we borrow an
idea from the Tom Thumb algorithm [26] in order to manage the morphogenetic
development of cell’s organelles. The idea: to create a configuration path by
means of morphogenetic flags.

Basically, the path serving to define the shape of the organelle is serially
configured, and the configuration bits describing the functional part of the mole-
cules are further sent. The configuration bit-string must contain thus the flags
allowing the organelle construction and the molecules’ functionality.

If we consider the examples of figure 4.2, the flags required for building org0

would be:

F org0 f m0 , f m1 , f m2 , f m3

, , ,

and the flags for building org1 would be:

F org1 , , , , , , , , , , , , , , ,

This feature can lead to the construction of an organelle of any shape, not
only rectangles. When the morphology path is built, the configuration bits
of the functional part of the molecules can be sent. However, the order in
which the molecular functionality configuration is sent is the inverse as that for
the flags. The organelle’s construction would look like the process depicted in
figure 4.3, where the configuration bits of molecule 3 are the first to be sent,
the ones of molecule 0 are the last ones. As this configuration mechanism can
be integrated in any kind of reconfigurable circuit, the number of configuration
bits of a molecule is not relevant, and we simply represent it by c mi for the ith
molecule. The set of configuration bits of an organelle can therefore be described
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Figure 4.2: Possible paths for different organelle shapes

by a list C org :

C org c mn 1 , c mn 2 , , c m0

The information contained in F org allows for the creation of the cell mor-
phology, and the data in C org are the configuration bits of the cell. The
concatenation of these two lists completely describes the organelle. This com-
plete description corresponds to the genome G org , and can be used for serially
configuring the circuit:

G org F org , C org

f m0 , f m1 , , f mn 1 ,

c mn 1 , c mn 2 , , c m0

As an example, figure 4.3 presents the eight steps of the creation of a 4-
molecule organelle described by the genome

G org , , , , c m3 , c m2 , c m1 , c m0

The creation of an exact copy of the organelle requires the system to be
able to recover the genome in the exact order that it was sent. So the result of
pulling the genome must be the obtention of the same genome G org , that has
been previously introduced. It would be possible to achieve this by virtually
creating a shift register following the path used for the cell shape creation, and
to traverse it in both directions.

This genome retrieval process provides the possibility of implementing a self-
inspection mechanism. The replicators, present at the original cell, will be able
to recover this string for creating a new cell in a remote set of molecules accessed
through dynamically routed signals.
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Figure 4.3: Creation of a 2 2 organelle, decomposed into 8 steps.

4.4 Neural friendliness
The ubichip must be a general purpose reconfigurable platform. However, it
must be noted that, given its bio-inspired specificity and the target applications,
the ubichip architecture must favor the implementation of neural architectures.
This is what we call neural friendliness. We cannot claim that the ubichip
will be able to implement systems which are impossible to do with commercial
FPGAs (since one can implement any logical system on a commercial FPGA,
or a set of them); but we can perform the same computation in a most efficient
and flexible way.

We must propose thus a reconfigurable architecture bearing in mind, not a
neuron model, but at least a family of them. Without going as far as considering
the whole domain of neural networks. Consequently, we considered two families
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of neural models, spiking and pulse-stream, for the reasons exhibited in 3.3.
However, we are not constrained to the use of them.

If one examines the implementations of spiking and pulse stream neural
models, one can find an important amount of architectural features in common.

• In both cases inter-neural connectivity is done through a single line. Un-
like software oriented neural models that code inter-neural information by
means of continuous values, pulse-stream and spiking models code this
information in terms of pulses. This coding allows a striking simplicity
when implementing flexible network topologies in hardware architectures.
This feature is even more relevant when one considers the cost of rout-
ing resources. Even though the dynamic routing capabilities, described
in 4.2, provide a huge architectural flexibility, they imply also an impor-
tant silicon overhead. Making a reasonable use of such resources is thus an
important issue, since it can limit the number of neurons to be included
in our device. The implementation of neuron models that considers each
input and output as an n-bit bus would require a prohibitive amount of
routing resources, if one wants to provide topological flexibility.

