

AFRL-RI-RS-TR-2009-161
Final Technical Report
June 2009

SELF-AWARE COMPUTING

Massachusetts Institute of Technology

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. AH09/00

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors
and should not be interpreted as necessarily representing the official policies,

either expressed or implied, of the Defense Advanced Research Projects
Agency or the U.S. Government.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB
Public Affairs Office and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2009-161 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

CHRISTOPHER FLYNN EDWARD J. JONES, Acting Chief
Work Unit Manager Advanced Computing Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JUN 09
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Feb 07 – Nov 08
4. TITLE AND SUBTITLE

SELF-AWARE COMPUTING

5a. CONTRACT NUMBER
FA8750-07-1-0033

5b. GRANT NUMBER
 N/A

5c. PROGRAM ELEMENT NUMBER
62303E

6. AUTHOR(S)

Anant Agarwal, Jason Miller, Jonathan Eastep, David Wentziaff and Harshad
Kasture

5d. PROJECT NUMBER
AH09

5e. TASK NUMBER
MI

5f. WORK UNIT NUMBER
T1

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Massachusetts Institute of Technology
77 Massachusetts Ave
Cambridge MA 02139-4301

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/RITB
3701 N. Fairfax Dr. 525 Brooks Rd.
Arlington VA 22203-1714 Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2009-161

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 88ABW 09-2755

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This project performed an initial exploration of a new concept for computer system design called Self-Aware
Computing. A self-aware computer leverages a variety of hardware and software techniques to automatically adapt and
optimize its behavior according to a set of high-level goals and its current environment. Self-aware computing systems
are introspective, adaptive, self-healing, goal-oriented, and approximate. Because of these five key properties, they are
efficient, resilient, and easy to program.

The self-aware design concept permeates all levels of a computing system including processor micro-
architecture, operating systems, compilers, runtime systems, programming libraries, and applications. The maximum
benefit is achieved when all of these layers are self-aware and can work together. However, self-aware concepts can be
applied at any granularity to start making an impact today. This project investigated the use of self-aware concepts in
the areas of micro-architecture, operating systems and programming libraries.

15. SUBJECT TERMS
Self-aware computing, self-optimization, fault tolerance

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

81

19a. NAME OF RESPONSIBLE PERSON
Christopher Flynn

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

 i

Table of Contents

1 Introduction ... 1

2 Overview... 1

3 Summary of Accomplishments ... 5

4 Accomplishments and Progress .. 6

4.1 Organic Operating System .. 7

4.2 Partner Cores .. 9

4.3 Organic Template Library ... 11

4.4 Organic Cache Memory .. 15

4.5 fos: A Factored Operating System ... 17

4.6 KLab Multicore Simulator ... 19

5 Conclusions and Recommendations for Future Work .. 21

6 References .. 21

7 List of Symbols, Abbreviations and Acronyms .. 23

Appendix 1 Self Aware Computing Briefing…..……………………………………………..25

 ii

List of Figures

Figure 1: Organic Operating System (OOS) architecture .. 8

Figure 2: Key operations in the Partner Cores framework .. 10

Figure 3: Performance improvement of JPEG application using Partner Cores. 11

Figure 4: Key components of the Organic Template Library .. 12

Figure 5: Invocation and mechanics of an OTL operation .. 13

Figure 6: Performance of Deep Packet Inspection application under various workloads 14

Figure 7: Organic cache memory.. 15

Figure 8: Example of fos OS and application clients executing on a large multicore processor 18

Figure 9: Core-to-thread mapping in the KLab simulator ... 20

List of Tables

Table 1: Performance of an organic cache on the MPEG2 benchmark ... 16

 1

1 Introduction

Imagine a revolutionary computing chip that can observe its own execution and optimize its behavior

around a user's or application's needs. Imagine a programming capability by which users can specify their

desired goals rather than how to perform a task, along with constraints in terms of an energy budget, a

time constraint, or simply a preference for an approximate answer over an exact answer. Imagine further a

computing chip that performs better according to a user's preferred goal the longer it runs an application.

Such an architecture will enable, for example, a handheld radio or a cell phone that can run cooler the

longer the connection time. Or, a chip that can perform reliably and continuously in a range of

environments by tolerating hard and transient failures through self healing.

This project proposes the vision of self-aware computation that will create such a computing

device and an associated software system. A self-aware computing system is given a goal and a budget --

it then finds the best way to accomplish the goal with the means at hand. Much as in a biological

organism, a self-aware (or organic) computer has five major properties:

1. It is INTROSPECTIVE or SELF-AWARE in that it can observe itself and optimize its behavior

to meet its goals.

2. It is ADAPTIVE in that it observes the application behavior and adapts itself to optimize

appropriate application metrics such as performance, power, or fault tolerance.

3. It is SELF HEALING in that it constantly monitors its resources for faults and takes corrective

action as needed. Self healing can be viewed as an extremely important instance of self

awareness and adaptivity.

4. It is GOAL ORIENTED in that it attempts to meet a user's or application's goals while optimizing

constraints of interest.

5. It is APPROXIMATE in that it uses the least amount of precision to accomplish a given task. A

self-aware computer can choose automatically between a range of representations to optimize

execution -- from analog, to single bits to 64-bit words, to floating point, to multi-level logic.

2 Overview

Self-aware computation can be distinguished from existing computational models which are largely

procedural. Today's models require a user to specify a procedure of how something is to be done and the

 2

computer blindly follows this procedure irrespective of application or environmental conditions using a

fixed set of prearranged resources. For example, if the user wants to use a computing device for software

radio, then the user programs it with a known bitwidth and prearranged code for algorithms such as

Viterbi decode and Fast Fourier Transform (FFT) and to accept a given bitrate. The hardware is similarly

fixed for all time. For example, the cache in the processing engine might be sized at 128 KB and two-way

associative.

A self-aware computer, on the other hand, is given a goal and it attempts to achieve the goal with

the minimal amount of resources and energy. Of course, it is also provided with many possible procedures

to accomplish subtasks, each of which might use different types of architectural components. In our

software radio example, the self-aware computer is given the goal of maintaining a connection to a

receiver with a desired bit rate, using the least amount of energy. The software system and architecture

collaborate on achieving this goal. A self-aware computer has cognitive hardware mechanisms in its

trusted core to both OBSERVE and to AFFECT the execution. Since it is impossible to pre-configure all

possible scenarios, the self-aware computer also implements learning and decision making engines in a

judicious combination of hardware and software to determine the appropriate actions based on given

observations. Thus, in our software radio example, the system will use the right precision for the FFT

computations and the required amount of parallel hardware resources to achieve the goal. If the channel

has very little noise, then the it might use a simpler coding scheme. The hardware will observe the

execution of the code, and depending on the estimated working set size of the code, the system will shut

off portions of the cache or make it direct mapped to save energy. At the same time, the system ensures

that the goal is being met.

A self-aware computer can achieve 10x to 100x improvement in key metrics such as power

efficiency and cost performance over extant computers. For instance, if for some streaming computation

the system observes that 64 bits of precision is unnecessary (for example, if no changes are detected in the

top 62 bits for a while) and can use 2 bits of precision, while at the same time turning off the data cache

and using direct streaming of data over the network, the system can benefit from energy savings of 40x to

50x. As another example, the self-aware system might slow the clock to a sub module (and also the

supply voltage) if its overall goal can be achieved with a much lower frequency. As a further example, in

a tiled architecture running two streams of H.264 video encode, the system might observe the achieved

output bandwidth for each stream, and move tiles between streams dynamically if the two video streams

differ in complexity to maintain a fixed frame rate and a given per-stream bandwidth requirement.

 3

Probably much more importantly, much like biological organisms, a self-aware computer can go

well beyond traditional measures of goodness like performance and can adapt to different environments

and even improve itself over time. It can also perform "code intrusion detection" by flagging abnormal

behavior in its software by learning and maintaining signatures of its normal behavior. Corrective action

might include shutting itself down or in some cases applying self healing. In doing so, the self-aware

computer can build upon technologies developed for systems in the previous intrusion tolerant systems

(ITS) program out of DARPA/IPTO in which a congruence between self healing for faults and for

malicious intrusions was demonstrated.

Why now? Although such a machine may seem rather far fetched, we believe that basic

semiconductor technology, computer architecture and software systems have advanced to the point that

the time is ripe to realize such a system. To illustrate, let us examine each of the key aspects of self-

aware computation including introspection, approximation, goal orientation, adaptation and self healing.

We will discuss how they might be built in a practical way, and identify the fundamental challenges that

we will have to overcome.

Introspection or self awareness implies that the system can observe itself while it is executing.

The processor hardware can include mechanisms to observe instantaneous cache miss rates, bit positions

in data words that are changing, cache sets that are hot versus others that are idle, numbers of errors in

data transmissions or memory access, branch directions, network and memory latencies and queue

lengths, among many others. These measurements will feed adaptation mechanisms that will adapt the

architecture as needed. Introspection or self awareness requires foundational changes to computer

architecture - self aware computers need mechanisms to observe themselves. Fortunately, semiconductor

technology makes available billions of transistors on a single chip, so throwing transistors at the problem

of building observers and recording state is eminently feasible today. Our challenge will be to identify

what metrics are worth observing, how to make the measurements without impacting the execution, and

what we can do with the results. For example, in recent unpublished work, we have shown that we can

observe phase changes in program execution and change the cache access hash function to optimize cache

miss rates. We have demonstrated that cache miss rates can be halved for many applications in this

manner. In another body of work related to tiled architectures, we have used an adjacent helper tile to

observe the execution (in particular, memory reference patterns) of a given master tile and prefetch data

into the master tile's cache before it is needed [1].

