PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

OpenDF - A Dataflow Toolset for Reconfigurable
Hardware and Multicore Systems

Shuvra S. Bhattacharyya

Gordon Brebner, Jorn W. Janneck

Dept. of ECE and UMIACS Xilinx Research Labs
University of Maryland, College Park, MD 20742 San Jose, CA 95123
USA USA
Johan Eker, Carl von Platen Marco Mattavelli Mickaél Raulet
Ericsson Research Microelectronic Systems Lab IETR/INSA Rennes
Mobile Platforms EPFL F-35043, Rennes
SE-221 83, Lund CH-1015 Lausanne France
Sweden Switzerland
Abstract most always ran faster on more modern equipment. How-

This paper presents the OpenDF framework and recalls
that dataflow programming was once invented to address
the problem of parallel computing. We discuss the prob-
lems with an imperative style, von Neumann programs,
and present what we believe are the advantages of using a
dataflow programming model. The CAL actor language is
briefly presented and its role in the ISO/MPEG standard is
discussed. The Dataflow Interchange Format (DIF) and re-
lated tools can be used for analysis of actors and networks,
demonstrating the advantages of a dataflow approach. Fi-
nally, an overview of a case study implementing an MPEG-
4 decoder is given.

1 Introduction

Time after time, the uniprocessor system has managed
to survive in spite of rumors of its imminent death. Over
the last three decades hardware engineers have been able
to achieve performance gains by increasing clock speed,
and introducing cache memories and instruction level par-
allelism. However, current developments in the hardware
industry clearly shows that this trend is over. The frequency
in no longer increasing, but instead the number of cores on
each CPU is. Software development for uniprocessor sys-
tems is completely dominated by imperative style program-
ming models, such as C or Java. And while they provide a
suitable abstraction level for uniprocessor systems, they fail
to do the same in a multicore setting. In a time when new
hardware meant higher clock frequencies, old programs al-

ever, this is not true when programs written for single core
system execute on multicore. And the bad news is that there
is no easy way of modifying them. Tools such as OpenMP
will help the transition, but likely fail to utilize the full po-
tential of multicore systems.

Over the years considerable attention has been put to the
data flow modeling, which is a programming paradigm pro-
posed in the late 60s, as a means to address parallel pro-
gramming. It is well researched area with a number of inter-
esting results pertaining to parallel computing. Many mod-
ern forms of computation are very well suited for data flow
description and implementation, examples are complex me-
dia coding [1], network processing [2], imaging and digital
signal processing [3], as well as embedded control [4]. To-
gether with the move toward parallelism, this represents a
huge opportunity for data flow programming.

2 Why C etc. Fail

Before diving into dataflow matters, we will give a brief
motivation why a paradigm shift is necessary. The control
over low-level detail, which is considered a merit of C, tends
to over-specify programs: not only the algorithms them-
selves are specified, but also how inherently parallel com-
putations are sequenced, how inputs and outputs are passed
between the algorithms and, at a higher level, how compu-
tations are mapped to threads, processors and application-
specific hardware. It is not always possible to recover the
original knowledge about the program by means of analysis
and the opportunities for restructuring transformations are
limited.

(© 2008, Copyright held by the individual authors

43

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

Code generation is constrained by the requirement of
preserving the semantic effect of the original program.
What constitutes the semantic effect of a program depends
on the source language, but loosely speaking some observ-
able properties of the program’s execution are required to
be invariant. Program analysis is employed to identify the
set of admissible transformations; a code generator is re-
quired to be conservative in the sense that it can only per-
form a particular transformation when the analysis results
can be used to prove that the effect of the program is pre-
served. Dependence analysis is one of the most challenging
tasks of high-quality code generation (for instance see [5]).
It determines a set of constraints on the order, in which the
computations of a program may be performed. Efficient uti-
lization of modern processor architectures heavily depends
on dependence analysis, for instance:

e To determine efficient mappings of a program onto
multiple processor cores (parallelization),

e to utilize so called SIMD or “multimedia” instructions
that operate on multiple scalar values simultaneously
(vectorization), and

e to utilize multiple functional units and avoid pipeline
stalls (instruction scheduling).