• Another common aspect between spiking and pulse-stream neurons is the
fact that in most cases synaptic weight multiplication is implemented in
the form of an AND logic gate. In this way, the neural response to this
input is, in some way, enabled, disabled, or weighted, by such AND gate.

• A final aspect which is common to both approaches is that one can identify
the repeated use of additions and subtractions used to compute the inter-
nal state of the neuron. In both cases one find repeatedly counters and
accumulators for computing the neuron internal state and for computing
synaptic contributions. Among these models one finds both: parallel and
serial arithmetic implementations.

The silicon overhead exhibited by implementations on reconfigurable devices
is always important (around 40 ). The use of general purpose configurable cells,
based on LUTs, does not offer the most optimal configurable platform, especially
when there is a set of arithmetic and logic operations that are repeatedly used.
Three possible solutions are currently envisioned to tackle this issue:

1. To use a uniform logic cell array, where each cell can be used as a 4-
LUT, or as two 3-LUT. When used as two 3-LUT, it should be possible
to configure it as 1-bit adder and a carry, and it should be well suited also
for serial implementations of both in a single logic cell. This feature would
reduce to a half the amount of logic cells required to implement an adder.

2. To use a non-uniform logic cell array, where each logic cell can directly
implement, for instance, an n-bits adder, a set of AND gates, or a general
purpose LUT.
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3. To use a uniform logic cell array, where each cell is a configurable finite
state machine that can be programmed to compute a complete neuron or
a part of the whole computation (i.e. a neuron state or a synapse).

Whichever solution is chosen, it will remain a general purpose architecture,
and it will be also useful for implementing neural models other than the two
targeted ones. Even though some features from other neurons could be not
directly optimized, like sigmoid or gaussian function implementations, they will
certainly still benefit from the provided features, which may still increase their
implementation efficiency.

4.5 Evolvability
According to the four taxonomic levels presented in 3.1, we identify here the
implications of including each of them in our ubichip architecture.

Extrinsic evolution does not implies any special architectural feature to be
included in the reconfigurable circuit. Consequently, it will not be considered
for determining the evolvability features of the platform.

Intrinsic evolution requires a number of architectural features for being sup-
ported by a reconfigurable architecture. Unconstrained evolution [49] constitutes
the lowest level evolution to be implemented in a reconfigurable device, since
it directly evolves the configuration bitstream. Though in the PERPLEXUS
project the goal is not necessary to perform this unconstrained evolution, the
fact of supporting it by the ubichip provides a more general evolutionary frame-
work. Current commercial reconfigurable devices are not well suited for such
type of implementations for two main reasons: (1) the high complexity exhib-
ited by logic cells leads to a huge configuration search-space to be explored by
the EA, and (2) the risk of internal contentions due to the routing matrices
implemented with switches. For overcoming these issues, our reconfigurable cir-
cuit will remain as simple as possible for reducing the search space of possible
circuit-configurations, and the routing matrices will be implemented in the form
of multiplexors for avoiding hazardous configurations.