Approximate computation implies that the computer does not always use the most available

precision to accomplish a task. For instance, modern day processors have reached 64 bits of digital data

 4

widths. This data width is used in all computations whether it is needed or not. There are many classes of

computations for which this precision is overkill. As an extreme example, imagine an image recognition

task in which the final answer to the user is a single bit - yes or no (for example, is there a tank in this

image or not). It is quite possible that a simple edge representation using just one bit per pixel might

suffice to perform the pattern recognition task. Approximation can be applied in many other areas of

digital design as well, and in fact, we question the very basic overkill digital design philosophy, i.e.,

requiring signals to be fully restored after each logic element. The computer can try to use the minimal

precision and probably even multilevel logic or the analog representation in its computations to produce a

result. One research challenge with approximation is to figure out the minimal precision needed for a

given computation. Another challenge will be to discover the best way to introduce analog representation

into what is fundamentally a digital computer. Some recent work in this area includes compiler supported

bitwidth analysis [2][3]. Other work that directly applies here is that of Rinard et al. [4][5] which has

shown the possibility of highly reliable computation even when erroneous data values are ignored and

allowed to propagate during program execution.

Goal orientation implies a revolutionary transition in architecture and algorithm design from a

procedural style of specification to a goal oriented style. Goals indicate precisely what the user wants, not

how to get there. This way, the computer can determine how best to achieve a user's goals depending on

the conditions on the ground. Goal orientation can be applied at all levels of a system -- from the

specification of the application all the way down to transmission of bits on a wire. In the latter case, a

communications channel within the chip might choose to perform lossy compression to achieve

effectively higher bandwidth transfer if the goal of the higher level application does not care about an

exact representation. An example of an architectural goal can be to maintain no more than a maximum

bandwidth demand on the memory system. An example of a system goal might be to maintain a given

maximum power dissipation. Recent work along these lines includes the GOALS system [6][7][8] which

is a software system that attempts to meet user-driven goals, rather than follow set procedures.

Adaptation is the ability of the computer to change what it is doing or how it is doing a given

thing at run time. A key part of adaptation is the development of a control system as part of the computer

architecture that observes execution, measures thresholds and compares them to goals, and then adapts the

architecture or algorithms as needed. A key challenge is to identify what parts of a computer need to be

adapted and to quantify the degree to which adaptation can afford savings in metrics of interest to us.

Examples of mechanisms that can be adapted include various cache parameters such as associativity and

replacement algorithm, prefetch methods, number of tiles used in a computation, and the presence or

 5

absence of coding or compression when transmitting data. Recent research on reactive synchronization

[9][10] is another example of adaptation in which the waiting algorithm was tailored at run time to the

observed delay in lock acquisition.

Self healing is an extremely important special case of adaptation. We give it independent billing

because in the future era of multiple billions of transistors on a chip and deep submicron technologies,

continuous correct operation in the presence of transient and hard failures will become a basic

requirement. Thus a self healing system can use introspection to observe where errors are occurring and

perform appropriate adaptation to fix the problem. For example, if errors are seen during data

transmission on a given link, then the system can use one of two mechanisms to self heal. (1) It can use

introduce coding to correct errors, or (2) it can cause messages to be rerouted to bypass the faulty region.

The same technique can be used in caches to turn off cache banks that are producing errors.

Much like in the DARPA Polymorphic Computing Architectures program, self-aware

computation applies to all levels of a computer system including computer architecture, VLSI chip

design, operating systems, runtime software systems, compilers, programming libraries, and applications.

3 Summary of Accomplishments

The following is a summary of the major accomplishments achieved by this project. They will be

described in detail later in the report.

1. Created a comprehensive vision for self-aware systems including key attributes, components, and

interfaces. Prepared a detailed presentation describing this vision and offering many specific

examples of ways that self-aware concepts can be incorporated into computing systems.

2. Designed the architecture for a self-aware Organic Operating System (OOS) including key

components, interfaces, and required hardware support.

3. Developed the Evolve architecture and Partner Cores methodology to allow secondary cores on a

multicore processor to observe and optimize the operation of a primary application core.

4. Created the Organic Template Library (OTL) which extends the C++ Standard Template Library

with adaptive, self-optimizing data structures. These structures are able to dynamically adjust

 6

various aspects of their underlying implementation including: the size of storage elements, the

distribution of data across parallel nodes, and the internal organization of data (e.g., list vs. tree).

5. Developed the concept of an Organic Cache which is composed of a single pool of memory that

can be partitioned between data and instruction usage. Studied different algorithms for

dynamically adjusting the partitioning during runtime and evaluated performance on several

benchmarks.

6. Designed and began the implementation of fos, a “factored” operating system for large scale

multicores. fos is designed from the ground up to be highly scalable, adaptable, and resilient by

implementing OS services (e.g., memory allocation, file systems, etc) as collections of

cooperating servers distributed across a multicore chip. While fos is designed for a broad range

of systems (not just self-aware systems), this project played a significant role in shaping some of

its mechanisms and services.

7. Created KLab, a new large-scale, distributed multicore simulator based on Intel's Pin dynamic

binary translator. This (partially complete) simulator allows us to simulate chips containing

thousands of cores using a cluster of commodity workstations. The simulator uses flexible

models of processing cores, caches, cache-coherence directories, on-chip networks, and DRAM

that allow us to implement and experiment with new self-aware hardware components. For

example, models of organic caches have been added to the simulator.

4 Accomplishments and Progress

This project identified and investigated several different techniques and mechanisms that can be used to

build self-aware computer systems. They are described briefly in the following paragraphs. They can be

applied individually to add self-aware capabilities to existing systems or all together to form a new type

of self-aware computer system.

The heart of a complete self-aware system is a new “organic” operating system (OOS). The OOS

acts as the ringleader, monitoring applications and making adjustments to hardware and software to

increase performance, efficiency, and reliability automatically.

 7

The Partner Cores framework provides mechanisms that allow secondary cores to monitor the

execution of a primary core and perform on-line analysis and dynamic optimization of its application and

hardware resources.

The Organic Template Library provides a set of data structures and algorithms (similar to the C++

Standard Template Library) that dynamically optimize their own implementations and behaviors.

Because the OTL uses a standard sequential programming interface it is a good example of a self-aware

technology that can be put use in today's existing systems.

An Organic Cache is a new hardware mechanism that allows a shared pool of local memory to be

dynamically partitioned between different L1 caches and buffers. It is an example of a self -aware

hardware component that would be managed by the OOS.

fos is a new type of operating system designed from the ground up for scalability, reliability and

adaptability in large-scale multicore systems. It implements all system services using sets of servers

distributed across multiple cores. fos provides an excellent framework on which to build a compete

organic operation system.

KLab is a new distributed, parallel simulator for large-scale multicore processors. It provides an

experimental testbench that can be used to study self-aware hardware and software ideas.

The following sections describe each of these ideas in more detail.

4.1 Organic Operating System

An Organic Operating System (OOS) is the heart of a complete self-aware system. It monitors

application execution and hardware parameters and performs adjustments and optimizations to ensure that

the applications are meeting their goals. There are four key components of an OOS: the application

interface, the hardware interface, the analysis and optimization engine, and self-aware system services.

Figure 1 shows how all of these components come together to form a self-aware system.

 8

Figure 1: Organic Operating System (OOS) architecture

The application interface allows applications to communicate their goals and status to the OOS.

Goals can relate to system characteristics (e.g., minimize energy consumption) or application

performance (e.g., maintain a certain framerate). Application-specific performance information is

delivered to the OOS using a heartbeat. A heartbeat is a periodic call that the application makes to the

OOS to ensure that the application is still functioning and making progress. The OOS can use the

intervals between heartbeats to measure application performance and verify that it is meeting its goals.

For example, a video encoding application wishing to maintain a framerate of 30 fps, might make one

heartbeat call for every frame encoded and specify a goal of maintaining 30 heartbeats per second.

The application interface is also used to control configurable parameters within an application.

Many applications can be implemented with a variety of different algorithms or contain adjustable

algorithmic parameters (e.g., bounds on search or data blocking granularity). Often the programmer

cannot be certain which algorithms or parameters will produce the best results at runtime. Rather than

arbitrarily picking one, the programmer can implement multiple algorithms and allow the OOS to choose

between them at runtime. In the video encoding example, the application could implement different

algorithms that tradeoff image quality for performance. If the OOS detects that the application is not

meeting its framerate goal, it could tell it to switch to a lower-quality but higher-performance algorithm.

Besides communicating with the application, the OOS needs to be able to monitor and control the

system hardware. Future self-aware hardware platforms will contain a variety of sensors and counters to

O
rg

a
n

ic

O
p

e
ra

ti
n

g

S
y
s

te
m

Disk
I/O

DevicesDRAM

App 2

App 1

App 3

miss

rate

voltage, freq,
precision

cache size,

associativity

p
o

w
e

r

Memory

Manager

File

System

Device

Drivers
Scheduler

activity,
power, temp

App 1

Analysis &

Optimization

Engine

Observe

Decide Act

Core

Cache

App 2 App 3

Learner

Core

Cache

System call

s
p

e
e

d

algorithm
heartbeat,

goals

Heartbeat

Perf. Models

 9

allow introspection. Individual components will maintain data about themselves and communicate it to

the OOS. Examples include temperature, energy consumption, cache miss rates, and utilization. These

components will also have control interfaces that allow the OOS to adjust things like hard drive spindle

speed, frequency, voltage, and cache associativity. The design of new configurable hardware components

is a fertile area for future self-aware research.

The analysis and optimization engine (AOE) is responsible for making optimization decisions

based on the goals and data it receives from the applications and hardware. It employs a standard ODA

(Observe, Decide, Act) loop to continually refine the system's operation and adapt to changing conditions.

