IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 1, JANUARY 2008 75

The Reconfigurable Instruction Cell Array

Sami Khawam, Ioannis Nousias, Mark Milward, Ying Yi, Mark Muir, and Tughrul Arslan

Abstract—This paper presents a novel instruction cell-based re-
configurable computing architecture for low-power applications,
thereafter referred to as the reconfigurable instruction cell array
(RICA). For the development of the RICA, a top-down software
driven approach was taken and revealed as one of the key design
decisions for a flexible, easy to program, low-power architecture.
These features make RICA an architecture that inherently solves
the main design requirements of modern low-power devices. Re-
sults show that it delivers considerably less power consumption
when compared to leading VLIW and low-power digital signal pro-
cessors, but still maintaining their throughput performance.

Index Terms—Dynamic reconfiguration, parallel processing, re-
configurable computing.

I. INTRODUCTION

HE NEED FOR new hardware architectures for future
T semiconductor devices was recognized several years ago
as current architectures will not be able to cope with rising
future requirements in data processing and throughput. Typical
examples are mobile devices for next generation networks
where a high amount of audio and video data will need to be
processed. This adds extra burden on the processing elements
in order to maintain a high throughput and stay efficient in
terms of power-consumption and silicon costs. The hardware
also needs to prove to be adaptable to upcoming standards.
The four, equally important, requirements of such computing
architectures are cost-reduction, short design time, low-power
consumption, and high performance. Research into suitable ar-
chitectures is an ongoing process, as a comprehensive solution
capable of meeting all these requirements has yet to be found.

To date there are several established ways in which algorithms
can be implemented and run on silicon. Fig. 1 summarizes the
merits and drawbacks of selecting a particular computation ar-
chitecture in relation to each other. It is worthy to note that not
a single architecture meets all the desired criteria, thus leaving
room to consider other tradeoffs.

Application-specific integrated circuits (ASICs) are well
known to provide low power and high throughput compared
to other architectures, however, their high design costs and
limited post-fabrication flexibility means that they are only
really feasible for large production count or for ultra low-power
applications. CPUs are popular due to their ability to imple-
ment designs after fabrication and their familarity to designers.

Manuscript received May 10, 2006; revised May 30, 2007.

S. Khawam, M. J. Milward, and M. Muir are with Spiral Gateway, Edinburgh
EHO 3JL UK.

I. Nousias and T. Arslan are with the School of Engineering and Electronics,
University of Edinburgh, Edinburgh EH9 3JL U.K., and also with Spiral
Gateway, Edinburgh EH9 3JL U.K.

Y. Yi is with the School of Engineering and Electronics, University of Edin-
burgh, Edinburgh EH9 3JL U.K.

Digital Object Identifier 10.1109/TVLSL.2007.912133

Flexibility

Flexibility

‘asic_

Low NRE Performance Low NRE Performance

Programmability Low Power Programmability Low Power

Flexdbiky Flexibility

Low NRE Performance Low NRE Performance

Programmabiity Low Power Programmability Low Power

Fig. 1. Computation architecture tradeoffs.

Over the years a number of techniques, such as several layers
of cache, memory management, and branch prediction have
been added to the CPU in order to keep the arithmetic logic
unit (ALU) supplied with adequate instructions and data. This
means that a diminishing proportion of the available silicon
is actually used for the active computation. VLIW DSP archi-
tectures offer advantages in terms of extra parallel processing.
However, they are easily restricted by the limited amount of
instruction level parallelism (ILP) found in typical programs.
Field-programmable gate arrays (FPGAs) represent one pos-
sible implementation of a range of reconfigurable computing
devices. Their success lies in their ability to map algorithms
onto their logic and interconnects after fabrication. This allows
fabrication costs to be shared across many designs. While
FPGAs provide the ability to map any logic functions on their
fine-grained lattice, this has an impact on energy consump-
tion since the majority of the available transistors are used to
provide flexibility. Moreover designers are often required to
have specialized skills in order to convert algorithms into a
suitable register transfer level (RTL) code for synthesis. To
achieve a suitable compromise of all design characteristics,
designers develop custom system-on-chip (SoC) with a mixture
of these architectures. To solve the problem of finding the
ideal architecture, the research community has proposed many
solutions based on the promise of high-performance offered
by reconfigurable computing in terms of flexibility and a high
amount of parallel processing. This includes architectures like
Matrix, Garp, Elixent, PACT XAPP, SiliconHive, Montium,
Pleiades, and Morphosys [2]-[9]. Even though these solutions
achieve remarkable results in high computational-power and
flexibility, they either do not provide enough power savings or
are too difficult to program.

1063-8210/$25.00 © 2008 IEEE

Authorized licensed use limited to: The University of Edinburgh. Downloaded on November 19, 2009 at 14:10 from IEEE Xplore. Restrictions apply.

76 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 1, JANUARY 2008

In this paper, we present and evaluate our novel reconfig-
urable instruction cell architecture (RICA) that tries to specif-
ically address all the desired requirements for future portable
devices. By designing the silicon fabric in a similar way to re-
configurable arrays but with a closer equivalence to software,
we achieve the same high performance as coarse-grain FPGA
architectures and maintain the same flexibility, low cost, and
programmability as digital signal processors (DSPs). The main
distinguishing and novel features of our reconfigurable architec-
ture are as follows.

e An array of customizable instruction cells (ICs) that can
be dynamically reconfigured on every clock cycle enabling
the mapping of data-paths of both dependent and indepen-
dent instructions.

* The reconfigurable core has ICs to deal with execution flow
control (conditional branches). Therefore, it does not re-
quire coupling to a general purpose processor, since it pro-
vides these features.

e The cell array configuration can be tailored towards
different application domains, thus providing additional
power optimizations and performance.

* A reconfiguration rate controller is provided to minimize
the impact of varying critical paths, which is an intrinsic
characteristic of supporting dependent instructions

e The architecture is programmable with a high level lan-
guage.

Consequently, a new dynamically reconfigurable system is
presented in this paper with its associated programming envi-
ronment.

Section II of this paper covers related and previous work on
reconfigurable computing architecture. Section III describes the
RICA design along with descriptions of various key architec-
tural design features. Section IV discusses some of the tech-
niques used in the RICA to reduce power dissipation. Section V
covers the tool-flow for programming RICA. Section VI covers
the evaluation of a sample RICA design. Finally, the conclusion
is drawn in Section VII.

II. RELATED AND PREVIOUS WORK

Traditionally, algorithm functions are either statically real-
ized in hardware (ASIC) or temporarily run on general-purpose
processors (GPP). These two cases form the boundaries of a
large space of design exploration for possible ways of com-
puting on silicon. The center ground of this space is filled by
reconfigurable computing devices, with FPGAs being a well-
known commercially successful example.

The concept of reconfigurable computing has been around
since the 1960s, when Estrin’s landmark paper proposed the
concept of a computer consisting of a standard processor and
an array of “reconfigurable” hardware [1]. The main processor
would control the behavior of the reconfigurable hardware. The
reconfigurable hardware would then be physically tailored to a
specific task, such as image processing or pattern matching, with
the aim of running as quickly as a dedicated piece of hardware.
Once the task was complete, the hardware could be manually
adjusted to do some other tasks. This resulted in a hybrid com-
puter structure aimed at combining the flexibility of software

with the speed of hardware. Unfortunately, this idea was way
ahead of its time in terms of electronic technology.