The bio-inspired chip contained in our ubidules must support the possibility
of performing complete evolution. For guaranteeing this, the programable sub-
strate must permit to be reconfigured by an “on-chip genetic machine”. This
complete evolution can be executed in a centralized manner, where a “proces-
sor” would execute the EA and would have access to a configuration port of the
reconfigurable circuit. The evolution can be also done in a distributed manner,
where several “genetic machines” implemented on the reconfigurable circuit will
have access to the configuration bitstream of the device. This capability would
be guaranteed by the mechanism described in section 4.3. In this manner a
“genetic machine” will read the configuration bitstream of a circuit composed
of several logic cells, and then will let an EA to modify the bitstream before
writing it back to the configuration registers. In this way, the evolution will be
able to modify the individual at a functional and morphogenetic level, since the
bitstream modifications can also affect the organism construction.
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Finally, open-ended evolution does not depend directly on the hardware ar-
chitecture supporting it, but it is more related to the task at hand. Open-
endedness is closely related to the concept of emergence, where the goal is to
find unexpected behaviors. A natural application area for such systems is within
the field of autonomous robots, which involves machines capable of operating
in unknown environments without human intervention. Specifically, the field of
collective robotics exhibits a population of individuals interacting in a common
environment: they can learn to cooperate or to compete for achieving their goal,
exhibiting a high level of emergence as a first step to open-endedness. Societal
robotics fits also very well in this category. Societal simulations are well known
because of the high degree of emergency that they exhibit. In our setup, this
societal aspect will be combined with a real world interaction that may favor
emergent behaviors to arise.

4.6 Scalability Issues
One of the most salient features of complex systems is the dense interaction
scheme established between their constituent components. This implies that
special attention has to be paid to the scalability properties of any hardware
platform envisioned for the efficient implementation of complex systems. That
is, the main figures of merit of the platform should be kept irrespective of the
number of physical units (chips in the case of the PERPLEXUS platform) that
constitute it and also irrespective of the partitioning done (i.e., the number of
components that are simulated on a single physical unit).

For instance, in the case of the neural application considered within the
framework of the PERPLEXUS project [19, 20] the hardware platform should
be able to simulate the functionality of a spiking neural network constituted by
10000 neurons, and each neuron establishes on average 300 synaptic connections
with other neurons. This means that, if 100 neurons could be physically mapped
in a single chip (a number that still has to be verified), the number of I/O pins
required per chip would exceed 20000, far more than can be attained with any
foreseeable packaging technology.

Therefore, one of the major hardware issues to be faced by the PERPLEXUS
project is related to the scalability of the basic building blocks (ubichips) that
will constitute the PERPLEXUS platform. Among the different approaches that
may provide a feasible solution for the I/O scalability problem it is foreseen to
analyze and adapt the principles involved in the Address Event Representation
(AER) scheme, initially proposed in [24, 39] and developed later in [5, 9, 7,
6]. This communication mechanism was developed in order to overcome the
bottlenecks that appear when information has to be exchanged within a system
composed of massively interconnected components. The principle of the AER
scheme consists in converting an ordered sequence of events (spikes in the case
of a spiking neural network) into a sequence of addresses that encode the source
of the event and that are broadcasted to the rest of the system. In the receiver
side, the sequence of addresses are converted again into a sequence of events
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that are transferred to the corresponding destinations. Figure 4.4 represents
the basic mechanism on which AER is based.

Figure 4.4: AER principle

The AER communication scheme can be easily adapted to the computational
needs of a distributed system such as that constituted by the PERPLEXUS
platform. A global bus containing the address of the source components that
generate events at a given time is shared between all the ubichips. Every ubichip
contains an encoder unit that converts the events generated by the components
contained in it into addresses to be placed in the shared bus, and also a decoder
unit that translates the addresses present in the shared bus into events for its
implemented components. The arbitration for the access to the bus can be es-
tablished in a sequential way between all the ubichips present in the system.
In this way, every ubichip will indicate to the next one by means of a specific
signal, start_frame, that it is accessing the shared bus and broadcasting the
addresses corresponding to the events generated by its components. Another
signal, end_frame, would indicate that its access to the bus has finished and
that the next ubichip is granted to access the bus. When the last ubichip gen-
erates the end_frame signal, the first one will activate a global signal, called
frame_update, so that all the components included in all the ubichips may up-
date their outputs from the inputs received in the current simulation frame.
Figure 4.5 represents the system organization for the implementation of this
communication scheme. The boxes labelled as C in the figure are the compo-
nents implemented in the different ubichips.

