
Workload Adaptive Shared Memory Multicore
Processors with Reconfigurable Interconnects

Shoaib Akram, Rakesh Kumar, and Deming Chen
Department of Electrical and Computer Engineering, University of Illinois at Urbana Champaign

{sakram3,rakeshk,dchen}@illinois.edu

Abstract—Interconnection networks for multicore processors

are designed in a generic way to serve a diversity of workloads.

For multicore processors, there is a considerable opportunity

to achieve an improvement in performance by implementing

interconnects which adapt to different program phases and to

a variety of workloads. This paper proposes one such inter-

connection network for medium-scale (up to 32 cores) shared

memory multicore processors and the associated means at the

software level to utilize it effectively. The proposed architecture

uses clustering to divide the cores on the chip among many

groups called clusters. Reconfigurable logic is inserted between

clusters to support either isolation or different policies for

communication among clusters. The experiments show that the

isolation property of clusters can improve overall throughput of a

multicore processor by as much as 60% for multiprogramming

workloads consisting of two and four applications. The area-

overhead of the additional logic is shown to be minimal.

I. INTRODUCTION AND MOTIVATION

The design of an efficient interconnection network for a chip

multiprocessor (CMP) is a challenging problem. The relative

delay of interconnection wires increase with shrinking process

technologies which increases the latency of interconnect com-

pared to the rest of system. Also, increasing number of cores

demands more bandwidth from the interconnection network.

In fact, for a single core in a CMP, the performance impact

due to the latency of an interconnection network can be as

high as that of a cache miss.
One limiting factor to the efficiency of any interconnection

network is that it is designed to serve a diversity of workloads.

For a single application, the variation in performance demands

from different resources in a uni-processor is a well-studied

problem[5]. For a CMP, the workloads are more diverse. This

includes a mix of multiprogramming workloads and multi-

threaded applications with different communication patterns.

Different workloads stress the interconnection network in

different manners. For instance, Fig.1A shows the varied

manner in which conflicting requests over the shared bus

increase as more applications are introduced in a 8-core CMP

(refer Table.II for parameters). This is due to different memory

requirements of applications. Also, there is a considerable vari-

ation in the bandwidth requirements during different phases

of a single workload. This is shown in Fig.1B for some

workloads each consisting of two SPEC benchmarks. In this

paper, we suggest a reconfigurable approach to the design

of interconnection networks so that the interconnect could

be configured on-demand based on workload characteristics.

Since the interconnection network serves as a communication

mechanism between the different memory modules in the

system, the interaction of the workload with the memory

system has direct implications on the performance of the in-

terconnection network. If this interaction is known a priori or

could be determined at run-time, the interconnection network

could be adapted to serve each workload efficiently.

This paper aims at making the shared bus interconnects

found in current chip multiprocessors workload-adaptive. Al-

though Network-on-Chip (NoC) has been proposed as a scal-

able solution for CMPs[1], the use of shared bus interconnect

is likely to continue in the near future for chips with moderate

number of cores. This is because design of Snoopy-based

interconnection networks is simple and supporting traditional

memory consistency mechanisms on snoopy-based intercon-

nection network is well-understood. Directory-based schemes

as used in NoC suffer from additional area overhead of

directories and directory-management hardware which may be

prohibitive for chips with small to moderate number of cores.

Our proposal consists of clustering the cores of a CMP

into many groups to localize the traffic within a cluster and

then augmenting clustering by inserting reconfigurable logic

between clusters. Configurable logic placed in this manner is

used to maintain coherence between clusters if required. As a

result, we can either isolate the clusters and localize traffic or

provide different policies for communication between clusters.

II. BASELINE INTERCONNECTION NETWORK

ARCHITECTURE

A classical shared bus interconnect for a CMP using snoopy

cache coherence[16] is shown in Fig.2[10]. The shared bus

interconnect shown consists of multiple pipelined buses, a

centralized arbitration unit, queues, and other logic. The last-

level private cache of each core in the system is connected to

the address bus through (request) queues. All components that

could possibly serve the request are hung from the snoop bus.

The request travels to the end of the address bus from where

it is stored in another queue. From there, the request travels

across the snoop bus. All components connected to the snoop

bus source the request and check to see if they could serve the

request. Access to the Address bus is provided by the arbiter.

Each component connected to the snoop bus sources the

request and generate an appropriate response after some time

on the response bus. This involves looking up the tags to

check for the requested data in case of caches. All responses

travel to the end of response bus where a piece of logic

7978-1-4244-4938-5/09/$25.00 c©2009 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 27,2010 at 23:10:09 UTC from IEEE Xplore. Restrictions apply.