In the last decade there has been a recent renaissance in this
area of research with many proposed reconfigurable architec-
tures developed both in industry and academia, such as Matrix,
Garp, Elixent, PACT XAPP, SiliconHive, Montium, Pleiades,
and Morphosys [2]-[9] to name but a few. These designs have
only really become feasible by the relentless progress of silicon
technology, allowing for complex designs to be implemented
onto a single chip. Nevertheless, the development of reconfig-
urable hardware architecture is only one side of the problem,
often overlooked is the importance of appropriate software tools
that are essential for the programmability of the system and
gaining the maximum performance. It is vital for reconfigurable
systems to be programmed from a common high-level language,
as this enables complex algorithms to be quickly and effectively
taken to the underlying architecture. To date, there is no clear
classification taxonomy for these developed reconfigurable sys-
tems. However, they can be grouped together depending on var-
ious architectural characteristics, such as the level of coupling
with a host processor, the logic granularity selected, the type of
interconnect and topology and the rate of configuration and its
management. Design decisions taken on one architectural as-
pect greatly influences design decisions taken on others. For ex-
ample, choosing a fine-grained logic granularity means that a
larger amount of silicon is allocated to the interconnect for con-
necting the logic together. This in turn impacts the rate it can
reconfigure the device in real time due to the larger bitstreams
of instructions needed.

Several proposed reconfigurable systems combine a RISC
processor with a coarse-grain reconfigurable array; some such
systems are Morphosys, Garp, Elixent, and Pact XAPP. The
Garp reconfigurable architecture developed at the University of
California in 1997 involves a host processor that manages the
main thread of control while certain loops or subroutines use a
reconfigurable array. The array is composed of rows of blocks,
which have a resemblance to configurable logic blocks (CLBs)
of a Xilinx FPGA. The blocks operate on 2-bit data. Vertical and
horizontal block-to-block wires provide data movement within
the array, the interconnect only connects to its neighboring
logic blocks. Separate memory buses are provided to move
information in and out of the array. Each computation unit in
the Garp array can perform a logical or arithmetic operation on
the input 2-bit operands. Use of the array is controlled by the
main processor. Host and reconfigurable array share the same
memory hierarchy. Four memory buses are used to transfer
data to and from the array. Other reconfigurable devices which
use a reconfigurable array and processor coupling is Elixent,
a start-up company based in Bristol, U.K., that was spun out
from HP research labs. The reconfigurable array is based on
the D-fabrix consisting of a homogeneous grid of 4-bit ALU
units. To interface the core, an advanced microcontroller bus
architecture (AMBA) bus is used for programming the array
and for transferring data to and from the host RISC. Each
array has two high speed input/output (I/O) ports of 32 bits;
these are divisible into multiples of 4 bits. The Morphosys
reconfigurable computing project marries an on-board RISC
processor with an array of reconfigurable cells. The Morphosys

Authorized licensed use limited to: The University of Edinburgh. Downloaded on November 19, 2009 at 14:10 from IEEE Xplore. Restrictions apply.

KHAWAM et al.: RECONFIGURABLE INSTRUCTION CELL ARRAY

architecture includes a reconfigurable processing unit, a GPP,
and a high bandwidth memory interface. Each reconfigurable
cell incorporates a 28-bit ALU, 16x 12-bit multiplier, a shift
unit, a 16-bit input and 8-bit multiplexer, and 16-bit register
file. In Pact’s XAPP array, the data-flow sections of algorithms
consisting mostly of the pure arithmetic processing are mapped
to the reconfigurable array. A microcontroller is utilized to
load these code sections dynamically to the XAPP-array,
which then processes these tasks. Data exchange between the
XAPP, acting as coprocessor, and the microcontroller is done
via direct memory access (DMA) or shared memories. The
ADRES architecture [11] closely couples the processor and
reconfigurable fabric by sharing the memory and register-file;
it tries to simplify the programming model through the use of a
high-level C language. Nevertheless, the effect of this approach
on area and power consumption was not measured.

The main decision why these systems have a separate pro-
cessor and reconfigurable array is based on the observation that
some code is “control flow” intensive, where there are a lot of
conditional branches to change program flow, while others parts
of code contain highly parallel data paths, suitable for the re-
configurable arrays. However, these systems suffer from diffi-
culties in programming the arrays due to the use of specialized
low-level languages. They also suffer from limitations due to the
loose coupling between the processors and the arrays, such as
how to allocate the program and large amounts of data-transfers
between the array and processor.

Standalone coarse-grain reconfigurable arrays, such as those
proposed earlier by Khawam et al. [10], provide good perfor-
mance in area and power when compared to FPGAs, however,
like FPGAs they require special hardware skills HDL to pro-
gram them. RaPiD [12] is another one of these arrays, where
it utilizes a 1-D structure to take advantage of the fact that all
of its functional components are word-width computational de-
vices. One of the advantages of a 1-D structure is a reduction
in complexity, especially in the communications network. An-
other advantage is their ability to map systolic arrays very ef-
ficiently, leveraging all of the research into the compilation of
algorithms onto systolic arrays. Finally, while a 2-D RaPiD is
possible, most 2-D algorithms can be mapped onto a 1-D array
through the use of memory elements. To create different ver-
sions of RaPiD that target different application domains, the
following changes need to be made to the array: modify ex-
isting or add new functional units, change the width of the buses
or the number of buses present, and modify the routing fabric.
The RaPiD architecture can be programmed using the high-
level RaPiD-C language but this language is not compatible with
ANSI-C and requires manual scheduling of parallel operations.

A fairly recent development in the reconfigurable arena is
Stretch’s [13] offering of a configurable processor with an
internal reconfigurable fabric. Stretch’s solution is capable of
directly compiling an application from C code. The software
developer identifies sections of code suitable for the reconfig-
urable fabric using their profiling tool. This part of the C/C++
source code can be compiled into configuration data for the
reconfigurable fabric while the rest is run on the processor.
This approach tries to solve the problem of communication
overhead.

71

On the other side of the reconfigurable spectrum is the
multiprocessors approach, where a sea of small processors
are connected through an interconnect network. Examples
of this are picoChip [14], Ambric [15], SiliconHive [6], etc.,
and, to a lesser extent, the large CELL microprocessor with
its eight fully-functional Synergistic processing elements (co-
processors). PicoChip comprises of an array of heterogeneous
independent processors with a programmable communica-
tion interconnect between the processors. Each processor is
a 16-bit-wide RISC, with the inter-processor communication
protocol based on a time-division multiplexing (TDM) scheme;
data transfers between processor ports occur during time slots
and are scheduled at compile time, and controlled using the bus
switches. The bus switch programming and the scheduling of
data transfers is all fixed at compile time. Ambric concentrates
on the interconnect structure and associated protocol. Ambric
objects communicate through a simple parallel structure of
hardware channels. Each channel is word-wide, unidirectional,
point-to-point from one object to another, and acts like a
first-input—first-output (FIFO) buffer. Channels carry both data
and control tokens, in simple or structured messages. Channel
hardware synchronizes its objects at each end dynamically as
needed at run time, not scheduled at compile time. Sending or
receiving a word on a channel is as simple as reading or writing
a processor register. Since Ambric channels synchronize trans-
parently and locally, the application achieves high performance
with none of that complex global synchronization. It is entirely
feasible for the RICA to be the processors in the Ambric design.

III. RICA ARCHITECTURE

This section starts with a demonstrative example to allow an
easier understanding of the basic concept behind the architec-
ture and then explains the structural elements of RICA.