Determining (a conservative approximation of) the depen-
dence relation of a C program involves pointer analysis.
Since the general problem is undecideable, a trade-off will
always have to be made between the precision of the analy-
sis and its resource requirements [6].

3 Dataflow Networks

A dataflow program is defined as a directed graph, where
the nodes represent computational units and the arcs rep-
resent the flow of data. The lucidness of dataflow graphs
can be deceptive. To be able to reason about the effect of
the computations performed, the dataflow graph has to be
put in the context of a computation model, which defines
the semantics of the communication between the nodes.
There exists a variety of such models, which makes dif-
ferent trade-offs between expressiveness and analyzability.
Of particular interest are Kahn process networks [7], and
synchronous dataflow networks [8]. The latter is more con-
strained and allows for more compile-time analysis for cal-
culation of static schedules with bounded memory, leading
to synthesized code that is particularly efficient. More gen-
eral forms of dataflow programs are usually scheduled dy-
namically, which induces a run-time overhead.

It has been shown that dataflow models offer a represen-
tation that can effectively support the tasks of paralleliza-
tion [8] and vectorization [9]—thus providing a practical
means of supporting multiprocessor systems and utilizing
vector instructions.

3.1 Actors

The fundamental entity of this model is an actor [10],
also called dataflow actor with firing. Dataflow graphs,
called networks, are created by means of connecting the in-
put and output ports of the actors. Ports are also provided by
networks, which means that networks can nested in a hier-
archical fashion. Data is produced and consumed as fokens,
which could correspond to samples or have a more complex
structure. This model has the following properties:

e Strong encapsulation. Every actor completely encap-
sulates its own state together with the code that oper-
ates on it. No two actors ever share state, which means
that an actor cannot directly read or modify another
actor’s state variables. The only way actors can inter-
act is through streams, directed connections they use
to communicate data tokens.

o Explicit concurrency. A system of actors connected
by streams is explicitly concurrent, since every sin-
gle actor operates independently from other actors in
the system, subject to dependencies established by the
streams mediating their interactions.

o Asynchrony, untimedness. The description of the ac-
tors as well as their interaction does not contain spe-
cific real-time constraints (although, of course, imple-
mentations may).

4 The CAL Actor Language

CAL [11] is a domain-specific language that provides
useful abstractions for dataflow programming with actors.
CAL has been used in a wide variety of applications and
has been compiled to hardware and software implementa-
tions, and work on mixed HW/SW implementations is un-
der way. Below we will give a brief introduction to some
key elements of the language.

4.1 Basic Constructs

The basic structure of a CAL actor is shown in the Add
actor below, which has two input ports t 1 and t2, and one
output port s, all of type T. The actor contains one action
that consumes one token on each input ports, and produces
one token on the output port. An action may fire if the avail-
ability of tokens on the input ports matches the port pat-
terns, which in this example corresponds to one token on
both ports t 1 and t 2.

actor Add() T tl, T t2 =T s :
action [a], [b] = [sum]
do
sum := a + b;
end
end

44

(© 2008, Copyright held by the individual authors

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

An actor may have any number of actions. The untyped
Select actor below reads and forwards a token from ei-
ther port A or B, depending on the evaluation of guard con-
ditions. Note that each of the actions have empty bodies.

actor Select () S, A, B = Output:

action S: [sel], A: [v] = [V]
guard sel end

action S: [sel], B: [v] = [v]
guard not sel end
end

An action may be labeled and it is possible to constrain
the legal firing sequence by expressions over labels. In the
PingPongMerge actor, see below, a finite state machine
schedule is used to force the action sequence to alternate
between the two actions A and B. The schedule statement
introduces two states s1 and s2.