Bruce
Highlight

Bruce
Highlight

Bruce
Highlight

0

50

100

150

200

250

1 2 3 4 5 6 7 8

Num ber of Active Cores

C
on

fli
ct

s
pe

r
T

ho
us

an
d

In
st

ru
ct

io
ns

0

2

4

6

8

Instruction Steps (50 Million)

C
o

m
b

in
ed

 L
2

M
is

se
s

(M
il

li
o

n
)������

�	
�	
�����
����������	
�

�	��������
�
���

�������������	
����
����	����	
����	

��� ���

�������	��	
���
����������	
�

�	��������
�
���

Fig. 1. Examples of Workload Interaction with Interconnection Network

��
	���
������	

���
���	

�
���	

�	�����	�
����	���� !	�"
	
��������#��

�$$
	���
���

%�����
���

�	�����	
���	�

&����
���

�	'�	���
(�	�	

���
���	

���
���	

���
���	

��
	���
������	

��
	���
������	

��
	���
������	

�)�
���	

*����� +��������
�*��"
����������������

Fig. 2. Detailed Model of a Shared Bus Interconnect for Chip Multiprocessors

(book-keeping logic) collects the responses and generates a

combined response which travels back along the response bus.

The combined response includes information regarding action

that each component needs to take. Actions include sending

data on the data bus or changing the coherence status etc.

Two possibilities exist for snooping the request from the

shared bus. The first involves waiting for the responses to be

collected by the book-keeping logic from the response bus and

then sending the request to cache controller below if none of

the private caches of other cores could service the request.

Other approach is to snoop from somewhere along the snoop

bus. The two approaches have a delay-power tradeoff.

From Fig.2, it could be seen that the overhead of a single

transaction involves traversing the point-to-point links on

different buses and the logic overhead of arbiters etc. It should

be noted that not all cores need to take part in the coher-

ence mechanism described above. In particular, an application

which is part of a multiprogramming workload could send the

request to L3 controller once L2 miss is detected. Similarly,

requests generated by separate multi-threaded applications

need not arrive at a common ordering point as is the case

in Fig.2.

III. A FRAMEWORK TO SUPPORT RECONFIGURABLE

INTERCONNECTS

In this section, we will describe our modified architec-

ture that relaxes the serialization constraint on bus-based

interconnection network by clustering the cores into groups

and localizing coherence traffic generated by an independent

workload within a cluster.

A. Overview

The high-level view of the baseline multicore processor for

eight cores is shown in Fig.3A. In the baseline architecture all

cores are connected through a monolithic shared bus. There

could be multiple L3 controllers serving different requests

simultaneously destined for different banks. The proposed

architecture for the multicore chip is shown in Fig.3B. In

Fig.3B, the shared bus is split among clusters and there is

no global ordering point. Each cluster has a local arbiter

and therefore requests within a cluster are ordered. If threads

share data across clusters, inter-cluster logic is set-up to pro-

vide communicating paths among clusters. For the proposed

architecture, there could be an L3 controller per cluster or

multiple clusters could share a single L3 controller. The

�����%��
	$����

��		�����	��	����

	������
�
��		�	���	�

����
������������	

���
��	

�����%��
	$���� �����%��
	$���������%��
	$����

�����%��
	$����

�����	

	�
��
�
����	����
��������������	���

�	���	����
��
��	�,�����

��	
����������������
�
�	
����������������

�����	������	�
����
��
�	�����

�	��
���-	$�
�
���	

������
���	

�����
���������	���
���
�
�,�������
�
���
��������	������	����,��	�

���
���
.�

������

Fig. 3. A) Baseline Multicore Architecture versus; B) Clustered Multicore
Architecture

number of independent clusters available on the chip depends

upon the granularity of the reconfigurable logic provided on

the chip. For instance, for a CMP with sixteen cores, providing

four reconfigurable points will make it possible to have four

8 2009 IEEE 7th Symposium on Application Specific Processors (SASP)

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 27,2010 at 23:10:09 UTC from IEEE Xplore. Restrictions apply.

independent clusters with each cluster having four cores. For

our architecture, we assume a MOESI snoopy-based cache

coherence protocol[16] within a cluster. We assume a weaker-

consistency model for access to shared data across clusters. In

particular, writes to data shared across clusters is protected by

locks.

B. Reconfigurable Interconnection Logic

The reconfigurable logic between clusters has two goals.

First, it provides on-demand isolation between clusters,

thereby not having to do coherence across clusters. This will be

particularly helpful for multiprogramming workloads as they

could be scheduled within one cluster. Secondly, for multi-

threaded workloads, based upon the expected communication

patterns, it supports two different policies for communication

among clusters.

• As Soon As Possible Policy (ASAP) A request from

one cluster is sent immediately to another cluster to be

serviced without waiting for final response generation by

book-keeping logic. If the probability of finding data in

the other cluster is high, this policy reduces latency for

the requesting cluster.

• If Necessary Policy (IN) A request from one cluster

is sent to the other cluster after first being assured that

the requested data does not reside locally. This policy is

useful for coarse-grained multi-threaded applications that

communicate rarely.