A. Parallel Processing Example

The sample C code shown in Table I requires 19 cycles to
execute on a typical sequential processor. However, if the same
code is compiled for a VLIW DSP, such as the TI C6203, then it
would execute in 15 cycles, since the VLIW architecture would
try to concurrently execute up to eight independent instructions
(six ALUs and two multipliers are available) [16]. If four si-
multaneous multiplications and four memory accesses were per-
mitted, then the number of cycles would reduce to eight. This is
still a long time considering the simplicity of the code and com-
pared to what is achievable in hardwired solutions like FPGAs.
The presence of dependent instructions, i.e., operations which
are dependent on previous operations, prevents the compiler
from achieving further reductions in the number of clock cy-
cles. We can observe that if the hardware architecture supports
the mapping of both dependent and independent datapaths, then
we could execute a big block of instructions in a single clock
cycle without limitation.

We could easily execute the previous C code in only two cy-
cles if the architecture provided 14 operational elements that
can execute 4x ADD, 4x RAM, 4x MUL, and 2x REG si-
multaneously, as shown in Fig. 2. This overcomes the limita-
tion faced by VLIW processors and enables a higher degree of
parallel processing. As shown in Cycle I in Fig. 2, the longest

Authorized licensed use limited to: The University of Edinburgh. Downloaded on November 19, 2009 at 14:10 from IEEE Xplore. Restrictions apply.

78 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 1, JANUARY 2008

TABLE I
EXAMPLE C-CODE AND ITS ASSEMBLED SEQUENTIAL AND VLIW CODE
COMPILED WITH LEVEL-2 OPTIMIZATIONS

C Code Sequential ASM
b0 = in _mem[add+0] ; LD [r3+0] -rll
bl = in mem[add+1]; LD [r3+8] —r9
b2 = in mem[add+2]; MUL rll, r5-rll
b3 = in _mem[add+3]; LD [r3+12]-rl13
e = b0 * £f0 - b2 * f£2; LD [r3+4] -r3
f =bl * £f1 - b3 * £3; MUL r3, r6 —r6
out_mem[add+0]= e + £; MUL r9, r7 -x5
out_mem[add+1]= e - £f; MUL rl1l3, r8-r3
out _mem[add+2]= £ + 2*e; SUB rll, r5-r5

out mem([add+3]= f - e; ADD r5, r5 -r7

TMS320C6x VLIW ASM SUB 16, r3 -r3
SUB r5, r3 —r8
LDH *+A4 (2)-A7 ADD r7, r3 —r7
LDH *+A4(6)-A3 ADD r5, r3 -r6é
LDH *+A4 (4)-A0 LD r8 —[r4+l2]
LDH *A4-AS5 SUB r3, r5 -r3
MPY A7,B6-B5 LD 16 —[r4+0]
MPY A3,B8-B6 || MPY AQ0,A8-A0 LD 13 —[r4+4]
MPY AS5,A6-A3 LD r7 —[r4a+8]
SUB B5,B6-B5
SUB A3,A0-A0 || EXT B5,16,16-BS
RET B3 || EXT AO,16,16-A0
MV B5-A3 || suB B5,RA0-B6
ADDAH A3,A0-A4|| STH B6-*+B4 (6)
ADD B5,A0-B5 || STH A4-*+B4 (4)
STH B5-*B4 || suB A0,A3-20
STH A0-*+B4 (2)
15 Cycles (8 cycles if 4 MPY and 4 LD/ST 19 Cycles
are allowed)
Parallel Processing with limited resources (on RICA)
Cycle 1: N
RAM 1 1) M
READ [~ MUL aob [~—| abb [“5) WRITE
[R3+0] E [R4+8]
B ! 5
RAM
RS S| U | RS READ
— [r3+12]
) r13.
RAM 9 A -
READ [| MUL R6 mo oy R
[R3+8]
I e
RAM 6,
R7 READ 2 muL | sus | | Rr8
[Rs+4 B
Cycle 2:
LI 8 | RAM
R5 —/| sus) WRITE
3 =) [r4+12]
:\/ 6 | RAM
R3 ADD)| WRITE
e [R4+0]
—N r3 | RAM
suB | WRITE
[R4+4]

Fig. 2. Execution of the 19 instructions in two cycles if the following parallel
resources are available: 4 x MUL, 4 x ADD, 4x RAM, and 6 x REG. The RICA
provides a heterogeneous array of instruction cells to map such steps.

delay-path is equivalent to two RAM accesses, one multiplica-
tion, and some simple arithmetic operations. This is not much
longer than critical paths in typical DSPs when compared to the
greater amount of instructions executed in parallel. Therefore,

OO oOooOooonm C code maps directly to the instruction cells

O CCodeie = bl * 6 - b7 * 27;
Compiled ASM:
O [e A e, st
LDR ip, [sp, 0x3c]
E MoV a3, #6
MoV a4, #0x1b
E MUL ip,a4,ip
MUL al,a3,al
E SUB al,al,ip
: -—e—a..
n H ‘
Program
O counter 0
O H
O [[I i | I

Fig. 3. Harvard-like structure of the RICA architecture. The reconfigurable
core is composed of ICs and a network of programmable interconnects.

an architecture that supports such an arrangement might be able
to achieve similar throughputs as VLIWs but at a lower clock
frequency, depending on the type of computation.

B. RICA Reconfigurable Core

With the lessons learned from other reconfigurable fabrics,
the RICA architecture has been purposely developed to handle
both control and dataflow aspects of the algorithms, along with
being able to be programmed from industrial standard program-
ming languages such as ANSI-C, on a high performance dy-
namically reconfigurable fabric. The concept behind the RICA
architecture is to provide a dynamically reconfigurable fabric
that allows building circuits such as the ones described in Fig. 2.
By providing hardware modules that can execute assembly-like
instructions similar to those in Fig. 2, a straightforward and
CPU-like design-flow can be easily obtained. In the RICA ar-
chitecture, these hardware modules are the named ICs. Having
an array of interconnectable ICs allows building circuits from
an assembly representation of programs. The software is then
executed in multiple steps, where each step is a datapath of both
dependent and independent assembly instructions.

The ICs are interconnected through a network of pro-
grammable switches to allow the creation of datapaths. In a
similar way to a CPU architecture, the configuration of the
ICs and interconnects are changeable on every cycle to exe-
cute different blocks of instructions. As shown in Fig. 3, the
processing data-path of RICA is a reconfigurable array of ICs,
where the program memory contains the configuration bits (i.e.,
instructions) that control both the ICs and the switches of the
interconnects. Special ICs in the core provide the interface to
the data and program memories.

Although the RICA architecture is similar to a CPU, the use
of an IC-based reconfigurable core as a data path gives impor-
tant advantages over DSP and VLIWs, such as better support for
parallel processing. The reconfigurable core can execute a block
containing both independent and dependent assembly instruc-
tions in the same clock cycle, which prevents the dependent in-
structions from limiting the amount of ILP in the program. Other
improvements over DSP architectures include reduced memory
access by eliminating the centralized register file and the use of
distributed memory elements to allow parallel register access.

Authorized licensed use limited to: The University of Edinburgh. Downloaded on November 19, 2009 at 14:10 from IEEE Xplore. Restrictions apply.