First, the ODA observes the current state of the system using the interfaces previously described. Next, it

employs simplified models of component behavior and machine learning techniques to evaluate different

potential optimizations and select the best options. Finally, the ODA acts by adjusting device

configurations, changing application algorithms, or setting policies for system services. The ODA then

observes the results of these changes and the cycle repeats. As the ODA tries different options, it updates

its internal models and learns how to achieve optimal results.

The final component of an OOS is self-aware versions of standard system services such as file

systems, schedulers, and memory managers. System service policies can have a large impact on overall

application performance, particularly when multiple applications are running simultaneously. By varying

those policies, the OOS can find a better overall result. For example, the OOS might instruct the

scheduler to take time from an application that is running faster than needed and give it to one that is

underperforming. If all apps are now exceeding their goals, the OOS might be able to lower the clock

frequency and supply voltage to save energy.

Due to its unique ability to interact with both the hardware and software in a system, the operating

system is able to take maximum advantage of self-aware concepts. The development of sophisticated

organic operating systems, and particularly intelligent AOE's, is the key to the success of future self-

aware systems.

4.2 Partner Cores

Partner Cores [1] is an optimization framework for future computer systems with many cores. Its goal is

to provide high performance, reliability, and low energy consumption through auto-tuning, insulating the

programmer as much as possible from the added software complexity it would require to achieve this goal

manually.

In the framework, some cores are devoted to running application code while others work as

helpers or partners. Partners take as input hardware counter and other performance readings from

 10

application cores and run decision processes to optimize the execution of the application. Optimizations

include performance tuning, fault tolerance, and minimizing energy consumption. As an example, a

partner core can optimize an application's performance by examining its memory reference pattern,

identifying a good prefetch algorithm for it, and then causing data to be prefetched into the application

core's cache.

Figure 2: Key operations in the Partner Cores framework

The Partner Cores framework (shown in Figure 2) is a hardware and software framework.

Application cores contain and expose hardware mechanisms for examining execution and monitoring

various performance, reliability, and energy metrics. For example, one way of monitoring execution is to

record traces of memory accesses. Examples for monitoring performance, reliability, and energy

consumption include cache miss counters, execution signatures, and power readings, respectively. In

addition to these observation mechanisms, application cores may contain special interfaces that allow a

partner core to modify its state or cause events to happen in the background (such as prefetching a cache

line). While hardware mechanisms are typically used on an application core, the analysis and

optimization performed by a partner core is implemented in software. Typically, all cores would contain

all of the required mechanisms so that cores can be flexibly assigned to either application or partner tasks.

Network

Switch

Pipeline Pipeline

Network

Switch

Observation
Engine

Optimization

Commit
Engine

Core state
updated

8

Introspection

&

Optimization

Software

4. Trace message is

received / parsed

5. Trace added to event

history / analyzed

6. Optimization message

is formed / sent

4

5

6

Application

Software

2 Trace

message
formed

Event
detected

1

Application Core Partner Core

Trace msg sent over network3

Optimization msg sent back 7

 11

Figure 3: Performance improvement of JPEG application using Partner Cores. Blue bars

represent ideal performance, red bars the performance using basic software-caching, and

yellow bars the performance with software-caching and intelligent partner-core prefetching.

To evaluate the Partner Cores methodology, we extended the architecture of the Raw manycore

processor [11] to include Partner Core mechanisms and implemented our changes in the Raw cycle-

accurate simulator. As a case study, we implemented the partner core prefetching idea combined with a

software data-caching scheme. Using a synthetic benchmark application modeled after JPEG image

encoding, a partner core is used to implement a prefetching algorithm that is “aware” of the pixel block

data structure used in the JPEG algorithm. As shown in Figure 3, for three different machine models

representing a high-performance desktop, a mid-range desktop, and an embedded system, the partner

cores approach achieves nearly optimal performance (as though all data were already in the cache).

The Partner Cores framework provides mechanisms for a wide variety of different optimizations

and makes it possible to leverage the huge number of cores available on manycore processors to enhance

existing sequential applications.

4.3 Organic Template Library

We have developed a software library of common data structures and algorithms that programmers can

use to make parallel programming easier. We call it the Organic Template Library (OTL). OTL applies

bio-inspired adaptation strategies to auto-tune itself during program execution to optimize performance,

 12

parallelism, and power consumption so that programmers need not manually address these issues. OTL

has been implemented for the Tilera TILE64 platform [12][13][14].

OTL is patterned after the ISO C++ Standard Template Library (STL) [15] in that OTL's

interfaces for data structures and algorithms are similar. The OTL's interfaces present a sequential

programming model but the underlying implementations are parallel. For suitable application domains,

the sequential programming model provides a convenient abstraction that allows the programmer to

ignore the complications of parallelism.

Under the hood, OTL's implementations are very different from STL's. OTL components

dynamically self-optimize in response to runtime conditions and performance feedback, and they adapt to

environmental factors such as input data characteristics and the availability of system resources. Some

example observables analyzed during optimization are execution times, cache miss rates, memory load,

network congestion, API usage history, and input data samples.

Figure 4: Key components of the Organic Template Library

The Organic Template Library consists of three parts: a client API, a server runtime system, and

one or more data structure nodes (see Figure 4). The client API gets compiled into the user code. The

runtime system and data structure nodes run alongside the user code concurrently on separate processors.

The client API is the user code's interface to its OTL data structures. The client API shepherds user data

structure method calls or algorithm calls to the runtime and responses from the runtime back to the user

code. The runtime transparently manages the parallel workings and dynamic adaptation of the OTL. It

translates user requests into commands which get issued to the data structure nodes. Taken together, the

data structure nodes provide a distributed implementation of the OTL data structures and algorithms used

by the user code. Object data is distributed across the nodes and the nodes contain code to carry out

commands from the runtime.

 13

Figure 5: Invocation and mechanics of an OTL operation

Figure 5 illustrates the mechanics of how a call to a method or algorithm operation in the client

API gets executed in parallel by the runtime and data structure nodes. This example makes use of several

organic containers and algorithms (e.g., ovector, oaccumulate). These routines provide the same

functionality and external interfaces as their standard STL counterparts (found by removing the leading

“o” in the name) [15]. In the example, the user code instantiates an ovector, fills it with sample data, then

normalizes that data. Normalization uses the oaccumulate and ofor_each algorithms. The example walks

through how the OTL handles the first call, the oaccumulate call. First, the client API conveys what the

user code wants to do to the runtime and waits for the action to complete. Then, the runtime looks up the

ovector named “data” in a directory and sees that it is distributed across four data structure nodes. The

runtime instructs each node to accumulate the data stored there and report the result back to the runtime.

The data structure nodes do as instructed and then the runtime accumulates their subtotals and forwards

the final total back to the client API. Finally, the oaccumulate call returns the value to the user code.

The runtime contains a runtime engine for each type of data structure supported in the OTL. Each

runtime engine is responsible for controlling the adaptation of any live OTL objects of its type. The

implementation of runtime engines varies somewhat from one data structure to the next since each data

 14

structure presents unique challenges and optimization opportunities. In general, however, a runtime

engine draws from a specific basis of execution-time observables from which it is able to infer which

choices it should make about algorithms, data organization, and parallelism. The runtime engine keeps a

trace of data structure method and algorithm operation calls. It records performance statistics such as

execution times, cache miss penalties, memory load, and network congestion by instrumenting the code in

the data structure nodes. It samples object data (input characteristics) to discern its properties. Finally, the

runtime monitors time-varying environmental factors such as a power budget or competition for resources

among concurrently executing applications.

The trace of API calls gives information about the way data structures and algorithms are being

used (e.g., the relative frequencies of ofind and oinsert operations in a omap) which impacts what internal

data organization should be used (a tree, list, or other). Performance feedback can be used to infer which

algorithm is best in a specific situation (e.g., which method of data partitioning and placement is highest

performing for a particular hardware platform under a specific set of runtime conditions). Performance

feedback can be combined with API call tracing to infer load at each processor and allow the runtime to

redistribute computation. Input sampling can be used for algorithm adaptivity (e.g., an ovector of data that

is fairly pre-sorted already may be faster to sort using one method despite the fact that another method

may be better in the general case). Finally, information about environmental factors enables the runtime

to improve overall system performance or efficiency by adjusting the parallelism of its data structures.

Figure 6: Performance of Deep Packet Inspection application under various workloads

 15

To evaluate the OTL, we studied an important application in computer networking and security

called deep packet inspection [16]. Deep packet inspection is a form of packet filtering that searches

through the data and header of a packet, typically detecting and blocking things like intrusions, viruses, or

spam or keeping statistical information for data mining. Using the OTL, we built a spam-blocker that

searches packets for spam keywords and keeps statistics about packet sources to increase detection

confidence. Statistics are associated with a packet identifier and stored in a map, an OTL omap. The omap

API provides a callback that allows the programmer to remotely execute a kernel on a <key, value> pair.

In this case, we use the pattern matching function as the callback. Internally, the omap intelligently load

balances lookups and packet inspection computation across data structure nodes. As shown in Figure 6,

OTL achieves up to 13x performance improvement over a baseline implementation across various input

traffic patterns and levels of inspection detail. The baseline implementation is identical to the omap with

optimizations turned off (e.g., static data layout versus dynamic migration).

4.4 Organic Cache Memory

A typical modern processor (or core) contains several small memories including an instruction cache, a

data cache, a TLB, and even a branch predictor. One of the tasks of a processor designer is to choose a

size for each of memories, given a fixed total budget. However, different applications can place very

different demands on these memories. For example, one application may execute a very small kernel of

code that processes a huge amount of data, while another may execute a very long and complex algorithm

on a small array. The first application needs very little storage for instructions but would benefit greatly

from a large data cache. The second application has just the opposite needs. Therefore the fixed sizes

chosen at design-time are always a compromise and are seldom ideal for any particular application.