In later sections, we will discuss a mechanism to select

between the two policies. For now, it suffices to say that the

selection between two policies depends upon the confidence

of programmer regarding the expected communication pattern

among different threads. Fig.4 illustrates the rationale behind

the two policies supported by inter-cluster logic. The next two

���	
"����	
���#���������#�
	$����
���		����%�/�������

���	
"�����	
���#���������#�
	$����
���		�������0 �������

���	
"����	
���#���������#�
	$����
���	�	���������	���	���������	
�

�1 221

221 �1

�++1 �++1

���
����� ���
����	

Fig. 4. Example Scenarios for Using the Two Policies for Communication
between Clusters and Isolation Property of Clusters. In the first case of ASAP,
Cluster A has a 1% chance of finding data locally and 99% chance of finding
data in Cluster B.

sections provide an implementation of the reconfigurable logic

between clusters with the goals described in this section.

C. Additional Hardware Components

First, we describe the additional logic components that will

be utilized. We also provide the area and timing overhead of

the additional components for 65nm(TSMC) technology using

Synopsys Design Vision.

%��3���������
����
���4
�"%���	�

����	
�

*�	��	�����
	�$���$�
�
��	�����	
�����
��-	���#��%�-	����

(�	�	��	�$
5
��	
�����

*�����
*�	��	�����
	�$���$�
�
��	�����	
�����
��-	���#��%�-	����

(�	�	�"�

���6�

���6�

/����7+ /����7�

����,�����	��
	���,����

���	��

	������
��
�����
����
�����
�

*������

*������

�	�$
5
��	
������

�	�$
5
��	
������

Fig. 5. Two Major Components Used for Reconfigurable Logic between
Clusters

1) Switch Boxes: The switch box fabric used for routing

purposes in Field Programmable Gate Arrays[14] is an impor-

tant structure to utilize in on-chip reconfigurable interconnects.

A Switch box, as shown in Fig.5A, provides different routing

paths for the incoming signals. The number of outgoing

routing paths is called the Flexibility, Fs, of a switch box. For

our design, the required Fs is two. The number of switches

required for our switch box is therefore F s ∗ W , where W

is the width of the bus. We used tri-state buffers as switches

inside our switch block. The area-overhead of switch-box for

bus width of 64 bits was found to be 430 square micro-meters.

2) Modified Queues: Queues are the primary mode of

communication in our design as shown in Fig.3. We modified

the queues as follows. If the cluster is isolated from the

neighboring cluster, the queue can buffer Q requests thus

only serving the local cluster. However, if the clusters share

data, the queue is configured to be partitioned into two

banks. One bank of size Q/2 take requests from the local

cluster and another bank of size Q/2 buffers requests from

the neighboring cluster. The two behaviors are depicted in

Fig.5B. This simulation of polymorphic behavior by logic

components maximizes their utility for reconfigurable systems.

The queue is provided with two read ports and two write

ports to communicate with other clusters. The counters within

the queue are managed to reduce the area overhead while

supporting both cases as shown in Fig.5B. The area-overhead

of the modified queue was estimated to be 20% more than that

of the base queue.

3) Multiplexors: We made use of multiplexors in our design

to support the ASAP policy when clusters are sharing data and

for the interconnect optimization proposed for single applica-

tions (discussed later). The area overhead of multiplexor was

found to be 200 square micro-meters for a bus width of 64
bits.

The area overhead of the above logic components required

for inter-cluster logic is not prohibitive thus providing the

designer with a freedom to provide many configurable points

on chip. In order to configure the above components, we

assume the availability of hardware bits that are set at run-time

by the Operating System. For 65nm, we chose a clock cycle of

1.5GHz for simulation results in Section.VI. All components

passed the one cycle delay constraint for bus frequency of

1.5GHz.

2009 IEEE 7th Symposium on Application Specific Processors (SASP) 9

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 27,2010 at 23:10:09 UTC from IEEE Xplore. Restrictions apply.

�
	
�����	
�����	

�8� �8�

���	����������������
���������
���	�
	����

��
������

9�
$��
	�����

�$$
	���
���

%�����
���

�	�����	�
���

�,�����
	��

����������� ������� ����
����
�����

����

�0

&3

Fig. 6. Inter-Cluster Logic between Two Clusters and Direct Memory Connection Provided to One Core

D. Complete Design of Inter-Cluster Logic for Two Clusters

Fig.6 shows two clusters connected through the inter-cluster

logic. Additional logic is only shown from left cluster to right

cluster. We need to provide two different paths for commu-

nication between clusters and a way to isolate the clusters.

The electrical properties of tri-state buffers serve to provide

the isolation between clusters. The first path corresponds to the

ASAP policy among clusters. In this case, we want the request

in one cluster (name as local cluster) to be sent immediately

to the neighboring cluster. For this, as the request passes

through the switch box, it is routed on to the snoop bus of

neighboring cluster through the path labeled ASAP in Fig.6,

where a multiplexor puts it on the snoop bus. Every time a

request is buffered in the local queue, the neighboring queue

is prohibited from issuing any further requests on the snoop

bus. The multiplexor is simultaneously configured to select

the request coming from the switch box. For the IN policy,

the switch box is configured to send incoming request along

path labeled IN in Fig.6 and the neighboring queue is signaled

to store the request. The Book-Keeping Logic (BKL) of local

cluster, only after collecting responses and finding out that

request can not be serviced locally, signals the neighboring

queue to issue the request on its snoop bus. The queues in

this case are configured as multi-banked as was discussed in

Fig.5B.