KHAWAM et al.: RECONFIGURABLE INSTRUCTION CELL ARRAY

TABLE II
ICs AND THEIR OPERATIONS

Instruction Cell Supported Operations

ADD Addition, Subtraction

MUL Multiplication (Signed and Unsigned)
DIV Divisions (Signed and Unsigned)

REG Registers

/0 REG Register with access to external 1/O ports
MEM Read/Write from Data Memory

SHIFT Shifting operation

LOGIC Logic operation (XOR, AND, OR, etc.)
COMP Data comparison

MUX Allows simple branches to be taken
RRC Controls the rate of reconfiguration
JUMP Branches (and sequencer functionality)

The characteristics of the RICA core are that it is able to
be fully customizable at design time and can be set according
to the application’s requirements. This includes options such
as the bitwidth of the system and the flexibility of the array,
which is set by the choice of ICs and interconnects deployed.
These parameters also affect the extent of parallelism that can
be achieved and device characteristics such as area, maximum
throughput, and power consumption. Once a chip containing a
RICA core has been fabricated, the system can be easily repro-
grammed to execute any code in a similar way to a GPP.

C. ICs

In contrast to other reconfigurable architectures like [3], [4]
the IC-array in the RICA is heterogeneous and each cell is
limited to a small number of operations as listed in Table II.
The cells are not restricted to the primitive operations shown
in Table II, although the use of primitive cells compared to
multipurpose ALUs can potentially give a higher silicon uti-
lization, since an ALU does not use all of its silicon estate at
the same time. Limiting the cells to such simple operations also
reduces the number of I/O pins required for each cell (these
are typically two inputs and one output as in simple assembly
instructions). The use of heterogeneous cells also permits tai-
loring the array to the application domain by adding extra ICs
for frequent operations. Each IC can only have one instruction
mapped to it at a time. The instruction cells currently developed
support the same instruction sets found in general processors
like the OpenRISC [17] and ARM7 [21] but are not limited to
these. Hence, with this arrangement, the RICA can be made
assembly-level compatible with any GPP/DSP system.

As shown in Table II, registers are defined as standard ICs.
With this arrangement, the register memory elements can be
distributed in the array in such a way to operate independently,
which is essential to allow a high degree of parallel processing.
Having distributed registers opens the opportunity to allocate a
stack to each register, and hence providing a distributed stack
scheme.

As seen in the motivational example, to program the RICA
array the assembly code of a program is sliced into blocks of
instructions that are executed in a single step. Typically, these
instructions, which were originally generated for a sequential
GPP, would include access to registers for the temporary storage
of intermediate results. In the case of the RICA architecture,
these read/write operations are simply transformed into wires,

79

which gives a greater efficiency in register use. By using this
arrangement of registers the RICA offers a programmable de-
gree of pipelining of the operations and hence it easily permits
breaking up long combinatorial computations into several clock
cycles if need be.

Special ICs include the JUMP cell which is responsible for
managing the program counter and the interface to the program
memory in a similar way to the instruction controller found in
CPUs. The interface with the data memory is provided by the
MEM cells; a number of these cells are available to allow simul-
taneous read and write from multiple memory locations during
the same clock cycle. This is achieved by using multiple ports on
independent data memory banks and by clocking it at a higher
speed than the reconfigurable core. Since the core uses a rel-
atively low clock frequency, this makes the data memory op-
erate on a clock similar to that used with a conventional DSP or
VLIW. Furthermore, some special REG ICs are mapped as 1/0
ports to allow interfacing with the external environment.

D. Reconfiguration Rate Controller

In usual CPUs, the highest clock frequency at which the pro-
cessor can be clocked is determined by the longest possible de-
lays in the programmable data-path. For example, if the CPU
has a multiplier (which takes a much longer time to execute than
operations like addition), then the highest clock frequency has
to provide enough time for it to operate. The problem is that if
such a clock is used then we might end up with instruction cy-
cles where only an adder is used but there would be unnecessary
waiting time than needed, which limits the overall maximum
achievable throughput. In conventional CPUs, this problem has
to be solved by making the CPU clock at a higher frequency than
the one required by the multiplier, and at the same time making
the multiplier pipelined, hence requiring multiple cycles to exe-
cute. In the RICA architecture a similar problem is encountered
since the high flexibility provided allows the creation of data-
paths with many levels of calculations, and hence longer pos-
sible delay requirements. If the RICA was to be clocked at the
highest frequency dictated by the longest data-path, then there
would be a restriction on the maximum achievable throughput.

To solve this, we increased the clock frequency of the pro-
gram counter and registers, and we introduced a new IC termed
reconfiguration rate controller (RRC) that generates an Enable
signal for the program counter and registers (the rest of ICs are
not clocked). The amount of clock cycles the RRC waits for be-
fore generating the Enable signal is programmable as part of the
array’s configuration. By combining this with the clock-gating
technique on the register and program counter, we practically
achieve variable clock cycles which are programmable as part of
the software. Consequently, longer critical paths wait for more
clock cycles before the data is written to the registers.

E. Interconnects

The programmable switches perform directional connections
between the output and input ports of the ICs. Different solu-
tions are available for the circuit design and for the topology of
the switches, such as multiplexer-based crossbar or the island-
style mesh found in typical FPGAs [18] as shown in Fig. 4(a)
different interconnect structures have been tested and compared.

Authorized licensed use limited to: The University of Edinburgh. Downloaded on November 19, 2009 at 14:10 from IEEE Xplore. Restrictions apply.

80 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 1, JANUARY 2008

REG LGC SFT JMP
|
ADD REG ADD RAM
Va 7 7 7
| = = =
RANﬂ MUL REG MUL
f7 f7 I>
H——N—X
CMI;I SFT LGC REG
~ 7 7 I\>
H—K—N—X

©

Fig. 4. (a) Mesh-based topology. (b) Examples of a switchbox interconnect.
(c) Examples of a multiplexer interconnect.

However, this comparison is beyond the scope of this paper. It is
worth highlighting that multiplexers are nonblocking, allowing
routing any cell’s output to any other cell’s input, however, there
is a penalty in the increased silicon area needed. The island style

interconnect structure can have situations where a cell cannot be
connected to another cell but it has the benefit of reduced silicon
area. Fig. 4(b) shows one possible configurable switch around
an instruction cell for island style mesh and Fig. 4(c) of a pos-
sible multiplexer interconnect arrangement.

F. Dynamic Reconfiguration and Control Flow

One of the potential hindrances for dynamic reconfiguration
is the size of the configuration data to be fetched from program
memory and its associated fetch bitwidth requirements. Nor-
mally, a large bitwidth instruction fetch mechanism is required
to supply multiple instructions per cycle from the memory to the
several processing units of the architecture thus determining the
configuration time. In the RICA case, this is tackled by several
approaches; first, each IC in the array only performs a limited
set of operations, thus needing a smaller amount of opcode bits
compared to supporting the complete functionality of an ALU.

Additionally, code compression plays a crucial role in re-
ducing the amount of information needed to represent the code
by removing redundant information in the configuration and
only storing active ICs opcodes. However, code compression
in multiple-issue architectures faces extra challenges than
single-issue due to the need of decompressing a very large
instruction word quickly enough so not to compromise the
speed of execution. A code compression technique is used
to compress the ICs configuration instructions for the target
reconfigurable system, whereas the routing interconnects’
configuration instructions are handled independently due to
their different redundancy characteristics. The following code
compression papers [27], [28] present a more detailed overview
of applying code compression techniques for RICA.

The configuration latency of a sequence of contexts is easily
hidden using prefetching. The next configuration context can
start decoding while the current one is executed. In most such
cases, the execution time is larger than the configuration latency.
Contexts that can be prefetched are those that either have no
branch or the branch is unconditional. A more special case is that
of a context that “loops” to itself, in which case the following
context can be prefetch and ready to execute once the loop has
finished. Of course more sophisticated branch prediction can be
applied here as well, but is less crucial when dealing with mostly
streaming processing.