Figure 1. A simple CAL network.

actor PingPongMerge () Inputl, Input2 = Output:
A: action Inputl: [x] = [x] end
B: action Input2: [x] = [x] end

schedule fsm sl:

sl (A) —-—> s2;
s2 (B) —--> sl;
end
end

actor 7 (v) In = Out:

A: action = [v] end
B: action [x] = [x] end

schedule fsm s0:

s0 (A) --> sl;
sl (B) —--> sl;
end
end

The Route actor below forwards the token on the input
port A to one of the three output ports. Upon instantiation
it takes two parameters, the functions P and Q, which are
used as predicates in the guard conditions. The selection of
which action to fire is in this example not only determined
by the availability of tokens and the guards conditions, by
also depends on the priority statement.

The source that defined the network Sum is found be-
low. Please, note that the network itself has input and output
ports and that the instantiated entities may be either actors
or other networks, which allows for a hierarchical design.

actor Route (P, Q) A=X, Y, Z:

toX: action [v] = X: [V]
guard P (v) end

toY: action [v] = Y: [V]
guard Q(v) end

toZ: action [v] = Z: [v] end
priority
toX > toY > toZ;
end
end

network Sum () In = Out:

entities
add = Add();
z = 7Z(v=0);

structure
In —--> add.A;
z.0ut --> add.B;

add.Out --> z.In;

add.Out -- > Out;
end

For an in-depth description of the language, the reader is
referred to the language report [11]. A large selection of ex-
ample actors is available at the OpenDF repository, among
them the MPEG-4 decoder discussed below.

4.2 Networks

A set of CAL actors are instantiated and connected to
form a CAL application, i.e. a CAL network. Figure 1
shows a simple CAL network Sum, which consists of the
previously defined Add actor and the delay actor shown be-
low.

4.3 ISO-MPEG standardisation

The data-driven programming paradigm of CAL
dataflow lends itself naturally to describing the processing
of media streams that pervade the world of media coding.
In addition, the strong encapsulation afforded by the actor
model provides a solid foundation for the modular specifi-
cation of media codecs.

MPEG has produced several video coding standards such
as MPEG-1, MPEG-2, MPEG-4 Video, AVC and SVC.
However, the past monolithic specification of such stan-
dards (usually in the form of C/C++ programs) lacks flexi-
bility and does not allow to use the combination of coding
algorithms from different standards enabling to achieve spe-
cific design or performance trade-offs and thus fill, case by
case, the requirements of specific applications. Indeed, not
all coding tools defined in a profile @level of a specific stan-
dard are required in all application scenarios. For a given

(© 2008, Copyright held by the individual authors

45

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

application, codecs are either not exploited at their full po-
tential or require unnecessarily complex implementations.
However, a decoder conformant to a standard has to support
all of them and may results in a non-efficient implementa-
tion.

So as to overcome the limitations intrinsic of specify-
ing codecs algorithms by using monolithic imperative code,
CAL language has been chosen by the ISO/IEC standard-
ization organization in the new MPEG standard called Re-
configurable Video Coding (RVC) (ISO/IEC 23001-4 and
23002-4). RVC is a framework allowing users to define a
multitude of different codecs, by combining together ac-
tors (called coding tools in RVC) from the MPEG stan-
dard library written in CAL, that contains video technology
from all existing MPEG video past standards (i.e. MPEG-
2, MPEG- 4, etc.). The reader can refer to [12] for more
information about RVC. CAL is used to provide the refer-
ence software for all coding tools of the entire library. The
essential elements of the RVC framework include:

e the standard Video Tool Library (VTL) which contains
video coding tools, also named Functional Units (FU).
CAL is used to describe the algorithmic behaviour of
the FUs that end to be video coding algorithmic com-
ponents self contained and communicating with the ex-
ternal world only by means of input and output ports.

e a language called Functional unit Network Language
(FNL), an XML dialect, used to specify a decoder con-
figuration made up of FUs taken from the VTL and the
connections between the FUs.

e a MPEG-21 Bitstream Syntax Description Language
(BSDL) schema which describes the syntax of the bit-
stream that a RVC decoder has to decode. A BSDL
to CAL translator is under development as part of the
OpenDF effort.