E. Direct Memory Connection

For single-threaded applications running on a CMP, the

requests for memory accesses do not need to go through

the shared bus interconnect at all and a direct connection to

underlying memory will enhance the performance of single-

threaded applications. Therefore, a connection between the

request queues at the output port of L2 cache and the input port

of L3 cache controller is useful in Fig.2. Since all transactions

begin when a request is placed on the address bus, a switch box

is placed at the output of the request queues connecting the L2

cache to the address bus. One output of switch box is routed

to the address bus and the second output is routed directly to

the L3 controller. A multiplexor at the input of L3 controller

selects between the request coming from path labeled DM in

Fig.6 and the regular path for memory accesses (somewhere

along the snoop bus). In this case, the L2 cache controller is

inhibited from sending requests to the arbiter.

IV. SYSTEM SUPPORT

In this section, we discuss the system-level support required

to use our proposed interconnection network.

A. Programmer’s Support

We propose to use the programmer’s knowledge of the

expected communication pattern of the workload to be run

on the system. The information regarding the expected com-

munication pattern is assumed to be provided by programmer

through annotations in the code. Following annotations are

applicable to the architecture described in III.

• Single Threaded This is a single-threaded application.

• Coarse Grained Sharing This group of threads is part of

a multi-threaded application and the threads have coarse-

grained sharing among them.

• Fine Grained Sharing This group of threads is part of

a multi-threaded application and the threads share data at

a finer granularity.

The use of annotations to configure the underlying parameters

through hardware bits is the same as in [4].

B. Operating System Support

The annotations are used by the compiler to generate

instructions for the Operating System (OS) to set hardware bits

and configure the switches, queues and multiplexors as dis-

cussed in Section.III-C. Also, modern operating systems (OS)

have affinity masks to schedule threads to cores. If we can

provide the operating system with knowledge of the expected

communication pattern among threads in our application, the

OS can make use of interconnect-aware scheduling to improve

performance of applications.

We first show how annotations can be used to select policies

discussed in III-B and make good scheduling decisions by

OS for multi-threaded applications. Fig.7A shows that for 4
threads (T1,T2,T3,T4) mapped to a 4-core CMP, six possible

communicating thread pairs are possible. Fig.7B shows how

10 2009 IEEE 7th Symposium on Application Specific Processors (SASP)

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 27,2010 at 23:10:09 UTC from IEEE Xplore. Restrictions apply.

P1 P2 P3 P4

S12

S13

S23

S14

S24

S34

0%

10%

20%
30%

40%

50%

60%

70%
80%

90%

100%

BARNES CHOLESKY FMM FFT LU OCEAN RADIX WATERN WATERS

Splash Benchmark

%
 o

f c
ac

he
-t

o-
ca

ch
e

tr
an

sf
er

s

S12 S13 S14 S23 S24 S34

(A)

(B)

Fine
Grained

Coarse
Grained

P1 P2 P3 P4

(C)

ASAP

Thread to Core
Assignment for RADIX

based upon
Annotations:

T2 P1
T1 P2
T4 P3
T3 P4

Original Thread to
Core Assignment :

T1 P1
T2 P2
T3 P3
T4 P4

cluster1 cluster2

Fig. 7. A) Four Cores and Possible Communication Pairs; B) Example
of Annotations in Splash Benchmarks Based upon Expected Communication
Patterns among Thread Pairs; C) Resulting Scheduling Decisions and Policy
Selection between Clusters

annotations could be applied based upon the expected shar-

ing pattern among threads for Splash benchmarks[17]1. The

benchmarks were run under load-balanced conditions using the

Linux kernel running on top of a multiprocessor simulator [2].

In Fig.7B, Sxy implies that, of the total cache-to-cache trans-

fers that took place during the execution of application, Sxy

took place between core x and y. Fig.7C shows the scheduling

decisions and communication policy selected by the OS for

RADIX benchmark for a 4-core CMP and 2 clusters. In order

to understand the scheduling decisions and selected policy,

note the values of Sxy for different values of x and y in case

of RADIX. Threads T1 and T2 are mapped to one cluster

since the communication among them is high. Same applies

for threads T3 and T4. The logic between clusters is configured

to use ASAP policy since T1 and T4 communicate very often.

This frequent communication between T1 and T4 is also the

reason these threads are scheduled on P2 and P3 respectively.

The OS can also make good scheduling decisions for single-

threaded applications and multiprogramming workloads. For

instance, single-threaded applications forming part of the

multiprogramming workload could be mapped to a single

cluster. This will give the OS larger decision-space when a

multi-threaded application enters the system. There is also

a possibility of improving the performance of a multipro-

gramming workload by intelligent scheduling within a cluster.