In RICA, program control flow, where an instruction when
executed can cause a change in the subsequent control flow, can
be performed in a couple of ways. First, is through the use of a
JUMP cell, which behaves in a similar fashion to a processor.
The Jump control flow instruction works by altering the program
counter and this in turn causes a new step context to be fetched
from memory.

The other approach of handling change of program flow is
through the use of multiplexer (MUX) IC. The MUX operation
aims to increase the parallelism present in a block of code by
reducing the number of conditional jumps. Ordinarily, branches
reduce the number of computations that must be performed by
skipping sections of code that are not applicable when certain
conditions exist. In RICA, often it is more efficient, in terms
of speed and energy, to evaluate both branches and then select
the appropriate result using a multiplexer operation due to the

Authorized licensed use limited to: The University of Edinburgh. Downloaded on November 19, 2009 at 14:10 from IEEE Xplore. Restrictions apply.

KHAWAM et al.: RECONFIGURABLE INSTRUCTION CELL ARRAY

increased availability of computational resources. In using this
technique, attention is paid to the relative costs of evaluating
one branch over the other. If one side requires substantially more
computation then it is often preferable to leave the jump in place
and focus on the body of each branch However, in simple situ-
ations, for example where an “if”” statement is simply assigning
a value, it is still more efficient to map imbalanced branches
as multiplexers since the benefits of increased parallelism out-
weigh the cost of always evaluating both paths.

IV. POWER SAVING TECHNIQUES

This section discusses some of the techniques used in the
RICA to reduce power dissipation.

Elimination of Register Files: RICA limits power primarily
by using single registers for interim storage rather than multi-
ported register files, and by avoiding large multiplexers and mul-
tiple-load buses. This is only part of the story. It also eliminates
many register operations depending upon the amount of combi-
natorial ICs that can be chained into a single operation. Between
every pair of ICs, a conventional architecture would perform two
read and one write operations to a multiported register file (ex-
cluding direct memory access, etc.). We eliminate this register
operation completely and use the interconnect fabric to move
data from one IC output directly to the input of the next IC in a
chain. Only where no further ICs can be chained, for example
due to resource limitation, do we register a result, and there we
use a single register.

Instruction Fetch From Program Memory: RICA is excep-
tionally good at executing large steps that loop back to them-
selves. A good example of such loops is the 8k fast Fourier
transform (FFT) used in DVB-T signal processing. A Radix-2
implementation of this computation requires 106 496 iterations
of a block that contains 27 instructions (in reality it is two nested
loops). On a 32-bit RISC CPU that means fetching 106 496 x
27 x 32 = 92012544 = 92 Mbit of data from the instruc-
tion memory or instruction cache. RICA, on the other hand, can
store the complete configuration of a step statically. The FFT
inner-loops requires 1016 bits to be represented on the RICA
and fit into a single step. During the execution of these loops,
only 26 fetches from the instruction memory occur. This comes
down to 26 x 1016 = 26416 = 26.5 Kbit of data read from
the instruction memory. This is 3400 less than the 92 Mbit.
Hence, the energy consumed by the program memory of the
RICA will be significantly less than that of a RISC. Of course,
to achieve such improvement these loops need to be appropri-
ately mapped to the array.

Computation Resources: In a RISC or DSP processor, an
ALU will typically perform at least 16 different operations. If
you wish to execute an ADD operation, there are many more
transistors that are switching in the ALU to select the ADD op-
eration than are required by just the ADD operation alone. In
contrast, our add/subtract IC is an optimized circuit that only
performs an add/subtract operation, thus reducing this overhead.
A small number of extra transistors are required in an intercon-
nect junction to route the result to the next chained cell. There-
fore, we contest that we will generally save many more transistor
switching operations through the use of optimized single func-
tion ICs.

81

V. TOOLFLOW OVERVIEW

There are two main components of software support available
for the RICA; the first is the hardware generation of the arrays
and the other is a complete flow for programming the arrays
from high level languages.

An automatic tool flow has been developed for the hardware
generation of the RICA arrays. The tool takes a definition of the
available ICs in the array along with other parameters such as
their count, positions, bitwidth, and the type of programmable
interconnects. The output is a synthesizable RTL definition of
the array that can be used in standard system-on-chip (SoC)
tool flow for verification, synthesis, layout, and analysis such
as power consumption and timing. Alternatively, the specified
hardware resource can be modelled using a simulator written
in high-level C/C++ code. If the required performances deter-
mined by RTL simulation or through the RICA software sim-
ulator are not met then the high level code can be modified or
the mixture of cell resources changed. Adjusting the hardware
resources allows the architecture to be tailored to the specific
application domain where it is to be used, thus saving power
and reducing unnecessary resources. When array parameters are
fixed the generated files are used for fabrication. Consequently,
if the algorithm continues to change during or after the fabrica-
tion process then the code is simply recompiled for those fixed
resources. Often similar operations are required for the updated
code when compared to the previous code and a large percentage
of the algorithm remains relatively unchanged. This means the
generated code is still fairly optimized for the given architec-
ture.

The programming of the RICA architecture is performed with
a collection of different tools. As explained earlier, the use of
instruction cells greatly simplifies the overall effort needed to
map high-level programs to the RICA architecture. Having the
arrays programmable in a similar way to standard CPUs allows
us to reuse existing developments and methodologies available
for processors, such as optimizing compilers and macro assem-
blers. As can be seen in Fig. 5, the programming flow is split
into four main stages.

Step 1) High-Level Compiler: This is the compilation step
that takes the high-level code and transforms it into an inter-
mediate assembly language format. This step is performed by a
standard open source GNU C Compiler (gcc) [19], which com-
piles C/C++ code (among other front-ends) and transforms it
into assembly format describing which ICs need to be used. As
gcc has grown up around CPU architectures, the output of gcc
is written with the supposition that instructions are executed in
sequence, i.e., one instruction per cycle; the compiler has no
knowledge about the parallelism available on the RICA. How-
ever, due to the accessibility of the source code for gcc, the
compiler has been slightly adjusted to take into account some
details of the target RICA, like the maximum number of avail-
able registers and the available ICs (which define the allowed
operations). The compiler automatically deals with issues like
register allocation, stack handling and prologue/epilogue defi-
nitions. Moreover, it performs all the optimizations that will be
useful later-on, like loop-unrolling and loop-peeling in conjunc-
tion with loop-fusion.

Authorized licensed use limited to: The University of Edinburgh. Downloaded on November 19, 2009 at 14:10 from IEEE Xplore. Restrictions apply.

82 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 1, JANUARY 2008

C Code ASM

A/‘/ XsmzNeuisl

Netlist 1 Netlist 2 Netlist 3 S Caeraon of M
Netlists

== = H

2. J

g2 a

Place&Route
Configured rows Configured rows

—T 1

Configuration
memory

#0x1FA3920043B
#0x1321420043B
#0x1FAABD0043B
#0x23BG920043B

Compile - gcc

Configured rows

ﬁ??_%il (:HE,]
\

Fig. 5. Automatic software flow for programming the RICA, starting from a
high-level C program.