Figure 7: Organic cache memory

Processor

Pipeline

Organic

Manager

Mem Pool

BP

D$ci

co

Hit Logic

d

d
a

a

I$

TLB

 16

An “organic cache” is a single memory that can be dynamically partitioned among multiple uses

as shown in Figure 7. It replaces all of the small memories in a processor with a flexible pool of memory

that can be allocated to whichever use provides the most benefit at a given time. For example, a 32 KB

organic cache could be configured to provide 16 KB of instruction cache and 16 KB of data cache or 4KB

of instruction cache and 28 KB of data cache. This reconfiguration can be performed between

applications or even dynamically within an application as it enters different phases of execution. An

organic cache would allow a self-aware computer to automatically and transparently optimize the sizes of

its caches and buffers to perfectly suit a program's needs.

To evaluate the benefits of an organic cache, we modified the Raw and KLab (see Section 4.6)

simulators to include a cache that can be adjusted to trade-off instruction versus data capacity. The sizes

of the two caches are adjusted by changing their associativity. For example, the organic cache can be

configured as two 4-way set-associative caches or a 3-way cache plus a 5-way cache or a 2-way cache

plus a 6-way cache, etc. Both caches always have the same number of lines so changing the number of

ways in each line changes their total capacities.

Table 1: Performance of an organic cache on the MPEG2 benchmark

Cache Configuration <I/D> I$ misses D$ misses DRAM accesses Savings over 32k/32k

Static Configurations
<32k/4-way, 32k/4-way> 6658 414342 421000 0.00%

<24k/3-way, 40k/5-way> 7815 392185 400000 4.99%

<16k/2-way, 48k/6-way> 15949 385051 401000 4.75%

<8k/1-way, 56k/7-way> 118417 382583 501000 -19.00%

Dynamic Configuration
init: <32k/4-way, 32k/4-way> 7747 391253 399000 5.23%

Table 1 shows the benefits of an organic cache on the MPEG2 benchmark from the Mediabench

suite [17]. The static configurations keep the division of resource constant during the entire program run.

They essentially show the benefit of being able to customize the sizes of caches for a particular

application. The dynamic configuration shows what happens when we allow the split between in struction

and data caches to change dynamically at runtime. The caches are initialized to the 32k/32k configuration

but the boundary is adjusted using a heuristic that pushes the I-cache smaller until the miss rate increases

significantly. Even using this simple heuristic, the dynamic configuration outperforms all of the static

configurations.

 17

4.5 fos: A Factored Operating System

4.5.1 Overview

fos [18] is a new portable operating system designed from the ground up for scalability and targeted at

1000+ core systems. The main feature of fos is that each service that the OS provides is built like a

distributed Internet server. Each service is implemented by multiple server processes which are spatially

distributed across a multicore chip. These servers collaborate, exchange information and, in aggregate,

provide the overall system service. fos distributes both high-level services as well as low-level services

and data-structures typically found deep in OS kernels such as physical page allocation, scheduling, and

memory management.

fos provides an excellent foundation for implementing new self-aware applications and OS

services. The distributed nature is ideal for creating self-aware services that can observe and optimize an

application as it runs. These services run on cores that are separate from the application, thereby allowing

continuous monitoring of the application without stealing resources from it.

Implementing an OS kernel as a distributed set of servers has many advantages. First, internal

OS communication is made explicit and exposed, thus making it easier to troubleshoot and optimize.

Second, the number of servers can be varied based on the number of cores or other system characteristics,

providing scalability and the ability to adapt to changing conditions or demands. Third, because servers

run on dedicated cores, the operating system and application do not compete for local resources such as

caches and TLBs. Finally, because there are multiple servers for each service, there are no single points

of failure in the system. If an OS or user core has a failure, one of several introspection cores will

observe the problem and cause the affected server or application code to be restarted on a different core.

4.5.2 Architecture

A factored operating system environment is composed of three main components: a thin hypervisor, sets

of servers that together provide system services (which we call the OS layer), and applications that utilize

these services. The lowest level of software management comes from the hypervisor. A portion of the

hypervisor executes on each processor core to control access to resources (protection) and provide a core-

to-core communication API. Applications and servers execute on top of the hypervisor and share core

resources with the hypervisor.

 18

Figure 8: Example of fos OS and application clients executing on a large multicore processor

The OS layer is composed of sets of function-specific servers. Each core operating system

function is provided by a different set made up of one or more servers. For instance, there is a set that

manages physical memory allocation, a set that manages file system access, and a set that manages

process scheduling and layout. As shown in Figure 8, the servers within a set are distributed across the

multicore chip to provide local access for the cores in their areas. By default each server executes solely

on a dedicated processor core. Servers communicate only via the messaging interface provided by the

hypervisor layer.

In fos, an application executes on one or more cores. Within an application, cores may

communicate using either shared memory or messaging, depending on what the hardware supports. The

OS layer uses only explicit messages (which can be implemented efficiently on both shared-memory and

message-passing machines) for internal communication. When an application requires OS services, the

underlying communication mechanism is via hypervisor messaging. A more traditional system-call

interface is exposed to the application writer and a small translation library is used to turn system calls

into messages to an appropriate server.

Currently a basic fos hypervisor has been implemented. It contains a messaging API with

messaging layer allowing servers to communicate. A spawning and memory management API has been

developed and is being added into the fos hypervisor. A proof-of-concept system service has been built

and runs within fos. More advanced system services are currently being developed. fos is currently

running on x86_64 hardware and emulators, but is designed to be easily ported to other architectures.

M M M M M M

M M M M M MFS

FS

FS

FS

FS

FS

IIII

I
I

IIII

IIII
IIII

IIII

IIII
IIII

I

I

FSFS FS…
… MMM

- Processor Core

- Idle Processor Core

- Application

- Fleet of File System Sevelets

- Fleet of Physical Memory Allocation Sevelets

Application

Hypervisor

OS Layer
FS Servelet

Hypervisor

 19

When ready, fos will be released to the open source community to foster additional research on self-aware

multicore systems.

fos will be the basis for a new self-aware operating system. System servers will be developed that

can detect the run-time needs of the application mix and spawn new servers to meet application

requirements. By changing the number of servers dedicated to each service, fos is able to scale itself up

or down as needed. By building the appropriate interfaces into these services, fos will be able to optimize

itself and the applications it is running to meet their runtime goals and requirements.

4.6 KLab Multicore Simulator

To experiment with new self-aware hardware mechanisms and massive multicore processors that do not

yet physically exist, we have developed the KLab multicore simulator. KLab is a fast, flexible simulator

designed to simulate future large-scale multicore processors on today's multicore servers. To achieve the

performance necessary to effectively simulate such large systems, KLab was designed from outset to run

in parallel across a cluster of servers.

KLab is implemented using Intel's Pin dynamic binary instrumentation infrastructure [19]. Pin

allows one to modify an application as it is running. Using Pin, we can allow the majority of the

application being studied to execute directly on the host machine for maximum performance. Where

there are differences between the host machine and the simulated machine, Pin is used to insert code to

simulate the new experimental features. Pin can also insert code into the program to model the

performance of the application on the simulated system.

 20

Figure 9: Core-to-thread mapping in the KLab simulator

As shown in Figure 9, KLab has been designed to take advantage of the parallelism of host

architectures such as multicores or clusters. It models each core within the simulated system using a

separate kernel thread, independently schedulable by the OS. The OS maps the threads to the host

hardware, enabling the simulator to exploit the available parallelism. Cores (threads) communicate using

calls to a simple API which represents the intrinsic capabilities of the simulated architecture, e.g.,

broadcast, point-to-point message-passing, etc. KLab replaces API calls within the application with calls

to simulator functions that implement the corresponding functionality and update the simulation clock of

the appropriate cores using a model of the communication cost. The implementation of the API functions

within the simulator depends on the communication mechanisms available on the host architecture. For

example, the implementation of inter-core communication uses buffers in shared memory for threads on

the same machine and MPI over Ethernet for threads running on different machines in a cluster.

We have chosen to base our multicore simulator on Pin because it offers several advantages over

creating our own simulator from scratch. First, the Pin infrastructure is reliable: it is mature, robust, and

well-supported. Second, it is high performance: it natively executes application code on the host hardware

rather than interpreting it. Third, using Pin shortens our simulator toolchain development time: it allows

us to use existing tools for compiling multicore applications (gcc, binutils, etc.) instead of having to

develop them ourselves.

core core core core core core

core core core core core core

Simulated Machine

Host Machine

core core core core

SMP Linux

threads

 21

5 Conclusions and Recommendations for Future Work

This project has defined the key components of a self-aware computer system and investigated several

promising examples of those components. We believe that the rapidly growing complexity of modern

machines combined with the massive quantities of computational resources those machines provide has

created the perfect setting for self-aware systems. Whereas existing systems are designed to simply

follow instructions, future systems must be intelligent to help the programmer deal with their baffling

complexity. Happily, that complexity also means that there are plenty of resources available (in the form

of cores or transistors) to implement that intelligence. Self-aware systems are the key to maximizing

performance and efficiency while increasing programmer productivity.

The field of self-aware computing is in its infancy and therefore there is plenty of room for future

research. The most important (and challenging) goal is the development of intelligent algorithms for

making optimization decisions. Fortunately there is already a large body of work in machine learning that

can be applied to these problems [20][21][22].

However, before we can make optimization decisions, we need to have quality information.

Therefore the development of good APIs for communicating goals, capabilities and status is also crucial.

In particular, the concept of an application heartbeat is a simple but powerful of idea that warrants

additional study. Where should heartbeat calls be inserted into a program? What information sho uld be

passed to the OS with each heartbeat? How should goals be specified in terms of heartbeats?