This is because as could be seen in Fig.2, latency of access

1Note that in Splash benchmarks, n processes each corresponding to one
of the n processors are created at the beginning of application. The different
processes co-operate to complete the job. Therefore, in this context, our use
of term thread rather implies a “group of threads”.

TABLE I
NODE PARAMETERS

Node Number of Cores Core Frequency Bus Frequency
90nm 4 2GHz 1GHz
65nm 8 3GHz 1.5GHz
45nm 16 4GHz 2GHz
32nm 32 6GHz 3GHz

to many resources (arbiters, queues) is location dependent.

If an application communicates with the arbiter very often,

scheduling it closer to the arbiter will increase its performance.

V. METHODOLOGY

We evaluated our proposed architectural techniques using

the M5 simulator[2]. We modified the M5 shared bus inter-

connect to implement separate address, snoop, response and

data Buses as shown in Fig.2. All buses are pipelined. Caches

are modeled such that requests arriving at time X and Y incur

a latency of X + Latency and Y + Latency regardless of

X −Y . The data bus is modeled as a bi-directional bus. Each

request has a unique TAG associated with it. The TAG has both

an ID of the request itself and an ID of core that generated

the request. Based upon the TAG in the request, the L3 cache

controller places the data on the appropriate direction along

the data bus (see Fig.2) after arbitrating for it. For our modeled

system, the L3 controller always snoops the request from the

middle of snoop bus and is later inhibited from servicing the

request if the request is found in the private cache of some

other core.

We performed our experiments across four technology gen-

erations. The scaling of frequency of cores is taken from

ITRS roadmap. The frequency of shared buses is assumed

half of the core frequency. This co-relates with existing

CMP architectures[15]. The different technology nodes, clock

frequency of cores and of bus fabric is shown in Table 1. The

chip area is assumed to be constant at 400mm2 due to yield

constraints. When we scale down from a higher technology

node to a lower technology node, we assume that twice the

number of cores (along with associated private caches) is

available. The parameters of a single core and caches are

shown in Table.II. Our methodology to model wire delay is as

follows. If there are n cores connected to the address bus, we

pipeline the wire n-way with n latches. The rational behind

this methodology is to allow each cache connected to the bus

to send a request every cycle. The delay of the link between

two latches is always one cycle. The length of a link calculated

in this manner is used as latch-spacing for the remaining

wires on the chip. The logic delay of arbiter is not modeled.

However, behavior of arbiter is modeled such that no two

requests conflict for any segment of the pipelined address bus.

We considered applications from the SPEC benchmark suite

for the evaluation of our proposed architectures. Simulations

were run in a detailed mode for 200 million instructions after

fast-forwarding the initial phase for 2 billion instructions.

Since the evaluation of our proposed ideas depends heavily

2009 IEEE 7th Symposium on Application Specific Processors (SASP) 11

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 27,2010 at 23:10:09 UTC from IEEE Xplore. Restrictions apply.

TABLE II
CORE PARAMETERS

Parameter Value
Processor cores Alpha 21264

2-issue
L1 D-Cache 32KB

2-way set associative, 1 cycle hit latency
64 bytes cache lines, 10 MSHRs

L1 I-Cache 64KB
2-way set associative, 1 cycle hit latency
64 bytes cache lines, 10 MSHRs

L2 Cache 1MB
8-way set associative
5 cycle latency (one way)
64 bytes cache lines, 20 MSHRs

Shared L3 Cache 36MB
16-way set associative
40 cycles latency (one way)
64 bytes cache lines, 60 MSHRs

Physical Memory 512MB
200 cycles latency

0
5

10
15
20
25

ar
t11

0
ap

plu ap
si

am
m

p
ga

p vp
r
gc

c
m

cf

eq
ua

ke
m

gr
id

gz
ip

ga
lgel

sw
im

luc
as

wupw
isetw

olf

vo
rte

x

m
es

a

Benchmark

A
cc

es
se

s
p

er
 1

00
0

In
st

ru
ct

io
n

s

0
0.5
1
1.5

M
is

s
R

at
e

Accesses/1000 Insts Miss Rate

Fig. 8. Miss Rates and Accesses per Thousand Instructions for Considered
SPEC Benchmarks

on the underlying cache miss rates of workloads, the miss-

rates of considered SPEC benchmarks are shown in Fig.8. For

the duration Lucas and Wupwise were run, L2 miss rate is

very close to 1 because during this phase no reads takes place

and all writes miss in the cache.

VI. RESULTS

In this section, we show the results for the improvement

in performance of using the proposed multi-core architecture

with various levels of clustering over the baseline processor.

Indirectly, we show the reduction in the impact of global

wire delays in shared bus chip-multiprocessors for different

workloads. We use the following terminology for our modeled

architectures.