1 Load rl, X Step 1:
2 Load r2, Y 1 Load wirel, X
3 Mult r3, r2, ril 2 Load wire2, Y
4 Load r4, A 3 Mult rl, wirel, wire2
5 Mult r2, r4, ril 4 Load wire3, A
6 Add r5, r2, r4 5 Mult wire4 r2, wirel, wire3
7 Mult rl, r2, r5 6 Add r3, wire4, wire3l
8 Load r3, B Step 2:
9 Add r7, rl, 3 7 Mult wire5, r2, r3

8 Load wireé6, B

9 Add r4, wire5, wireé

6 Registers, 9

cycles
4 Registers,

(a) (b)

Fig. 6. (a) Initial assembly code (b) Scheduled assembly code.

2 cycles

Step 2) RICA Scheduling: In this step all the optimizations re-
lated to the RICA architecture are performed. The RICA sched-
uler process takes the assembly output of gcc and tries to create a
sequence of netlists to represent the program. Each netlist con-
tains a block of instructions that will be executed in a single
clock cycle on RICA, as described in the parallel processing
Section III-A. The partitioning into netlists is performed after
scheduling the instructions and analyzing the dependencies be-
tween them, where dependent instructions are connected in se-
quence in the netlist while independent ones run in parallel. The
scheduling algorithm [23] takes into account IC resources, in-
terconnect resources, and timing constraints in the array; it tries
to have the highest program throughput by ensuring that the
maximum number of ICs is occupied, and at the same time the
longest path delay is reduced to a minimum. Finally, it also per-
forms crucial optimizations like removing the temporary reg-
isters generated by gcc and replacing them with simple wires.
Fig. 6 shows an example of this process. At a later date, the
RICA scheduler functionality will be integrated with the gcc
compiler to allow enhanced code optimizations.

Step 3) Allocate and Route: As there can be numerous avail-
able IC resources to which the assembly instruction can be allo-
cated, a tool is provided to minimize the distance in which cells

TABLE III
ICS IN THE SAMPLE ARRAY

Cell Count Cell Count
ADD 4 LOGIC 2
MUL 4 COMP 1
REG 32 JUMP 1
SHIFT 2 MEM 8
DIV 1

are connected together. In this process step, if the island style
interconnect is selected then a standard place and route tool like
VPR [20] can be used to map the netlists into the array. When a
multiplexer-based interconnect is selected, the routing is trivial
due to the full connectivity.

Step 4) Configuration-Memory: From the mapped netlists,
we can simply generate the required content of the configuration
memory, in this case, the program RAM.

VI. EVALUATION OF A SAMPLE RICA

A. Sample Array

The sample RICA array chosen for comparison contains the
cells listed in Table III. These cells are interconnected using
multiplexer-based switches. The mixture of IC resources was
manually selected to be adequate for general applications; other
combinations can provide better performance depending on the
application. These 32-bit cells provide the same basic function-
ality as an OpenRISC CPU. With the selected type of intercon-
nects and ICs, the reconfigurable core requires a 518-bit wide
instruction word. The array was implemented using a UMC
0.13-p m technology.

The sample RICA was compared to the following DSP archi-
tectures: the simple OpenRISC CPU [17] implemented on UMC
0.13-pm technology, the ARM7-TDMI-S [21] again on 0.13-x
m technology, the TT C55X [24] two-way datapath low-power
DSP, and the powerful TI64X 8-way VLIW [16]. The bench-
marks are mainly based on TI’s benchmarks for the TT C64X.
All the benchmarks are direct unoptimized C representations of
the algorithms—all optimizations are left for the C compilers
(Level-3/03). The compiler used for the RICA did not include
any advanced techniques like predications or the use of rotating
register as the compiler provided by TI does. All benchmarks in-
clude memory transfers, stack control, and function’s prologue
and epilogue and hence they show a representative evaluation
of the architecture’s execution performance.

For the RICA and OpenRISC, the power and area were found
using post-layout simulations on PrimePower from Synopsys.
The ARM7 datasheet [21] provides power and area values of
the ARM core in 0.13-pm technology, while [22] and [25] al-
lows us to estimate the power consumption of just the datapaths
in the TI C64x and TI C55x. All these power estimations were
measured at 1.2-V operating voltage and only focus on the en-
ergy consumed in the data path without the memory. The area of
the data path in the TI C64x was estimated using proportionality
from the published die-photo [26] knowing that the whole chip
has 64 M transistors (no cache memory was included). No area
information was available for the C55x. Table V also includes
variations in program size, as they differ for each architecture
and compiler technology used. The size of the data RAM is the

Authorized licensed use limited to: The University of Edinburgh. Downloaded on November 19, 2009 at 14:10 from IEEE Xplore. Restrictions apply.

KHAWAM et al.: RECONFIGURABLE INSTRUCTION CELL ARRAY

TABLE 1V
COMPARISON OF DATAPATH AREA IN MILLIMETERS SQUARED ON 0.13-xm OF
VARIOUS CPUS EXCLUDING VARIATIONS IN PROGRAM MEMORY

RICA |OR32 |ARM7 |C55x |[C64x
\Datapath Area 1.90]0.25]0.32 N/A 2.01
Normalised Execution Time
Dhrystone @m"
. —
Min Error F
‘
— B TICS5X
IR & OTIC64x
OARM7
3 0R32
[ERICA

0.20 0.40 0.60 0.80 1.00 1.20 1.40
Fig.7. Normalized execution time graph of the benchmarks on RICA and other
architectures.

Normalised Energy Consumption

Dhrystone

Min Error
B TIC55X
IR & TICB4x
OARM7
Viterbi @ OR32
ERICA

2-DDCT

(D DCT P

000 1.00 200 300 400 500 600 7.00 8.00

Fig. 8. Normalized energy consumption graph of the benchmarks on RICA and
other architectures.

same for all processors, and hence it is not included in the com-
parison. The Dhrystone benchmark, which today has become an
outdated measurement, is included here for reference. As shown
in Table V, the fact that the Dhrystone takes more cycles to run
on the highly pipelined TI DSPs than on the ARM7 shows how
inappropriate a benchmark it is for modern processors.

B. Results

The results are listed in Tables IV and V and Figs. 7 and 8.

From the tables, we can see that for all the benchmarks we
achieve better performance on the RICA than on the conven-
tional OR32 and ARM7 CPUs; we get around 1-3.6X less en-
ergy consumption while achieving around 5-8x higher max-
imum throughput. Due to the increase in program memory size

83

and the increase in the datapath area, the power and throughput
improvements come at the cost of an area increase of around
7x. A big part of the power reductions achieved over the four
DSP systems are savings gained by eliminating the register-files
and having distributed registers.

When compared to the low-power C55X DSP, RICA
achieves a promising reduction in energy consumption between
2 to 6x while achieving a throughput of up to 3x higher.
RICA achieves similar timing performances to the VLIW for
applications containing significant datapath operations such
as the DCT, while faster operation is seen for Dhrystone. For
benchmarks that have a lot of independent blocks and control
parts (i.e., small loops and comparisons) like minimum error,
RICA is around 50% slower than the 600-MHz VLIW—this is
expected as the TI compiler can optimize such code by using
techniques like predication in a better way than gcc. For the
Viterbi and IIR, RICA was around 20%—-30% slower with the
bottleneck being the memory access. However, for the case of
the Viterbi, the gcc compiler was able to correctly identify the
use of multiplexers ICs which improved speeds and reduced
branching. It should also be noted that the RICA is built from
synthesizable standard-cell libraries while the circuits in the
VLIW have been manually laid out to achieve the 600-MHz
operating frequency. In terms of energy, around 6 less power
is consumed for DCT, Viterbi, and Dhrystone, since the RICA
goes less into states where ALUs are idle but consuming power
than the VLIW. The power reductions for the minimum error
and IIR benchmarks were lower at around 17%. In terms of
area, the datapaths of the RICA and VLIW are similar.