In summary the components and processes that lead to
the specification and implementation of a new MPEG RVC
decoder are based on the CAL dataflow model of computa-
tion and are:

e a Decoder Description (DD) written in FNL describing
the architecture of the decoder, in terms of FUs and
their connections.

e an Abstract Decoder Model (ADM), a behavioral
(CAL) model of the decoder composed of the syntax
parser specified by the BSDL schema, FUs from the
VTL and their connections.

o the final decoder implementation that is either gener-
ated by substituting any proprietary implementation,
conformant in terms of I/O behavior, of the standard

RVC FUs, or obtained directly from the ADM by gen-
erating SW and/or HW implementations by means of
appropriate synthesis tools.

Thus, based on CAL dataflow formalism, designers can
build video coding algorithm with a set of self-contained
modular elements coming from the MPEG RVC standard
library (VTL). However, the new CAL based specification
formalism, not only provide the flexibility required by the
process itself of specifying a standard video codec, but also
yields a specification of such standard that is the appropriate
starting point for the implementation of the codec on the
new generations of multicore platforms. In fact the RVC
ADM is nothing else that a CAL datatflow specification that
implicitly expose all concurrency and parallelism intrinsic
to the model, features that classical generic specifications
based on imperative languages have not provided.

5 Tools

CAL is supported by a portable interpreter infrastructure
that can simulate a hierarchical network of actors. This in-
terpreter was first used in the Moses' project. Moses fea-
tures a graphical network editor, and allows the user to mon-
itor actors execution (actor state and token values). The
project being no longer maintained, it has been superseded
by the Open Dataflow environment (OpenDF? for short).

OpenDF is also a compilation framework. Today there
exists a backend for generation of HDL(VHDL/Verilog)
[13], and another backend for that generates C for integra-
tion with the SystemC tool chain [14]. A third backend tar-
geting ARM11 and embedded C is under development [15]
as part of the EU project ACTORS?. It is also possible to
simulate CAL models in the Ptolemy II* environment.

5.1 Analysis Support

A related tool is the dataflow interchange format (DIF),
which is a textual language for specifying mixed-grain
dataflow representations of signal processing applications,
and TDP? (the DIF package), which is a software tool for
analyzing DIF specifications. A major emphasis in DIF
and TDP is support for working with and integrating dif-
ferent kinds of specialized dataflow models of computation
and their associated analysis techniques. Such functional-
ity is useful, for example, as a follow-on step to the au-
tomated detection of specialized dataflow regions in CAL
networks. Once such regions are detected, they can be an-
notated with corresponding DIF keywords — e.g., CSDF

Thttp://www.tik.ee.ethz.ch/ moses/
2http://opendf.sourceforge.net
3http://www.actors-project.eu
“http://ptolemy.eecs.berkely.edu
Shttp://www.ece.umd.edu/DSPCAD/dif

46

(© 2008, Copyright held by the individual authors

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

(cyclo-static dataflow) and SDF (synchronous dataflow) —
and then scheduled and integrated with appropriate TDP-
based analysis methods. Such a linkage between CAL and
TDP is under active development as a joint effort between
the CAL and DIF projects.

A particular area of emphasis in TDP is support for de-
veloping efficient coarse-grain dataflow scheduling tech-
niques. For example, the generalized schedule tree rep-
resentation in TDP provides an efficient format for stor-
ing, manipulating, and viewing schedules [16], and the
functional DIF dataflow model provides for flexible pro-
totyping of static, dynamic, and quasi-static scheduling
techniques [3]. Libraries of static scheduling techniques
and buffer management models for SDF graphs, as well
as an SDF-to-C translator are also available in TDP [17].
The set of dataflow models that are currently recognized
and supported explicitly in the DIF language and TDP in-
clude Boolean dataflow [18], enable-invoke dataflow [3],
CSDF [19], homogeneous synchronous dataflow [8, 20],
multidimensional synchronous dataflow [21], parameter-
ized synchronous dataflow [22], and SDF [8]. These al-
ternative dataflow models have useful trade-offs in terms of
expressive power, and support for efficient static or quasi-
static scheduling, as well as efficient buffer management.
The set of models that is supported in TDP, as well as the
library of associated analysis techniques are expanding with
successive versions of the TDP software.