• DM One core has been provided with direct connection

to memory as shown in Fig.6.

• CX The cores are divided into X clusters. For instance,

for 32nm C2 means that the processor has two clusters

with sixteen cores per cluster.

Delay of switching components and additional wires is in-

cluded in simulations wherever applicable.

A. Performance Analysis for Single Applications

Fig.9A shows the average latency incurred by L2 cache

misses for various size of clusters running a single application.

It also shows the average latency of L2 misses when the

application is running on a core which has direct connection

to the shared L3 cache below. Although Art and Ammp have

high miss rates and large number of misses, their average

miss latency is smaller because these benchmarks have very

high L3 cache hit rates. It could be seen in Fig.9A that the

direct memory approach falls behind as we make clusters with

two cores. This is because by providing a direct memory

connection, we only gets rid of the latency incurred by address

and snoop bus. The latency of the monolithic data bus is

still visible to the L2 miss. This motivates us to consider an

architecture that combines the effect of clustering (cluster with

two cores) and direct memory connection described in III-E.

Fig.9B shows the results of performance improvement with

this combined effect over the base case for all technology

nodes. Performance gained is very high as we scale down the

technology node and applications have high miss rates.

B. Performance Analysis for Multiprogramming Workloads

We evaluated the performance of workloads running on

independent clusters using multiprogramming workloads. We

created multiprogramming workloads consisting of two and

four applications from the benchmarks shown in Fig.8. The

workloads were created to have a varied representation of L2

cache miss rates. In the following experiments, we initially

run the workload on baseline processor. Subsequently, we run

the workloads on clusters of finer granularity (less number

of cores per cluster) and note the reduction in latency. Our

results indicate that as we adapt the architecture to best serve

the workload, overall performance is always improved.

Fig.9C shows that for a multi-core processor with four cores

modeled after 90nm technology and running two applications,

there is a moderate performance gain with clustering. Fig.9D

shows the results for different levels of clustering for a CMP

with sixteen cores(45nm. Performance gains increase as we

scale down because the relative delay of global wires increases

and clustering has greater advantage. From the data collected

for 90nm and 45nm with two applications, we observed that

in some cases the CPI increases by as much as 33% over

baseline architectures. This offsets the advantage of a 50%
increase in core frequency as we scale down. Our proposed

architecture soothes this impact of wire delays considerably.

The performance results for four applications running on a 32

core multi-core processor are shown in Fig.9E. For 32nm, we

observed that the performance gains for some workloads are

as high as 60%.

Note that in both Fig.9D and Fig.9E, the performance

gained with C4 and C8 is almost equal. This is because in

both cases, the number of cores in the cluster becomes equal

to the number of threads. The impact of reduced delay is now

offset by conflicts for the arbiter and shared bus since there are

more requests per unit of time. This could be overcome my

mapping multiprogramming workloads across clusters. This is

also the reason why we only observed moderate gains for two

applications in 90nm case as shown in Fig.9C.

12 2009 IEEE 7th Symposium on Application Specific Processors (SASP)

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 27,2010 at 23:10:09 UTC from IEEE Xplore. Restrictions apply.

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Workloads

%
 I

m
p

ro
ve

m
en

t
in

 C
P

I Base Vs. C2 Base Vs. C4 Base Vs C8

0

100

200

300

400

500

600

art1
10

ap
pl

u
ap

si

am
m

p
gap

vpr_
ro

ute gc
c

mcf

equa
ke

m
gr

id
gz

ip
ga

lgel

swim
lu

ca
s

wupw
ise tw

olf

Benchmarks

A
ve

ra
g

e
L

2
M

is
s

L
at

en
cy

 (
C

yc
le

s)

Base C2 C4 C8 C16 DM

0
10
20
30
40
50
60
70
80
90

ar
t1

10

ap
pl

u

ap
si

am
m

p

ga
p

vp
r

gc
c

m
cf

eq
ua

ke

m
gr

id

gz
ip

ga
lg

el

sw
im

lu
ca

s

w
up

w
is

e

tw
ol

f

Benchmarks

%
 I

m
p

ro
ve

m
en

t
in

 C
P

I
90nm 65nm 45nm 32nm

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Workloads

P
e

rfo
rm

a
n

ce
 (

A
ve

ra
g

e

C
P

I)

0

5

10

15

20

25

%
 Im

p
ro

ve
m

en
t

Baseline
Clustered
% Im provem ent

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12
Workloads

%
 Im

pr
ov

em
en

t

Base vs C2 Base vs C4 Base vs C8

���

���
���

�&�
�:�

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Different Schedulings

P
er

fo
rm

an
ce

 (
C

P
I)

ammp equake mesa gcc Throughput

�;�

0
10
20
30
40
50
60
70

1 2 3 4 5
Workloads%

 P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t i

n
C

P
I

C2 over Baseline (Inf inite Bandw idth)
C2 over Baseline (One Monolithic Bank)
C4 over Baseline (Inf inite Bandw idth)
 C4 over Baseline (One Monolithic Bank)
C8 over Baseline (Inf inite Bandw idth)
C8 over Baseline (One Monolithic Bank)