VII. CONCLUSION

In this paper, we presented a new coarse-grain reconfigurable
computing architecture that offers comparable computation
performance to leading DSP processors with a significant re-
duction in power consumption. The development of RICA was
progressed bearing in mind the problem of taking a high-level
description of an algorithm and mapping it directly into the re-
configurable fabric, as well as having an integrated control flow
handling to enable it to function independently to a standard
processor, unlike some reconfigurable fabrics. This approach
led to the adoption of an instruction-cell-based architecture,
making RICA compatible with instruction representations of
programs, and thus allowing seamless integration to existing
well established software design tool-flows. This is RICA’s
distinctive strength over other reconfigurable architectures that
lack a straightforward programming interface.

The architecture demonstrates good results regarding the
four important requirements for future systems: low-NRE costs,
low-power consumption, high-flexibility, and straightforward
design-flow. Unlike conventional reprogrammable FPGAs, the
RICA architecture is easily reprogrammed through high-level
languages like conventional processors, which is done using
existing compilers technologies such as the standard GNU
Compiler. The RICA outperforms current low-power DSP
architectures such as the TI C55x by providing up to 3% higher
throughputs but with 2—-6x less power consumption at a cost of
increased program size. It should be noted that the full extent

Authorized licensed use limited to: The University of Edinburgh. Downloaded on November 19, 2009 at 14:10 from IEEE Xplore. Restrictions apply.

84

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 1, JANUARY 2008

TABLE V

COMPARING RICA WITH OTHER PROCESSOR, LOW-POWER DSP, AND VLIWS USING BENCHMARKS

RICA OpenRISC CPU (on UMC|ARM7-DTMI-S (Syn. on 0.13pm)
0.13um) - 112MHz - 110 MHz
RRC Min _ Raw Energy Min) dee Energy Min _ C_ode Energy
Cycles E;:;;gu(tl:c;? g)octje per Op|Cycles E_xecutlon size per Op|Cycles Executlon size per Op
ytes) (nJ) Time (us) (bytes) (nJ) Time (us) (bytes) (nJ)
1-D DCT |43 0.12 993 4.7 102 0.91 402 10.2 (104 0.95 406 9.36
2-DDCT |1351 3.01 1785 159.3 |4972 44.39 516 497 3760 34.18 508 338
Viterbi 1838 7.78 1286 218.3 |9032 80.64 308 903 8803 80.03 316 792
IR 120 0.17 755 16.33 [180 1.61 510 18 176 1.60 464 15.8
Min Error |5164 11.10 1070 620.1 |9073 81.01 442 907 8908 80.98 412 802
Dhrystone {798 1.12 1289 52.57 |711 6.35 870 711|712 647 912 64.1
TI C64x 8-ways VLIW - 600MHz TICS5x 2-way 'I‘\’,IVH;"’W” DSP - 300
Min Code Energy Min Code Energy
Cycles Execution size per Op | Cycles Execution size per Op
Time (us) (bytes) (nJ) Time (us) (bytes) (nJ)
1-D DCT 68 0.11 316 34.68 104 0.35 451 26
2-D DCT 1763 2.94 588 899.1 2300 7.67 655 575
Viterbi 3120 5.20 664 1591 3980 13.27 262 995
IIR 39 0.07 160 19.89 139 0.46 436 34.8
Min Error | 1320 7.20 952 673.2 7479 24.93 380 1870
Dhrystone | 928 1.55 424 473.3 916 3.05 1021 229

of power savings depends on the amount of control operations
in the program.

When compared to current VLIW processors, RICA consid-
erably reduces the number of required clock cycles in applica-
tions containing numerous dependent instructions since it al-
lows the execution of both dependent and independent instruc-
tions in the same cycle, which overcomes the problem of statis-
tical ILP-limit faced by VLIW. In terms of performance, RICA
achieves similar timing to the VLIW for datapath applications,
while being up to 50% slower in control intensive applications.
This is due to the fact that the VLIW circuitry has been hand-
crafted to achieve 600-MHz operating frequency. Nevertheless,
RICA can achieve up to 6 less power than the VLIW.

The measured performance of the initial array are encour-
aging, however, more changes can be done on the compiler
level, such as making the scheduling occur inside gcc, to greatly
boost the performance.

REFERENCES

[1] G. Estrin, “Organization of computer systems—The fixed plus variable
structure computer,” in Proc. Western Joint Comput. Conf., 1960, pp.
33-40.

E. Mirsky and A. DeHon, “Matrix: A reconfigurable computing ar-
chitecture with configurable instruction distribution and deployable re-
sources,” in Proc. IEEE Symp. FPGAs Custom Comput. Mach., 1996,
pp. 157-166.

J. R. Hauser, “Augmenting a microprocessor with reconfigurable hard-
ware,” M.S. thesis, Comput. Sci. Dept., Univ. California, Berkeley,
2000.

Elixent Ltd., Bristol, U.K., “D-Fabrix processing array, reconfigurable
signal processor,” 2005 [Online]. Available: www.elixent.com

XPP, PACT, Munich, Germany, “OFDM decoder for wireless
LAN—Whitepaper,” May 2002 [Online]. Available: ww.pactcorp.com

(2]

(3]

[4

=

[5

—_

[6] Philips, Avispa, Eindhoven, The Netherlands, “Reconfigurable com-
puting,” 2005 [Online]. Available: www.siliconhive.com
[7]1 P. M. Heysters, G. J. M. Smit, and E. Molenkamp, “Montium—Bal-
ancing between energy-efficiency, flexibility and performance,” Eng.
Reconfig. Syst. Algorithms, pp. 235-241, 2003.
[8] M. Wan, H. Zhang, V. George, M. Benes, A. Abnous, V. Prabhu, and J.
Rabaey, “Design methodology of a low energy reconfigurable single-
chip dsp system,” J. VLSI Signal Process., vol. 28, pp. 53-63, 2000.
H. Singh, M. Lee, G. Lu, F. Kurdahi, N. Bagherzadeh, and E. Filho,
“MorphoSys: An integrated reconfigurable system for data-parallel and
computation-intensive applications,” IEEE Trans. Comput., vol. 49, no.
S, pp. 465-481, May 2000.
S. Khawam, S. Baloch, A. Pai, I. Ahmed, N. Aydin, T. Arslan, and
F. Westall, “Efficient implementations of mobile video computations
on domain-specific reconfigurable arrays,” in Des. Autom. Test Eur.
(DATE), 2004, pp. 1230-1235.
B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins,
“ADRES: An architecture with tightly coupled VLIW processor
and coarse-grained reconfigurable matrix,” in Proc. 3rd Int. Conf.
Field-Program. Logic Appl., 2003, pp. 61-70.
C. Ebeling, C. Fisher, G. Xing, M. Shen, and H. Lui, “Implementing an
OFDM receiver on the rapid reconfigurable architecture,” IEEE Trans.
Comput., vol. 53, no. 11, pp. 1436-1448, Nov. 2004.
Stretch, Sunnyvale, CA, “Configurable processor,” 2007 [Online].
Available: www.stretchinc.com
[14] R. Baines and D. Pulley, “A total cost approach to evaluating different
reconfigurable architectures for baseband processing in wireless re-
ceivers,” IEEE Commun. Mag., vol. 41, no. 1, pp. 105-113, Jan. 2003.
[15] Ambric, OR, “Programmable multicore,” 2007 [Online]. Available:
www.ambric.com
[16] S. Agarwala et al., “A 600-MHz VLIW DSP,” IEEE J. Solid-State Cir-
cuits, vol. 37, no. 11, pp. 1532—1544, Nov. 2002.
[17] Opencores, Dobrova, Slovenia, “OpenRISC,” (2005). [Online]. Avail-
able: http://www.opencores.org/projects.cgi/web/orlk
[18] J. Rose and S. Brown, “Flexibility of interconnection structures for
field-programmable gate arrays,” IEEE J. Solid-State Circuits, vol. 26,
no. 3, pp. 277-282, Mar. 1990.
[19] GNU, Boston, MA, “GNU C compiler,” 2005 [Online]. Available:
http://gcc.gnu.org/

(91

[10]

[11]

[12]

[13]

Authorized licensed use limited to: The University of Edinburgh. Downloaded on November 19, 2009 at 14:10 from IEEE Xplore. Restrictions apply.