Even perfect optimization decisions are useless without parameters to tune. Additional research is

needed in flexible, configurable hardware and software components that will give the OOS something to

adjust. We believe that some of the enormous quantities of transistors that will be available in future

chips should be applied to make systems easier to use instead of simply providing raw resources (such as

additional cores). Hardware components that can monitor and report on their own behavior and morph

themselves into different modes will make self-aware systems much more efficient.

6 References

[1] Jonathan Eastep. Evolve: A preliminary multicore architecture for introspective computing.

Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA, 2007.

[2] Mark Stephenson, Johnathan Babb, and Saman Amarasinghe. Bitwidth analysis with application to

silicon compilation. In ACM SIGPLAN Conference on Programming Language Design and

Implementation, Vancouver, British Columbia, Jun 2000.

 22

[3] Altaf Abdul Gaffar, Oskar Mencer, Wayne Luk, Peter Y.K. Cheung, and Nabeel Shirazi. Floating-

point bitwidth analysis via automatic differentiation. In FPT’02: Proceedings of the IEEE

International Conference on Field-Programmable Technology, pages 158–165, Dec 2002.

[4] Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel M. Roy, Tudor Leu, and Jr. William S.

Beebee. Enhancing server availability and security through failure-oblivious computing. In

OSDI’04: Proceedings of the 6th Symposium on Operating Systems Design and Implementation ,

Berkeley, CA, USA, 2004.

[5] Martin Rinard. Probabilistic accuracy bounds for fault-tolerant computations that discard tasks. In

ICS ’06: Proceedings of the 20th annual International Conference on Supercomputing, pages 324–

334, New York, NY, USA, 2006.

[6] Umar Saif Hubert, Hubert Pham, Justin Mazzola Paluska, Jason Waterman, Chris Terman, and

Steve Ward. A case for goal-oriented programming semantics. In System Support for Ubiquitous

Computing Workshop at the Fifth Annual Conference on Ubiquitous Computing, 2003.

[7] Justin Mazzola Paluska. Automatic implementation generation for pervasive applications. Master’s

thesis, Massachusetts Institute of Technology, Cambridge, MA, June 2004.

[8] Justin Mazzola Paluska, Hubert Pham, Umar Saif, Chris Terman, and Steve Ward. Reducing

configuration overhead with goal-oriented programming. In PERCOMW’06: Proceedings of the 4th

Annual IEEE International Conference on Pervasive Computing and Communication Workshops,

March 2006.

[9] Beng-Hong Lim and Anant Agarwal. Reactive Synchronization Algorithms for Multiprocessors. In

ASPLOS VI: Proceedings of the Sixth International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 25–35, San Jose, CA, October 1994.

[10] Beng-Hong Lim. Reactive synchronization algorithms for multiprocessors. PhD thesis,

Massachusetts Institute of Technology, Cambridge, MA, USA, 1995.

[11] Michael Bedford Taylor, Jason Kim, Jason Eric Miller, David Wentzlaff, Fae Ghodrat, Ben

Greenwald, Henry Hoffman, Paul Johnson, Jae-Wook Lee, Walter Lee, Albert Ma, Arvind Saraf,

Mark Seneski, Nathan Shnidman, Volker Strumpen, Matt Frank, Saman Amarasinghe, and Anant

Agarwal. The Raw microprocessor: A computational fabric for software circuits and general-

purpose programs. IEEE Micro, 22(2):25–35, Mar 2002.

[12] Max Baron. Tilera’s cores communicate better. Microprocessor Report, November 2007.

[13] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V . Leung, J. MacKay, and M. Reif. TILE64

Processor: A 64-Core SoC with Mesh Interconnect. In International Solid-State Circuits

Conference, 2008.

[14] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce Edwards, Carl Ramey,

Matthew Mattina, Chyi-Chang Miao, John F. Brown, and Anant Agarwal. On-chip interconnection

architecture of the tile processor. IEEE Micro, 27(5):15–31, Sept-Oct 2007.

 23

[15] Nicolai M. Josuttis. The C++ Standard Library : A Tutorial and Reference. Addison-Wesley

Professional, August 1999.

[16] Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick Crowley, and Jonathan Turner.

Algorithms to accelerate multiple regular expressions matching for deep packet inspection. In

SIGCOMM ’06: Proceedings of the 2006 conference on Applications, technologies, architectures,

and protocols for computer communications, pages 339–350, New York, NY, USA, 2006.

[17] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith. Mediabench: A tool for

evaluating and synthesizing multimedia and communicatons systems. In MICRO-30: Proceedings

of the 30th annual International Symposium on Microarchitecture, pages 330–335, 1997.

[18] David Wentzlaff and Anant Agarwal. Factored operating systems (fos): The case for a scalable

operating system for multicores. ACM SIGOPS Operating Systems Review, Special Issue on the

Interaction among the OS, Compilers, and Multicore Processors, Apr 2009.

[19] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven

Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building customized program analysis

tools with dynamic instrumentation. In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN

Conference on Programming Language Design and Implementation, pages 190–200, New York,

NY, USA, 2005.

[20] Tom M. Mitchell. Machine Learning. McGraw-Hill Science/Engineering/Math, March 1997.

[21] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction (Adaptive

Computation and Machine Learning). The MIT Press, March 1998.

[22] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Machines and Other

Kernel-based Learning Methods. Cambridge University Press, March 2000.

7 List of Symbols, Abbreviations and Acronyms

AOE – Analysis and Optimization Engine

API – Application Programming Interface

D$ – Data cache

DARPA – Defense Advanced Research Projects Agency

DRAM – Dynamic Random-Access Memory

FFT – Fast Fourier Transform

fps – Frames Per Second

I$ – Instruction cache

IPTO – Information Processing Techniques Office (division of DARPA)

ISO – International Standards Organization

 24

ITS – Intrusion Tolerant Systems

KB – Kilobyte

MPI – Message Passing Interface

ODA – Observe, Decide, Act

OOS – Organic Operating System

OS – Operating System

OTL – Organic Template Library

STL – Standard Template Library

TLB – Translation Lookaside Buffer

VLSI – Very Large Scale Integration

 25

Appendix 1

Self Aware Computing Briefing

Self-Aware Computing

Anant Agarwal

MIT CSAIL

26

2

 Current systems are procedural

 Their behavior is pre-programmed

 Based on guesses about resource
availability

 Ill-suited to complex multicore systems

 Results in sub-optimal performance in the
face of changing conditions

 Self aware systems learn how they can be
used to address a particular problem

 Respond to user goals

 Build self-performance models

 Identify what they needs to learn

 Adapt to changing goals, resources,
models, operating conditions

 Gracefully adapt to failures

 Optimize their own behavior

Characteristics of Self-Aware

Systems

Act

Do it

Observe

Decide Act

27

3

Outline

 Introduction

 Vision and Goals

 Limitations of Today‟s Systems

 How to Build a Self-Aware System

 Why Now?

 Potential Impact

 Program Timeline

28

4

System Complexity Becoming

Unmanageable
 System complexity is increasing rapidly

 Multicore architectures with parallelism and
heterogeneity at many levels

 Distributed, deep, and heterogeneous memory
hierarchies

 Special-purpose functional units and special
instructions

 Unreliable components (hard and soft errors)

 Physics introducing new constraints such as power,
energy and wire delay

 Traditional abstraction layers are failing
 The ultra-wide sequential superscalar processor is

dead. Multicore and parallelism are the future

 Additional complexity is dumped on programmers‟
shoulders

 Complete system models are nuance-ridden and too
complex to comprehend

 Programmers cannot make efficient use of the
available resources

 Too many possible failure modes to anticipate

 Current abstractions and APIs do not comprehend the
new constraints

 Static and brittle designs – currently developer
must anticipate all mission and system dynamic
changes

29

5

The Consequences

 Programming has become very difficult
 Our programming models are in the dark ages

 Parallel programming requires experts

 Impossible to balance all constraints manually

 Suboptimal results

 Systems are too complex for programmers to understand

 Programmers have no idea how to optimize energy utilization

 No program portability
 Impossible to write programs that perform well on a large

variety of machines

 Failure rates are increasing
 Smaller devices more susceptible to cosmic rays,

manufacturing variations, electromigration, thermal variations

 With huge numbers of devices, even low-probability events
happen frequently

 Anecdotal evidence that today‟s servers fail routinely –
software often blamed

 Development costs are skyrocketing

 Verification and validation is increasingly challenging

 Code development and optimization taking a lot longer

 The n-squared problem: Each new environment needs
independent validation and optimization

 Several validation engineers to a single developer
P

ro
g

.
E

ff
o

rt

Required

Performance

30

6

Outline

 Introduction

 Vision and Goals

 Limitations of Today‟s Systems

 How to Build a Self-Aware System

 Why Now?

 Potential Impact

 Program Timeline

31

7

The Vision: Self-Aware Computing

Self-Aware Computing – a computing paradigm characterized
by systems that can observe their runtime behavior, learn,
and take actions to meet desired goals

A self-aware system is

 Introspective

 Observes itself, reflects on its behavior and learns

 Goal-oriented

 Tell computer what you want, computer‟s job to

figure out how to get there

 Adaptive

 System analyzes the observations, computing the

delta between the goal and observed state, and

takes actions to optimize its behavior

 Self-healing

 System continues to function through faults and

degrades gracefully

 Approximate

 System does not expend any more effort than

necessary to meet goals

Observe

Decide Act

Learner

Perf. Models

32

8

A Self-Aware Computing System

 An Organic Operating System (OOS) is a key enabling technology for self -aware systems

 OOS includes learning based ODA loop to optimize resource management

 Observation and control interfaces added to all apps, SW and HW components.

 Observe temp, heartbeat/performance, miss rates, queue lengths, util. of resources, etc.