The initial focus in integrating TDP with CAL is to
automatically-detect regions of CAL networks that conform
to SDF semantics, and can leverage the significant body
of SDF-oriented analysis techniques in TDP. In the longer
term, we plan to target a range of different dataflow mod-
els in our automated “region detection” phase of the design
flow. This appears significantly more challenging as most
other models are more complex in structure compared to
SDF; however, it can greatly increase the flexibility with
which different kinds of specialized, streaming-oriented
dataflow analysis techniques can be leveraged when syn-
thesizing hardware and software from CAL networks.

6 Why dataflow might actually work

Scalable parallelism. In parallel programming, the
number of things that are happening at the same time can
scale in two ways: It can increase with the size of the
problem or with the size of the program. Scaling a reg-
ular algorithm over larger amounts of data is a relatively
well-understood problem, while building programs such
that their parts execute concurrently without much interfer-
ence is one of the key problems in scaling the von Neu-
mann model. The explicit concurrency of the actor model
provides a straightforward parallel composition mechanism
that tends to lead to more parallelism as applications grow

in size, and scheduling techniques permit scaling concurrent
descriptions onto platforms with varying degrees of paral-
lelism.

e Modularity, reuse. The ability to create new abstrac-
tions by building reusable entities is a key element in
every programming language. For instance, object-
oriented programming has made huge contributions to
the construction of von Neumann programs, and the
strong encapsulation of actors along with their hierar-
chical composability offers an analog for parallel pro-
grams.

e Scheduling. In contrast to procedural programming
languages, where control flow is made explict, the ac-
tor model emphasizes explicit specification of concur-
rency.

o Portability. Rallying around the pivotal and unify-
ing von Neumann abstraction has resulted in a long
and very successful collaboration between processor
architects, compiler writers, and programmers. Yet,
for many highly concurrent programs, portability has
remained an elusive goal, often due to their sensitivity
to timing. The untimedness and asynchrony of stream-
based programming offers a solution to this problem.

The portability of stream-based programs is evidenced
by the fact that programs of considerable complexity
and size can be compiled to competitive hardware [13]
as well as software [14], which suggests that stream-
based programming might even be a solution to the
old problem of flexibly co-synthesizing different mixes
of hardware/software implementations from a single
source.

e Adaptivity. The success of a stream programming
model will in part depend on its ability to configure
dynamically and to virtualize, i.e. to map to collec-
tions of computing resources too small for the entire
program at once. The transactional execution of actors
generates points of quiescence, the moments between
transactions, when the actor is in a defined and known
state that can be safely transferred across computing
resources.

7 The MPEG-4 Case Study

One interesting usage of the collection of CAL actors,
which constitutes the MPEG RVC tools library, is as a vehi-
cle for video coding experiments. Since it provides a source
of relevant application of realistic sizes and complexity, the
tools library also enables experiments in dataflow program-
ming, the associated development process and development
tools.

(© 2008, Copyright held by the individual authors

47

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

bitstream >—+ serialize H parser

video

Figure 2. Top-level dataflow graph of the
MPEG-4 decoder.

Some of the authors have performed a case study[13], in
which the MPEG-4 Simple Profile decoder was specified in
CAL and implemented on an FPGA using a CAL-to-RTL
code generator. Figure 2 shows a top-level view of decoder.
The main functional blocks include a bitstream parser, a re-
construction block, a 2D inverse cosine transform, a frame
buffer and a motion compensator. These functional units
are themselves hierarchical compositions of actor networks.
The objective of the design was to support 30 frames of
1080p in the YUV420 format per second, which amounts
to a production of 93.3 Mbyte of video output per second.
The given target clock rate of 120 MHz implies 1.29 cycles
of processing per output sample on average.