KHAWAM et al.: RECONFIGURABLE INSTRUCTION CELL ARRAY

[20] V.Betz and J. Rose, “VPR: A new packing, placement and routing tool
for FPGA research,” in Proc. 7th Int. Workshop Field-Program. Logic,
1997, pp. 213-222.

[21] ARM Ltd., Cambridge, U.K., “ARM7 thumb family datasheet,” ARM
DOI 0035-3/02.02, 2002.

[22] G. Martinez, “TI TMS320VC5501/02 power consumption summary,”
Appl. Rep. SPRAA48, 2004.

[23] Y. Yi, I. Nousias, M. Milward, S. Khawam, T. Arslan, and I. Lindsay,
“System-level scheduling on instruction cell based reconfigurable
systems,” in Proc. Des. Autom. Test Eur. Conf. (DATE), 2006, pp.
381-386.

[24] Texas Instruments Incorporated, Dallas, TX, “TMS320C5000 CPU and
instruction set reference guide,” 2000.

[25] G. Martinez, “TMS320VC5501/02 power consumption summary,’
Appl. Rep. TI SPRAA48, 2004.

[26] D. Wentzlaff, “Architectural implications of bit-level computation in
communication applications,” M.Sc. thesis, Dept. Elect. Eng. Comput.
Sci., Massachusetts Inst. Technol., Boston, 2002.

[27] N. Aslam, M. Milward, I. Nousias, T. Arslan, and A. Erdogan, “Code
compression and decompression for instruction cell based reconfig-
urable systems,” presented at the IEEE Int. Parallel Distrib. Process.
Symp., Reconfigurable Arch. Workshop, Long Beach, CA, 2007.

[28] N. Aslam, M. Milward, I. Nousias, T. Arslan, and A. Erdogan, “Code
compressor and decompressor for ultra large instruction width coarse-
grain reconfigurable systems,” in Proc. IEEE Symp. Field-Program.
Custom Comput. Mach., 2007, pp. 297-298.

Sami Khawam received the B.Eng. degree in elec-
trical and electronics engineering and the Ph.D. de-
gree in system level integration from the University
of Edinburgh, Edinburgh, U.K., in 2001 and 2006, re-
spectively.

Presently, he is a Senior Hardware Engineer
with SpiralGateway, Edinburgh, U.K. His research
interests include low-power VLSI hardware, recon-
figurable hardware architectures, and embedded
reconfigurable hardware.

Ioannis Nousias received the B.Sc. degree in elec-
trical and electronic engineering from the Cretan Uni-
versity, Chania, Greece, in 2001, and the M.Sc. de-
gree in system level integration from the University
of Edinburgh, Edinburgh, U.K., in 2003, where he is
currently pursuing the Ph.D. degree in reconfigurable
computing.

In June 2007, he became a Senior Engineer with
Spiral Gateway LTD, Edinburgh, U.K., where he
continues his work in reconfigurable computing
technologies. In 2001, he was a Senior Hardware and
Software Engineer with Protogenea Inc., Athens, Greece, where he developed
a GPS- and GSM-based tracking and monitoring system for industrial and
small business applications, such as terrestrial map alignment and remote
monitoring of containers with sensitive shipments. His research interests
include reconfigurable computing, bioinspired technologies, artificial intelli-
gence, interconnection technologies, network on chip, and micro-processor
architectures.”

85

Mark John Milward received the B.Eng. degree in

electronic and electrical engineering and the Ph.D.

degree in the area of parallel lossless compression

from Loughborough University, Leicestershire, U.K.,

in 2000 and 2004, respectively.

~ Currently, he is a Senior Engineer with Spiral
Gateway Ltd., Edinburgh, U.K., where he is contin-
uing his work on reconfigurable systems. He was a
Research Associate with the System Level Integra-
tion Group, University of Edinburgh, Edinburgh,

U.K. His research interests include reconfigurable

architectures, parallel hardware architectures, and lossless compression.

Ying Yi received the B.Sc. degree in computer and
application from Harbin Engineering University,
Harbin, China, and the Ph.D. degree from the
Queen’s University, Belfast, U.K., in 1996 and 2003,
respectively.

Currently, she is a Research Fellow with the School
of Engineering and Electronics, University of Edin-
burgh, Edinburgh, U.K. She was a Software Engi-
neer with the WuHan Institute of Mathematical En-
gineering, China, where she researched, developed,
and maintained intranet and management informa-
tion systems. From 1997 to 2000, she was with the China Ship Research and
Development Academy (CSRDA), Beijing, China, where she was involved in
research, development, and management of computer correlative problems. Her
research interests include low-power reconfigurable SoC systems, compiler op-
timization techniques for reconfigurable architecture, architectural level syn-
thesis optimization, and multiprocessor SoC.

Mark Muir received the M.Eng. degree (first class)
in electrical and mechanical engineering and the
Ph.D. degree from the University of Edinburgh,
Edinburgh, UK., in 2004, where he developed
software tools for the RICA project.

He is currently writing up, and is an employee of
Spiral Gateway, Edinburgh, U.K., which licenses this
technology. His research includes a broad range of
interests, with particular emphasis on software devel-
opment and algorithms.

Tughrul Arslan holds the Chair of Integrated Elec-
tronic Systems with the School of Engineering and
Electronics, University of Edinburgh, Edinburgh,
U.K., and is also a cofounder and the Chief Technical
Officer of SpiralGateway Ltd., Edinburgh, U.K. He
is a member of the Integrated Micro and Nano
Systems (IMNS) Institute and leads the System
Level Integration Group (SLIg) in the University.
his research interests include low-power design,
DSP hardware design, system-on-chip (SOC) ar-
chitectures, evolvable hardware, multiobjective
optimization, and the use of genetic algorithms in hardware design issues.

Prof. Arslan is an Associate Editor for the IEEE TRANSACTIONS ON CIRCUITS
AND SYSTEMS—I: REGULAR PAPERS, a member of the IEEE CAS Committee
on VLSI Systems and Applications, and sits on the editorial board of IEE Pro-
ceedings on Computers and Digital Techniques and the technical committees
of a number of international conferences. This year he is the general Chair of
the NASA/ESA Conference on Adaptive Hardware and Systems, and Co-Chair
of ECSIS Bio-inspired, Learning, and Intelligent Systems for Security Sympo-
sium (BLISS). He is a principal investigator on a number of projects funded by
EPSRC, DTI, and Scottish Enterprise together with a number of industrial and
academic partners.

Authorized licensed use limited to: The University of Edinburgh. Downloaded on November 19, 2009 at 14:10 from IEEE Xplore. Restrictions apply.