 Control alg., #cores allocated, cache config, scheduler policy, affinity, freq., precision

 Application communicates goals and options to OOS

 OOS uses component perf. models to decide how best to meet goals under given system constraints (e.g.
performance, quality, temp, power)

O
rg

a
n

ic

O
p

e
ra

ti
n

g

S
y
s
te

m

Disk
I/O

DevicesDRAM

App 2

App 1

App 3

miss

rate

voltage, freq,

precision
cache size,

associativity

p
o

w
e
r

Memory

Manager

File

System

Device

Drivers
Scheduler

activity,

power,

temp

App 1

Analysis &

Optimization

Engine

Observe

Decide Act

Core

Cache

App 2 App 3

Learner

Core

Cache

System call

s
p

e
e
d

algorithm
heartbeat,

goals

Heartbeat

Perf. Models

33

9

The Possibilities…

 Imagine a 1K-multicore serving up a
computational video application that runs cooler
and produces higher quality video the longer it
runs

 Imagine a piece of code that can run on a
massive multicore server producing high-quality
results while meeting a real-time goal …

… and can also run on a 4-core handheld radio
meeting the same real-time goal, but
compromising somewhat on result quality

34

10

Self-Aware Computing Goals

 To build general purpose systems that can meet targets
(such as performance, reliability, power) while satisfying
certain constraints (power, energy, area) under changing
mission conditions and dynamic ground situations

 To build easy-to-program systems where the user does not
have to understand the interaction between system
components and write code for every specific combination of
conditions, and where the programmer does not have to
maintain a complete system model in their mind

 To build portable systems where the user does not have to
manually redesign, rewrite, and retune code for each new
system or environment, where the system automatically
optimizes for different platforms

 To build systems that are automatically resilient to faults

Rethinking computer systems to reflect 21st

century constraints and opportunities
35

11

Self-Aware Computing Program

 Although creation of complete self-aware systems is the ultimate goal, this program takes the
first steps by developing the key enabling technologies including an Organic OS and minimum
set of related components and APIs. Specifically, this program will create:

 1. Self aware operating system – rethink operating systems from the ground up

 2. Software and hardware components minimally enabled for operation within a self -aware
system

 3. APIs for self-aware interactions

 1. Develop brand new self-aware operating system: OOS
 Experimental, research-grade implementation

 Complete Observation, Decision making, and Action engine (ODA loop)

 Evaluation of various competing technologies for learning and decision making

 2. Develop performance models and prototypes of software and hardware components
required to support OOS, for example:
 Observable and controllable schedulers and device drivers

 Applications that establish goals and targets for performance and reliability

 Adaptive, introspective data structures

 Reconfigurable caches that report miss rates, utilization, etc.

 Adaptive I/O (adjustable voltage/frequency)

 3. Develop APIs for communication with components and applications
 For applications to communicate their goals, configurable parameters, and internal component models

to the OOS

 For OOS to receive status information from software and hardware components and control their
configurations

 How to access and organize the massive amounts of data that the software and hardware can collect

36

12

Outline

 Introduction

 Vision and Goals

 Limitations of Today‟s Systems

 How to Build a Self-Aware System

 Why Now?

 Potential Impact

 Program Timeline

37

13

Present Day

 With some exceptions, mostly
procedural approach to all aspects
of computing

 Behavior is completely specified
ahead-of-time by programmer or
system developer

 User manually applies goals and
constraints to each individual
component, not to system as a
whole

 This problem applies to architecture,
runtimes, compilers, operating
systems, languages

Procedure
while(foo)

{

sched += bar;

foo = hrs – 1;

follow yellow line;

…

printf;

}

Computer

System

38

14

A Contrast – Self Aware vs

Procedural

Observe

Decide Act

Self Aware Procedural

Self-aware frameworks

show the characteristic

ODA loop

Procedural

frameworks run open

loop

Act

Do it

39

15

Current Operating Systems

 Procedural: Responds to immediate requests (via system calls) from apps

 Runs open loop: No feedback from hardware/software (inferred from requests)

 No long-term goals or performance model to guide decisions

C
u

rr
e

n
t

O
p

e
ra

ti
n

g

S
y
s
te

m

Processing Core

Disk I/O

Devices

App 1 App 3App 2

Memory

Management

File

System

Device

Drivers
Scheduler

System Call

DRAM

App 2

App 1

App 3

Idle/Busy

Processing Core

Cache CacheAct

Do it

40

16

What’s Wrong With This

 No automatic adjustment to conditions

 Computer blindly follows instructions

 Programmer is responsible for any
dynamic behavior

 Programmer must anticipate all possible
operating conditions

 Different quantities of resources

 Different energy envelopes

 Unexpected input/mission
threats

 Poor code portability

 Not fault tolerant

 Programming model assumes all parts
work perfectly
at all times

 Impossible for programmer to consider
all possible failure modes

 Whole-system checkpointing with
rollback is not practical for real-time
systems or frequent errors

 Non optimal

 Individual component optimization is non
optimal

 Need to overprovision resources in all
dimensions

 User must manually compose
constraints into a global end to end
number

41

17

The Result?

 Programming difficulty and effort is exploding

 Systems becoming too complex to internalize

 All this complexity is pushed to the programmer

 Programmer is responsible for handling all possible
conditions/failures

 Very difficult to understand the interaction of all constraints

 Systems are expensive and fragile

 Overprovisioning of resources in all dimensions results in expensive
systems

 Even slight variations in deployment conditions result in
unpredictable behavior and errors

 In reality, programmers cannot handle this today

 Unhandled exceptions, latent bugs

 Programs must be rewritten/reoptimized to run on different
machines

 Most applications are not fault-tolerant
42

18

A Remote Briefing Example

 Situation

 Imagine a videoconferencing system painstakingly
tuned for highest quality (e.g., 1080p resolution) for
remote briefings between situation rooms using
networking links with guaranteed QOS

 Suppose we want to port the system for briefings to
soldiers in the field using energy-efficient handhelds
with lower quality (e.g., QCIF resolution)

 The present day

 First, porting the software is a huge effort

 Second, even with an expensive port, it will drain
the power of the handheld in minutes

 Further, video is unusable, because it is jumpy due
to uneven frame rate caused by variable link
conditions

 Self aware systems

 A self-aware system, on the other hand, would
allow us to run the same application on the
handheld without a porting effort

 It would adapt to the new screen resolution
automatically, lower video quality and meet an
energy constraint using energy optimized
algorithms, and maintain an even framerate using
interpolation

Soldier With Handheld

Situation Room

Telepresence

43

19

A Supercomputing Example

 The situation

 Imagine a supercomputer built out of a large number of
components

 Suppose it must perform a long running computation

 The present day

 The programmer must program in resilience (i.e., manually code to detect there
is an error, for example due to a wire break due to metal migration in some
component)

 The programmer must introduce code for checkpointing, error detection and
rollback for each application. This approach is static, complicated, and error
prone

 Because it is static, system performance degrades significantly as the faulty
component causes frequent errors and rollbacks. The system may also require
a manual diagnostic check to remove the faulty component

 Self aware systems

 Self aware system is automatically resilient to faults and requires no manual
checkpointing

 It will dynamically localize the error through self checks, and route around the
faulty link

44

20

Outline

 Introduction

 Vision and Goals

 Limitations of Today‟s Systems

 How to Build a Self-Aware System

 Why Now?

 Potential Impact

 Program Timeline

45

21

The Inspiration

Nature abounds in complex,

highly-parallel systems that are

 Adaptive

 Self-healing

 Evolving

 Goal-oriented

… while our engineering

disciplines approach systems

using

 Predetermined algorithms

 Manual procedural programming

 Deterministic (understandable)

global state models

 Fragile assumptions (“all parts

work”)46

22

Organic Operating System (OOS)

 OOS includes learning based ODA loop to optimize resource management

 Observation and control interfaces added to all apps, SW and HW components.

 Observe temp, heartbeat/performance, miss rates, queue lengths, util. of resources,
etc.

 Control alg., #cores allocated, cache config, scheduler policy, affinity, freq., precision

 Application communicates goals and options to OOS

 OOS uses component perf. models to decide how best to meet goals given global system
constraints (e.g. performance, quality, temp, power)

O
rg

a
n

ic

O
p

e
ra

ti
n

g

S
y
s
te

m

Disk
I/O

DevicesDRAM

App 2

App 1

App 3

miss

rate

voltage, freq,

precision
cache size,

associativity

p
o

w
e
r

Memory

Manager

File

System

Device

Drivers
Scheduler

activity,

power,

temp

App 1

Analysis &

Optimization

Engine

Observe

Decide Act

Core

Cache

App 2 App 3

Learner

Core

Cache

System call

s
p

e
e
d

algorithm
heartbeat,

goals

Heartbeat

Perf. Models

47

23

Processing

Cores

Operation of a Traditional Computer

System
O

S

Disk I/O

MMSched.

DRAM

App1

FS DD

OS schedules an app to run on a

core and then transfers control

App runs freely and makes calls to

OS services as needed

OS only gets involved when app

requests it, or to switch to new app

App2

App is solely responsible for its

behavior and performance. Any

adaptability or fault tolerance must be

explicitly pre-programmed

App has only a limited ability to adapt. The OS “owns” the

hardware and would need to be involved in any changes (e.g.

change of clock freq., cache assoc., disk speed). However,

this support does not yet exist Execution Time

Energy constraint

P
e
rf

o
rm

a
n
c
e

faultApp performance

Performance

goal range

48

24

Operation of a Self-Aware Computer

System
O

O
S

Disk I/O

MM

S
c
h
e
d
.