�!�

Fig. 9. Performance Improvement of Different Architectures Over Baseline; A)Average L2 Miss Latency for Different Architectures Running Single
Application (32nm); B)Performance Improvement for Single Application Using a Cluster of 2 Cores and Direct Memory Connection to Shared L3 Cache;
C)Performance Improvement for Different Architectures Running 2 Applications (90nm); D)Performance Improvement for different Architectures Running
Two Applications (45nm); E)Performance Improvement for Different Architecture Running Four Applications (32nm); F)Impact of Scheduling on Performance
within a Single Cluster; G)Impact of L3 Bandwidth Limitation on Performance Gained with Clustering

C. Performance Analysis of Scheduling within a Cluster

Fig.9F shows the impact of scheduling on the performance

of a workload running on a single cluster with four cores.

Different curves show the performance of individual applica-

tions and the overall throughput of the complete workload.

The figure shows that we can achieve a 6% improvement in

overall throughput and 12% improvement in the performance

of the most cache-intensive benchmark (Ammp) by using

interconnect-aware scheduling. We analyzed many results for

scheduling using different multiprogramming workloads. The

variation in performance is a function of many parameters such

as positioning of cores relative to arbiters, arbitration policy,

size of queues, and dynamic traffic pattern generated by the

benchmark.

The improvement in performance by scheduling described

in this section relies on the programmer to provide reasonable

estimates regarding the expected interaction of application

with memory. The OS scheduler can then assign incoming

applications in a manner such that the best spot is reserved

(closest to arbiter etc) for the most memory-intensive applica-

tion.

D. Analysis of Bandwidth Requirements of Shared L3 Cache

for Clustering

Any improvement in the latency and bandwidth of inter-

connect for chip multiprocessors will stress the underlying

memory system correspondingly. While we considered the

availability of a large number of banks in our results shown in

Fig.9, in this section we will do some analysis of the depen-

dence of our proposed techniques on the bandwidth of shared

L3 cache below. For this, we chose to run simulations using

a chip multiprocessor with 32 cores running four applications

with different levels of clustering. For comparison with results

in above section, we modeled the L3 cache as one monolithic

bank of 36MB. Hits are queued up while misses are not

affected due to the presence of large number of MSHRs[9].

Fig.9G indicate that workloads that generate relatively low

interconnect traffic (workloads 3 and 4) and hence having

little potential for performance improvement with clustering

are not affected by the L3 bandwidth. However, with limited

bandwidth, workloads with high accesses to memory suffer

significantly. We also analyzed the impact of performance

loss due to the presence of no MSHRs in the L3 cache.

2009 IEEE 7th Symposium on Application Specific Processors (SASP) 13

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 27,2010 at 23:10:09 UTC from IEEE Xplore. Restrictions apply.

Needless to say, as we make clusters of finer granularity,

the performance loss becomes extremely high. Our conclusion

is that the interconnect optimizations proposed in this paper

should be complemented by employing aggressive techniques

to increase the bandwidth of underlying shared memory.

VII. RELATED WORK

On the clustering side, Wilson[7] did the classical work

on scaling the bus-based multiprocessors by making clusters

of processors and connecting them in a hierarchical fashion.

Coherence is also maintained in a hierarchical manner. Sev-

eral works exist that reduce the broadcast-based traffic re-

quired to maintain coherence using filtering of snoop requests

[3],[13]. Such techniques were initially proposed for web

servers and they result in an area-overhead for maintaining

extra information in directories. Our architecture does not

prevent unnecessary broadcasts but reduces their impact on

performance by localizing them. Further, techniques such as

coarse-grained coherence tracking and snoop filtering can

augment our architecture further. In [8], the authors proposed

reconfigurable on-chip interconnects for CMPs. However, their

proposal is to provide a more fine-grained fabric that can

implement different on-chip network topologies depending

upon the application. If the arrival of jobs in the system

is completely random then the run-time support required to

fully utilize their architecture could be complex. A related

proposal for programmable interconnects for array processors

was given in [11]. In terms of on-chip interconnects, although

our architecture does not have a global ordering point as is the

case in conventional shared bus architectures, the inter-cluster

logic sets-up circuit-switched paths to maintain the illusion

of a shared bus. A similar technique of setting up circuit-

switched routing paths at run-time is used by authors of [6]

but for NoC-based interconnect and directory-based coherence

scheme. The inter-cluster logic in our architecture is signifi-

cantly less complex than a switch or router used in NoCs.

The flow of requests in Fig.3B is similar to that in ring-based

interconnects[15]. However, our architecture supports different

policies for forwarding and isolating requests between clusters.

Also, in traditional ring-based interconnection networks, there

is a point-to-point connection between every two nodes and

thus the ordering schemes required for maintaining coherence

result in an additional overhead[12].