The results of the case study were encouraging in that
the code generated from the CAL specification did not only
outperformed the handwritten reference in VHDL, both in
terms of throughput and silicon area, but also allowed for
a significantly reduced development effort. Table 3 shows
the comparison between CAL specification and the VHDL
reference.

It should be emphasized that this counter-intuitive result
cannot be attributed to the sophistication of the synthesis
tool. On the contrary the tool does not perform a number
of potential optimizations; particularly it does not consider
optimizations involving more than one actor. Instead, the
good results appear to be due to the development process.
A notable difference was that the CAL specification went
through significantly more design iterations than the VHDL
reference —in spite of being performed in a quarter of the
development time. Whereas a dominant part of the develop-
ment of the VHDL reference was spent getting the system
to work correctly, the effort of the CAL specification was
focused on optimizing system performance to meet the de-
sign constraints.

The initial design cycle resulted in an implementation
that was not only inferior to the VHDL reference, but one
that also failed to meet the throughput and area constraints.
Subsequent iterations explored several other points in the

design space until arriving at a solution that satisfied the
constraints. At least for the case study, the benefit of short
design cycles seem to outweigh the inefficiencies that were
induced by high-level synthesis and the reduced control
over implementation details.

Size Speed | Code size | Dev. time
slices, BRAM | kMB/S kLOC MM
CAL 3872,22 290 4 3
VHDL 4637, 26 180 15 12
Improv. 1.2 1.6 3.75 4
factor

Figure 3. Hardware synthesis results for an
MPEG-4 Simple Profile decoder. The num-
bers are compared with a reference hand
written design in VHDL.

In particular, the asynchrony of the programming model
and its realization in hardware allowed for convenient ex-
periments with design ideas. Local changes, involving only
one or a few actors, do not break the rest of the system in
spite of a significantly modified temporal behavior. In con-
trast, any design methodology that relies on precise speci-
fication of timing —such as RTL, where designers specify
behavior cycle-by-cycle— would have resulted in changes
that propagate through the design.

Figure 3 shows the quality of result produced by the RTL
synthesis engine for a real-world application, in this case an
MPEG-4 Simple Profile video decoder. Note that the code
generated from the high-level dataflow description actually
outperforms the VHDL design in terms of both throughput
and silicon area for a FPGA implementation.

8 Summary

We believe that the move towards parallelism in com-
puting and the growth of application areas that lend them-
selves to dataflow modeling present a huge opportunity for a
dataflow programming model that could supplant or at least
complement von Neumann computing in many fields.

We have discussed some properties that comes with us-
ing a dataflow model, such as explicit parallelism and de-
coupling of scheduling and communication. The open
source simulation and compilation framework OpenDF was
presented together with the CAL language and the DIF/TDP
analysis tools. Finally, the work on the MPEG-4 decoder
verifies the potential of the dataflow approach.

References

[1] J. Thomas-Kerr, J. W. Janneck, M. Mattavelli, I. Bur-
nett, and C. Ritz, “Reconfigurable Media Coding:

48

(© 2008, Copyright held by the individual authors

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

(3]

(4]

[10]

[11]

[12]

Self-describing multimedia bitstreams,” in Proceed-
ings IEEE Workshop on Signal Processing Systems—
SiPS 2007, October 2007, pp. 319-324.

R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek,
“The Click modular router,” SIGOPS Oper: Syst. Rev.,
vol. 33, no. 5, pp. 217-231, 1999.

W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S.
Bhattacharyya, “Functional DIF for rapid prototyp-
ing,” in Proceedings of the International Symposium
on Rapid System Prototyping, Monterey, California,
June 2008, pp. 17-23.

S. S. Bhattacharyya and W. S. Levine, “Optimization
of signal processing software for control system im-
plementation,” in Proceedings of the IEEE Symposium
on Computer-Aided Control Systems Design, Munich,
Germany, October 2006, pp. 1562-1567, invited pa-
per.