Processing

Core

DRAM

App1

FS DD

OOS still provides basic services and

application scheduling
App2

OOS monitors application status,

performance, and progress through

heartbeat monitor

ODA queries apps and components to

check on goals, temp, power, etc.

Apps use new self-aware API to pass

goals and performance parameters to

analysis & optimization engine

O

D A

Learner

Reasoner

Updating
Knowledge
DB

ODA uses component models and

machine learning to predict effects of

changes and to decide how to adapt

ODA acts by making changes in various

system components and applications

through self-aware APIs

Switch from full

motion search to

diamond search

Execution Time

Energy constraint

P
e
rf

o
rm

a
n
c
e

self-aware
performance

fault

Performance
goal range

49

25

Example 1: Remote Briefing on

Traditional Computing System

Video system originally tuned for telepresence using

256 cores, moved to handheld radio with 32 cores.

System misses real time goals, batteries drain in

minutes

iDCT optimized

for 16 tiles
Precompiled

Motion

estimation with

full search

High cache

miss rates

Traditional System

Traditional OS
Runs application

open loop

Clock slowed due to high

temperature and low energy

Temperature rises to 150oC,

and battery also drains

Rate starts on target at 30

fps

Rate falls to 3 fps, video

becomes jerky and unusable,

and batteries run out in minutes

Execution Time

Energy constraint

P
e
rf

o
rm

a
n
c
e

faultApp performance

Performance

goal range

50

26

Example 1: Remote Briefing on

Self-Aware Computing System

Self aware video system originally built for telepresence,

moved to handheld radio. System will adapt to smaller

display, lower bandwidth link conditions, and energy

constraints

iDCT optimized

for x tiles

JIT

compile for

n cores

Motion

estimation with

m possible

search algorithms

manage

cache for

missrate goal m

Self-Aware System

Organic OS (OOS)
monitors video quality

and rate, and

assigns subgoals

Heartbeat

Cache miss rate 4%

1M frame matches

per second

Crunch, crunch,

crunch…

Increase associativity

Temperature 104oC

Use diamond search

instead of full search

Rate drops to 24 fps „cos clk

reduced to meet energy

constraint: 25% below target

Rate rises to 33 fps, but

diamond search results in

slightly poorer quality

Observe

Analyze

Optimize

Observe

Decide Act

Learner

Perf. Models

Execution Time

Energy constraint

P
e
rf

o
rm

a
n
c
e

self-aware
performance

fault

Performance
goal range

51

27

Example 2: Process Scheduler in

Traditional OS

 Scheduler multiplexes a set of applications onto a set of cores

 Applications have no affinity for particular cores

 Threads just get the next available core and can move randomly

 Apps/threads are swapped at fixed intervals

 Not sensitive to application‟s requirements

 No communication about the amount of parallelism
available/needed

 App creates some number of threads (maybe too many or too
few) and throws them over the fence to the scheduler

App 1

App 2

App 3
Execution Time

App1P
e
rf

o
rm

a
n
c
e Traditional

Goal range

App2

Improper allocation  missed goals

Traditional slows entire

chip when over-heated

52

28

Example 2: Intelligent Process Scheduler

in

an OOS
 Scheduler uses spatial information to allocate cores to

applications

 Applications communicate goals and parameters to OOS

 OOS monitors core temps and app performances (via heartbeats)

 Scheduler reallocates resources to meet applications‟ needs
 Allocate more cores to applications not meeting goals

 Remove cores from applications exceeding goals

 Reduce clock frequency on hot and/or lightly loaded cores

 Migrate apps to improve communication locality or reduce hotspots

 Continuous readjustment based on changing needs and goals

O

D A OOS

App1

App2App2
Intelligent

Scheduler

Learner

Performance

Models

Decision Tree

Need to develop models and learning

algorithms to decide which actions to

take, e.g. migrate vs reduce freq.
Execution Time

App1P
e
rf

o
rm

a
n
c
e

Self-aware

Goal range

App2

Cores reallocated

Self-aware

migrates

53

29

Example 3: Traditional HW

Fixed-Size Local Memories

 Current processors have several separate physical
memories in each core

 Instruction and Data Caches

 Branch Prediction history table

 Translation Lookaside Buffer (virtual memory mapping cache)

 Fixed allocation of space selected by processor designer

 Fixed-function, managed by hardware --- no opportunity for
operating system to reconfigure or optimize behavior

Traditional

OS
TLB

BP
D-$

Processing Core

I-$

54

30

co

ci

Example 3: Self-Aware HW

Reconfigurable Memory Pool

OOS

 Each core contains a pool of local memory that can be allocated

to instruction and data caches, branch predictor, and TLB

 OOS monitors miss rates in I$, D$, BP, TLB via probes P i

 OOS includes performance and energy models for each

component

 OOS composes component results into global performance

model

 OOS searches configuration space for optimal strategy

 OOS reallocates resources (using component API) for maximal

performance or power efficiency P1

P2

P3

size

p
e
rf TLB

size

p
e
rf BP

size

p
e
rf I$

size

p
e
rf

D$

D$, TLB yield best return
Mem Pool

TLB

BP

I$

D$

Logic

Challenge: Our field needs to

develop analytical and empirical

models for each component

Challenge: Need fast methods

for solving this constrained

optimization problem

Learner

O

D A

Perf. Models

Challenge: Need to develop

configurable software and

hardware components

55

31

Intelligent ODA Loop

 ODA loop in the operating system
involves observing the situation
(O), decision making (D), and
taking action (A)

 Decision making (D) is a key
component involving learning,
knowledge acquisition, and
reasoning
 Learning algorithms update

knowledge DB with system and
application status

 Knowledge examples
 Situational; Eg. system alarms
 Temporal patterns; Eg. System

phases
 Experience-based; Eg. cases,

outcomes
 Performance-based; Eg. System

and application models
 Operational; How to do it
 Remedial/diagnostic; How to fix it

 Reasoning algorithms reference
knowledge DB to perform
analysis and optimization

Observe

learning

Decide Act

c
o
n
tr

o
ls

Knowledge

DB

p
e
rf

TLB

size

reasonin

g

Decision

engine

56

32

Decision Engine:

Performs Analysis and Optimization

model-based

reinforcement

probabilistic
estimation

statistical

Statistical decision
making

Model based
control

Classical systems
control

Adaptive searchLearning

R
e
a
s
o
n
in

g

A
n
a
ly

s
is

O
p
tim

iz
a
tio

n

system
&

app data

size

perf

TLB
models

time

p
h

a
s
e

temporal plans

SituationalBayesian

Networks

Knowledge DB

O
b
s
e
rv

e

A
c
t

57

33

Key Innovations

 Self-aware OS (not programmer) handles the complexity

 Programmer specifies goals, OOS figures out how to meet them

 System is dynamic and adaptable to changing conditions or
requirements

 Same program will work on many different systems

 System detects and handles errors as needed

 Degree of reliability can be specified as a goal

 Example: Fault-tolerance

 User simply requests a required degree of reliability

 OOS enables error detection routines and hardware

 OOS rolls back affected core after soft error, or routes around faults

 System-level goals and constraints

 Current systems use individual models and constraints

 Current systems must overprovision resources in all dimensions

 Self-aware system ensures that goals are met without exceeding
global constraints (e.g. maximum power, temperature)

58

34

Technical Challenges
 Self aware operating system

 What are good learning and optimization algorithms for the OS to use when
selecting configurations? Competing technologies include

 Learning engines

 Neural networks

 Genetic models

 Classical control theory

 Stochastic control

 How to create predictive performance and related models for the OS to be able to
assess the expected impact of its actions

 Performance and energy cost tradeoffs in the OOS itself

 How can we synchronize the timescale of learning and speed of adaptation with
system and application shifts?

 Self aware components and applications

 How do we build reconfigurable (controllable), introspective (observable)
components?

 What are the miminal changes required in current software (e.g., apps, paging
systems, schedulers, device drivers, memory allocators, data structure libraries), and
hardware components (e.g., caches, processors, networks, I/O devices, disks,
coherence engines, DRAM) to enable self aware operation

 How do we create simplified performance, reliability, and energy models of these
components for the OS to use

 E.g. How will changing cache associativity affect miss rate, power, temperature

 Self aware APIs

 What are the right APIs between the operating system and self-aware components?

 What information do applications communicate to the OOS for it to be able to assess
the performance and other implications of configuration changes

59

35

Outline

 Introduction

 Vision and Goals

 Limitations of Today‟s Systems

 How to Build a Self-Aware System

 Why Now?

 Potential Impact

 Program Timeline

60

36

Why Now?

 Resources have changed dramatically over the years
 Quantity of transistors, memory, have increased

exponentially

 Speed of components has increased by orders of
magnitude

 Level of integration has increased dramatically

 We continue to apply outdated approaches to using
these resources
 Key computer science abstractions have not changed

since the 1960‟s

 Operating systems, languages, etc. we use today were
designed for a different era

 For example, OS still time multiplexes a single core
between OS and user app – applies to the era when
compute resources were expensive

 It‟s time for a fresh approach to the way systems are
designed and used
 Leverage the new balance of resources to improve

performance, utilization, reliability and programmability

 We will first address the OS, followed by architectural
support

61

37

The New Balance of Resources

Trade these…

 Transistors

 Cores

 On-chip
bandwidth

Self-aware computing makes a new set of tradeoffs

Advancing VLSI technology and multicore architectures have

created a disruptive cost inversion!