The scalability of the proposed principle is quite simple to establish. In
the frame associated with every ubichip for broadcasting its own addresses, the
first address would be an integer whose value is that generated by the previous
ubichip decremented by one unit. Therefore, if the number of ubichips in the
system is N, the first address generated by the first ubichip would be N-1, and
the first address generated by the last one will be 0. In this way, the first
ubichip is able to generate the overall frame_update signal after receiving an
end_frame signal corresponding to a frame whose first address is 0. In the case
the emulation platform consists of only one Ubidule there is no need for the
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Figure 4.5: Possible AER communication implementation in the PERPLEXUS
platform

ubichips to issue the first address in every frame, since the first ubichip will
activate the frame_update signal upon receiving the end_frame signal from the
last ubichip.

It is worth noting that, because it basically consists on a multiplexed broad-
casting of information, this communication scheme is valid either for a single-
ubichip per Ubidule scenario or for a multi-ubichip per Ubidule scenario. Fur-
thermore, this communication scheme may provide enough bandwidth for the
communication needs of the applications considered in the PERPLEXUS project,
even in the single-ubichip per Ubidule scenario and a wireless physical link be-
tween Ubidules. If we consider the neural application (the most restrictive one in
terms of capacity and bandwidth), and assuming 100 neurons are implemented
in each ubichip and a 54 Mbits/second wireless link, this would permit a neu-
ron firing rate of around 300 spikes/second, something that is in line with the
simulation experiments already performed for the application [18]. In the case
of a multi-ubichip per Ubidule scenario with a shared bus running at 10 MHz
(a quite conservative approach) this would imply a firing rate of around 1000
spikes/second, far exceeding the application needs.

Finally, it is also worth noting that this communication scheme permits a
local synchronous implementation of the target functionality and an asynchro-
nous information exchange, something that fits well with the scalability features
to be attained by the PERPLEXUS platform. Additionally, the proposed com-
munication scheme permits to synchronize the overall emulation of the target
system in the platform, a strict requirement in some applications like the spiking
neural network that is being considered within the framework of the project.
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Conclusion

There is a main reason for the success of living beings perpetuation on Earth:
flexibility. This flexibility is presented in the form of adaptation, at long and
short term, and development. It is thanks to this flexibility that living be-
ings are able to learn, evolve, reproduce, grow, and self-repair. This flexibility
allows systems to self-modify in order to change different aspects as their be-
havior, their size, or their morphology. Unlike living beings, electronic circuits
use to have fixed architectures and use to have functionalities pre-defined at
design-time. Some circuits allow to be programmed in order to exhibit a certain
level of behavioral adaptation. However, their adaptation capabilities remain
constrained by the level of pre-programmed flexibility .

This document presented a set of architectural features that will allow a log-
ical circuit to learn, evolve, reproduce, grow, and self-repair. The key idea bor-
rowed from nature to do this is flexibility. In our case, this flexibility is provided
in the form of reconfigurability. The reconfigurability features presented here
(dynamic placement, dynamic routing, and distributed self-reconfigurability),
along with the bio-inspired techniques facilitated by our architecture (evolvabil-
ity, neural friendliness, and scalability), will allow our applications to mimic
their biological analogs in a more proper way than current state of the art
bio-inspired systems.

The ubichip will feature these configuration capabilities, becoming an out-
standing platform for implementing POE systems. The phylogenetic aspect will
be provided by the evolvability feature, which along with the self-reconfiguration,
will allow the implementation of population-based self-reconfigurable evolv-
ing systems in a completely autonomous way. The ontogenetic axis is guar-
anteed with the inclusion of dynamic placement, dynamic routing, and self-
reconfigurability, which will allow the implementation of systems with growing
and self-repairing capabilities. And, finally, the epigenetic aspect is covered by
two features: (1) the neural friendliness that will allow an efficient implemen-
tation of neural architectures, and (2) the scalability provided by the ubichip,
which will allow the design of large networks contained in multiple ubichips.
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