H. Zima and B. Chapman, Supercompilers for parallel
and vector computers. New York, NY, USA: ACM,
1991.

M. Hind, “Pointer analysis: haven’t we solved this
problem yet?” in PASTE ’01: Proceedings of the
2001 ACM SIGPLAN-SIGSOFT workshop on Pro-
gram analysis for software tools and engineering.
New York, NY, USA: ACM, 2001, pp. 54-61.

G. Kahn, “The semantics of simple language for par-
allel programming,” in IFIP Congress, 1974, pp. 471—
475.

E. A. Lee and D. G. Messerschmitt, “Synchronous
dataflow,” Proceedings of the IEEE, vol. 75, no. 9, pp.
1235-1245, September 1987.

S. Ritz, M. Pankert, V. Zivojnovié, and H. Meyr, “Op-
timum vectorization of scalable synchronous dataflow
graphs,” in Intl. Conf. on Application-Specific Array
Processors. Prentice Hall, IEEE Computer Society,
1993, pp. 285-296.

C. Hewitt, “Viewing control structures as patterns of
passing messages,” Artif. Intell., vol. 8, no. 3, pp. 323—
364, 1977.

J. Eker and J. W. Janneck, “Cal language report,”
University of California at Berkeley, Tech. Rep.
UCB/ERL M03/48, December 2003.

C. Lucarz and J. J. Marco Mattavelli, Joseph Thomas-
Kerr, “Reconfigurable media coding: A new specifica-
tion model for multimedia coders,” in Proceedings of
IEEE Workshop on Signal Processing Systems, 2007,
pp- 481-486.

[13]

[14]

[15]

[17]

(18]

[19]

(20]

(22]

J. W. Janneck, 1. D. Miller, D. B. Parlour, G. Roquier,
M. Wipliez, and M. Raulet, “Synthesizing hardware
from dataflow programs: an MPEG-4 simple profile
decoder case study,” in Proceedings of the 2008 IEEE
Workshop on Signal Processing Systems (SiPS), 2008.

G. Roquier, M. Wipliez, M. Raulet, J. W. Janneck,
I. D. Miller, and D. B. Parlour, “Automatic software
synthesis of dataflow programs: an MPEG-4 simple
profile decoder case study,” in Proceedings of the 2008
IEEE Workshop on Signal Processing Systems (SiPS),
2008.

C. von Platen and J. Eker, “Efficient realization of a
cal video decoder on a mobile terminal,” in Proceed-
ings of IEEE Workshop on Signal Processing Systems,
2008.

M. Ko, C. Zissulescu, S. Puthenpurayil, S. S. Bhat-
tacharyya, B. Kienhuis, and E. Deprettere, ‘“Parame-
terized looped schedules for compact representation
of execution sequences in DSP hardware and software
implementation,” IEEE Transactions on Signal Pro-
cessing, vol. 55, no. 6, pp. 3126-3138, June 2007.

C. Hsu, M. Ko, and S. S. Bhattacharyya, “Software
synthesis from the dataflow interchange format,” in
Proceedings of the International Workshop on Soft-
ware and Compilers for Embedded Systems, Dallas,
Texas, September 2005, pp. 37—49.

J. T. Buck and E. A. Lee, “Scheduling dynamic
dataflow graphs using the token flow model,” in Pro-
ceedings of the International Conference on Acous-
tics, Speech, and Signal Processing, April 1993.

G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peper-
straete, “Cyclo-static dataflow,” IEEE Transactions on
Signal Processing, vol. 44, no. 2, pp. 397408, Febru-
ary 1996.

S. Sriram and S. S. Bhattacharyya, Embedded Multi-
processors: Scheduling and Synchronization. Marcel
Dekker, Inc., 2000.

P. K. Murthy and E. A. Lee, “Multidimensional syn-
chronous dataflow,” IEEE Transactions on Signal Pro-
cessing, vol. 50, no. 8, pp. 2064-2079, August 2002.

B. Bhattacharya and S. S. Bhattacharyya, ‘“Parame-
terized dataflow modeling for DSP systems,” IEEE
Transactions on Signal Processing, vol. 49, no. 10, pp.
2408-2421, October 2001.

(© 2008, Copyright held by the individual authors

49