BEFORE

 Resources (cores) were expensive

 Energy was cheap

 Sequential programming was easy

 Devices were fairly reliable

NOW

 Transistors and cores are free

 Energy is a first-order constraint

 Programming is hard

 Hard and soft error rates are
increasing

Massive multicore is both the problem and the enabler of the solution

for these…

 Energy

 Time to
completion

 Programmer effort

 Reliability

 Off-chip
bandwidth

E.g., throw transistors at the problem

of creating extensive counters
62

38

Building on Key New Technologies

 Previous projects have created the key mechanisms

 DARPA Polymorphic Computing Architectures
 Polymorphic, adaptable hardware

 But, manually reconfigured/adapted

 Did not address faults

 DARPA Power Aware Computing and Communications
 Energy monitoring mechanisms

 Recent advancements in learning and reasoning algorithms

 Continuous optimization technologies, but in limited domains

 IBM continuous program optimization
 Framework to collect system data

 Dynamic adjustment of memory page size

 Remembers Java JIT optimization heuristics between runs

 Auto tuners, FFTW, STAPL, Atlas, OTL

 Virtual architecture reconfiguration [CGO 2006]
 Used in architectural emulation

 Inspect current architecture and instruction stream

 Change config. to suit program‟s needs (e.g., number of tiles allocated to trace
caching)

 Self-Aware Computing will create the high-level operating system
necessary to automatically use and coordinate these primitive
mechanisms and apply them to build broadly applicable general-
purpose systems

63

39

Outline

 Introduction

 Vision and Goals

 Limitations of Today‟s Systems

 How to Build a Self-Aware System

 Why Now?

 Potential Impact

 Program Timeline

64

40

Impact of Self-Aware Computing

Program

 Make complex systems easy to program

 Utilize massive resources efficiently

 Hide complexity from user

 Translate massive silicon resources into performance
benefits

 Increase portability of software to different systems

 Decreases development costs

 Enable dynamic adaptation to changing mission requirements
or operating conditions
 Currently very difficult to statically pre-program all possible

variations

 Reduces verification effort and provides a safety net
 System ensures correct behavior by enforcing goals and

constraints

 Test for known variables, system handles unknowns

 Maximize energy efficiency in highly dynamic situations
 System expends only the energy necessary for current

conditions

65

41

Impact of Self Aware Computing

Program

Achieve orders-of-magnitude improvements in each
of four key computing criteria

1. Programming Effort
– 10X decrease in average time to implement solution to

achieve a given level of performance under a specific set of
constraints

– 100X increase in performance of quick implementation

2. Reliability
– 10X-100X increase in error-free operation time given faults

3. Energy
– 10X-100X decrease in energy as system optimizes itself

4. Performance
– 10X increase in performance while meeting constraints from

initial run to steady state

66

42

1. Programming Effort Example

Users/Applications focus on goals, not how to manipulate
the minutiae of complex manycores to accomplish goals

 Application is no longer a single sequence of procedural
code

 Application specifies goals and provides library of
alternative techniques

 OOS runtime may supply libraries of techniques for common
ops. E.g., a data repository with alternatives including hash-
table vs. red-black tree, list vs. heap, row-major vs. column-
major order, sparse vs. dense matrix

 Application passes goals and technique properties to OOS
runtime through self aware API

 OOS creates tree of subgoals and develops a “plan” to
achieve goals (a plan is a set of techniques)

 Leverage machine learning algorithms

 Plan is dynamically adjusted based on changing
conditions/mission requirements

 Programmer does not need to understand interaction of
different tradeoffs

 OOS may create different plans for the same goals on
different machines or runtime conditions (program
portability)

 OOS configures system SW and HW to best suit
application

 E.g., OOS runtime observes usage patterns and reorganizes
data structures to optimize common ops

 User does not have to worry about orchestrating all aspects

subgoal

Alternative

techniques

P
ro

g
.

ti
m

e

Required perf.

or, # of constraints

procedural

self-aware

Goal

67

43

2. Reliability Examples

 Future exascale processors containing 100‟s of billions of transistors will
experience frequent errors

 Using the current procedural approach, applications will fail to complete due
to corruption

 OOS can automatically monitor machine and application execution, and take
actions to ensure reliable execution

 Handling soft errors (e.g., bit-flips due to cosmic rays)

 OOS duplicates computation and compares execution signatures [e.g., Ceze,
UIUC]

 Hardware introspection mechanisms to observe errors

 Roll back only the affected core and continue

 Tune checkpointing interval, datasets

 Hard faults (e.g., broken functional unit or on-chip router)
 OOS periodically self tests and characterizes machine components

 If a component is found to be broken, dynamically reorganizes computation to
avoid failed hardware

 Alter on-chip routing tables

 Dynamically rewrite code to avoid functional unit

 Use JIT to recompile for a different number/configuration of cores

Exec. Time

constraint

P
e
rf

.
(F

ra
m

e
 r

a
te

)

self-aware

fault
procedural

Goal

68

44

3. Energy Examples

 Continually optimizing energy by adjusting core parameters

 Organic OS dynamically monitors and recompiles application for energy

 Target varying numbers of cores, shutting the others off

 Adjust voltage and frequency of each core to maintain minimum
required throughput

 Migrates processes to increase communication locality, and hence
energy efficiency

 Optimizing energy by reconfiguring memories

 OOS monitors cache usage and adjusts size to minimum needed

 Extra cache is turned off to save energy

 Alter cache hash functions to optimize hit-rate in given size

 70% of server power in external DRAM [Hetherington 2008]; working
set based memory tuning

 Optimizing I/O energy

 Dynamically adjust I/O voltage and frequency to meet bandwidth
requirements [Balamurugan, VLSI Circuits 07]

 Use predictive bus-coding [Wen, HPCA04] to reduce on-chip
communication energy

Exec. Time

P
o
w

e
r procedural

self-aware

69

45

4. Performance Examples

 Key concept: Use introspection and dynamic reconfiguration by
Organic OS to optimize software/hardware for a specific application

 Application-aware dynamic cache memory pool

 OOS observes app behavior and miss rates of each type of memory

 Has models of performance vs. size of each memory type

 Predicts and establishes best config for given app

 Adaptive Page Allocation

 OOS monitors memory controllers, queues, and cache miss latencies

 Remaps pages to balance load on all controllers and attempts to be
fair to all applications

 Approximate computation

 OOS receives programmer/app specified energy constraints and
quality requirements

 Observes dynamic energy use and output quality (e.g., PSNR)

 Through self aware API suggests algorithmic policies to app

 Prune unnecessary computation and adjusts #cores used

 OOS controls JIT compiler to recompile app for different #cores

 Uses SIMD hardware to perform multiple smaller computations at
once, for energy savings, but at a loss in accuracy

Exec. Time

P
e
rf

.

procedural

self-aware

70

46

Metrics for Evaluation

 Programming Effort: Time to required solution
 Addresses: programming effort

 Create a set of “benchmark” problems with specific goals
(e.g. performance) and constraints (e.g. energy)

 Measure the average time it takes programmers to
implement the benchmarks

 Expected 10X reduction vs. traditional system

 Why?: OOS frees the programmer from worrying about
constraint satisfaction and helps tune the architecture and
application automatically

 Solution Quality: Performance of quick
implementation
 Addresses: performance, energy, resiliency, prog. effort

 Specify benchmark problems and a programming time limit

 Measure performance, energy efficiency, resiliency of
resulting solutions

 Resiliency = length of error-free operation with injected
faults

 Expected 10X to 100X improvement vs. traditional system

 Why?: OOS handles performance tuning and fault
tolerance

P
ro

g
.

ti
m

e

Required perf.

Or, # of constraints

procedural

self-aware

Q
u
a
lit

y

Prog. time limit

procedural

self-aware

71

47

Metrics for Evaluation (cont.)

 Continuous Optimization: Performance/Power
improvement between initial run and steady state
 Addresses: adaptability, performance, energy

 Run benchmarks for a long period of time

 Performance/power should improve over time

 Expected 10X-100X improvement between initial run
and steady state

 Why?: OOS observes system behavior and optimizes
continuously

 Performance Stability: Adaptation to changing
conditions as constraints and input conditions
change
 Addresses: adaptability, resiliency

 Supply a set of applications and a profile of goals and
constraints that change over time

 System must maintain goals and constraints, free
variables may change

 Example: Video encoding
 Energy constraint

 Frame rate and resolution goals

 Video quality may vary

 Why?: OOS continually monitors goals and adjusts
system to compensate for dynamic events/changes

Exec. Time

P
e
rf

.

Exec. Time

P
o
w

e
r procedural

self-aware

procedural

self-aware

Exec. Time

constraint

P
e
rf

.
(F

ra
m

e
 r

a
te

)

self-aware

fault
procedural

Goal

72

48

Outline

 Introduction

 Vision and Goals

 Limitations of Today‟s Systems

 How to Build a Self-Aware System

 Why Now?

 Potential Impact

 Program Timeline

73

49

3-Phase Program

 Phase 1 (12 months)

 High-level OOS design

 Early proof of concept simulation studies

 Identify key learning, introspection and adaptation mechanisms and
algorithms

 Phase 2 (24 months)

 Complete simulation studies

 Build prototype OOS using existing hardware with selected self
aware modules

 Phase 3 (24 months)

 Modify hardware components to make them self aware

 Integrate with OOS

 Build complete system

 Evaluate

74

Backup slides

75

51

Background: An Operating

System

 Abstracts away details of hardware to simplify application
programming. Does so by providing abstract APIs (e.g., to
print) and device specific drivers (e.g., printer driver)

 Coordinates sharing of resources between multiple
applications
 Memory resources: OS memory protection, virtual memory

 CPU resources: OS Scheduler decides which application gets the
CPU next and for how long

 I/O device resources: Device drivers arbitrate use of hardware
devices

 Disk access and file systems
 Provides abstract concept of “files” to applications, handles all

details of how they are actually stored

 Network stack for communicating with other machines

 User interface
 Not necessarily part of all operating systems (e.g. UNIX)

Software layer responsible for managing a computer

system’s resources and activities

76

	Self-Aware Computing Program Slideset-final