In general, no literature exists on augmenting the prevalent

shared bus interconnects for CMPs by using programmable

interconnects.

VIII. SUMMARY AND CONCLUSIONS

In this paper, we presented design techniques to improve

the performance of shared bus interconnects for multi-core

processors. The proposed techniques configure the intercon-

nect in accordance with the workload at run-time and require

minimal system-level support. We presented results for re-

duction in CPI of multiprogramming workloads with various

levels of clustering. We also provided some optimizations for

single-threaded performance. Our results show that significant

performance benefits are possible when the interconnection

is made workload-adaptive. As the amount of heterogeneity

in workloads (and processors) increases, the benefits of our

approach are only going to increase.

ACKNOWLEDGEMENTS

This work is partially supported by the NSF CCF 07-02501

grant. We used machines donated by Intel. We also would like

to thank Mr. Lu Wan of the ECE department of University of

Illinois-Urbana Champaign for helpful discussions.

REFERENCES

[1] James Balfour and William J. Dally. Design tradeoffs for tiled cmp on-
chip networks. In ICS ’06: Proceedings of the 20th annual international

conference on Supercomputing, pages 187–198, New York, NY, USA,
2006. ACM.

[2] Nathan L. Binkert, Ronald G. Dreslinski, Lisa R. Hsu, Kevin T. Lim,
Ali G. Saidi, and Steven K. Reinhardt. The m5 simulator: Modeling
networked systems. IEEE Micro, 26(4):52–60, July-Aug 2006.

[3] Jason F. Cantin, Mikko H. Lipasti, and James E. Smith. Improving
multiprocessor performance with coarse-grain coherence tracking. In
ISCA ’05: Proceedings of the 32nd annual international symposium on

Computer Architecture, pages 246–257, Washington, DC, USA, 2005.
IEEE Computer Society.

[4] John B. Carter, Contact John, and B. Carter. Design of the munin
distributed shared memory system. Journal of Parallel and Distributed

Computing, 29, 1995.
[5] E. Duesterwald, C. Cascaval, and Sandhya Dwarkadas. Characterizing

and predicting program behavior and its variability. pages 220–231,
Sept.-1 Oct. 2003.

[6] Noel Eisley, Li-Shiuan Peh, and Li Shang. In-network cache coherence.
In MICRO 39: Proceedings of the 39th Annual IEEE/ACM International

Symposium on Microarchitecture, pages 321–332, Washington, DC,
USA, 2006. IEEE Computer Society.

[7] Andrew W. Wilson Jr. Hierarchical cache/bus architecture for shared
memory multiprocessors. In Proceedings of the 14th annual interna-

tional symposium on Computer architecture, 1987.
[8] M.M. Kim, J.D. Davis, M. Oskin, and T. Austin. Polymorphic on-chip

networks. In Computer Architecture, 2008. ISCA ’08. 35th International

Symposium on, pages 101–112, June 2008.
[9] David Kroft. Lockup-free instruction fetch/prefetch cache organization.

In ISCA ’81: Proceedings of the 8th annual symposium on Computer

Architecture, pages 81–87, Los Alamitos, CA, USA, 1981. IEEE Com-
puter Society Press.

[10] Rakesh Kumar, Victor Zyuban, and Dean M. Tullsen. Interconnections
in multi-core architectures: Understanding mechanisms, overheads and
scaling. In Proceedings of the 32nd International Symposium on

Computer Architecture, June 2005.
[11] Lizy Kurian and Eugene John. A dynamically reconfigurable inter-

connect for array processors. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 6(1):150–157, March 1998.
[12] Michael R. Marty and Mark D. Hill. Coherence ordering for ring-based

chip multiprocessors. In MICRO 39: Proceedings of the 39th Annual

IEEE/ACM International Symposium on Microarchitecture, pages 309–
320, Washington, DC, USA, 2006. IEEE Computer Society.

[13] Andreas Moshovos. Regionscout: Exploiting coarse grain sharing in
snoop-based coherence. SIGARCH Comput. Archit. News, 33(2):234–
245, 2005.

[14] J. Rose and S. Brown. Flexibility of interconnection structures for
field-programmable gate arrays. Solid-State Circuits, IEEE Journal of,
26(3):277–282, Mar 1991.

[15] B. Sinharoy, R. N. Kalla, J. M. Tendler, and R. J. Eickemeyer. Power5
system microarchitecture. IBM J. RES. and DEV., 49(4/5):505–521,
July/September 2005.

[16] Per Stenström. A survey of cache coherence schemes for multiproces-
sors. Computer, 23(6):12–24, 1990.

[17] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal
Singh, and Anoop Gupta. The splash-2 programs: characterization and
methodological considerations. In ISCA ’95: Proceedings of the 22nd

annual international symposium on Computer architecture, pages 24–36,
New York, NY, USA, 1995. ACM.

14 2009 IEEE 7th Symposium on Application Specific Processors (SASP)

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 27,2010 at 23:10:09 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

