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1 Introduction 

Imagine a revolutionary computing chip that can observe its own execution and optimize its behavior 

around a user's or application's needs. Imagine a programming capability by which users can specify their 

desired goals rather than how to perform a task, along with constraints in terms of an energy budget, a 

time constraint, or simply a preference for an approximate answer over an exact answer. Imagine further a 

computing chip that performs better according to a user's preferred goal the longer it runs an application.  

Such an architecture will enable, for example, a handheld radio or a cell phone that can run cooler the 

longer the connection time. Or, a chip that can perform reliably and continuously in a range of 

environments by tolerating hard and transient failures through self healing.  

This project proposes the vision of self-aware computation that will create such a computing 

device and an associated software system. A self-aware computing system is given a goal and a budget -- 

it then finds the best way to accomplish the goal with the means at hand.  Much as in a biological 

organism, a self-aware (or organic) computer has five major properties:  

 

1. It is INTROSPECTIVE or SELF-AWARE in that it can observe itself and optimize its behavior 

to meet its goals. 

2. It is ADAPTIVE in that it observes the application behavior and adapts itself to optimize 

appropriate application metrics such as performance, power, or fault tolerance. 

3. It is SELF HEALING in that it constantly monitors its resources for faults and takes corrective 

action as needed.  Self healing can be viewed as an extremely important instance of self 

awareness and adaptivity. 

4. It is GOAL ORIENTED in that it attempts to meet a user's or application's goals while optimizing 

constraints of interest. 

5. It is APPROXIMATE in that it uses the least amount of precision to accomplish a given task. A 

self-aware computer can choose automatically between a range of representations to optimize 

execution -- from analog, to single bits to 64-bit words, to floating point, to multi-level logic. 

2 Overview 

Self-aware computation can be distinguished from existing computational models which are largely 

procedural. Today's models require a user to specify a procedure of how something is to be done and the 
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computer blindly follows this procedure irrespective of application or environmental conditions using a 

fixed set of prearranged resources. For example, if the user wants to use a computing device for software 

radio, then the user programs it with a known bitwidth and prearranged code for algorithms such as 

Viterbi decode and Fast Fourier Transform (FFT) and to accept a given bitrate. The hardware is similarly 

fixed for all time. For example, the cache in the processing engine might be sized at 128 KB and two-way 

associative. 

A self-aware computer, on the other hand, is given a goal and it attempts to achieve the goal with 

the minimal amount of resources and energy. Of course, it is also provided with many possible procedures 

to accomplish subtasks, each of which might use different types of architectural components. In our 

software radio example, the self-aware computer is given the goal of maintaining a connection to a 

receiver with a desired bit rate, using the least amount of energy. The software system and architecture 

collaborate on achieving this goal. A self-aware computer has cognitive hardware mechanisms in its 

trusted core to both OBSERVE and to AFFECT the execution. Since it is impossible to pre-configure all 

possible scenarios, the self-aware computer also implements learning and decision making engines in a 

judicious combination of hardware and software to determine the appropriate actions based on given 

observations. Thus, in our software radio example, the system will use the right precision for the FFT 

computations and the required amount of parallel hardware resources to achieve the goal. If the channel 

has very little noise, then the it might use a simpler coding scheme.  The hardware will observe the 

execution of the code, and depending on the estimated working set size of the code, the system will shut 

off portions of the cache or make it direct mapped to save energy. At the same time, the system ensures 

that the goal is being met. 

A self-aware computer can achieve 10x to 100x improvement in key metrics such as power 

efficiency and cost performance over extant computers. For instance, if for some streaming computation 

the system observes that 64 bits of precision is unnecessary (for example, if no changes are detected in the 

top 62 bits for a while) and can use 2 bits of precision, while at the same time turning off the data cache 

and using direct streaming of data over the network, the system can benefit from energy savings of 40x to 

50x. As another example, the self-aware system might slow the clock to a sub module (and also the 

supply voltage) if its overall goal can be achieved with a much lower frequency. As a further example, in 

a tiled architecture running two streams of H.264 video encode, the system might observe the achieved 

output bandwidth for each stream, and move tiles between streams dynamically if the two video streams 

differ in complexity to maintain a fixed frame rate and a given per-stream bandwidth requirement. 
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Probably much more importantly, much like biological organisms, a self-aware computer can go 

well beyond traditional measures of goodness like performance and can adapt to different environments 

and even improve itself over time. It can also perform "code intrusion detection" by flagging abnormal 

behavior in its software by learning and maintaining signatures of its normal behavior. Corrective action 

might include shutting itself down or in some cases applying self healing. In doing so, the self-aware 

computer can build upon technologies developed for systems in the previous intrusion tolerant systems 

(ITS) program out of DARPA/IPTO in which a congruence between self healing for faults and for 

malicious intrusions was demonstrated. 

Why now?  Although such a machine may seem rather far fetched, we believe that basic 

semiconductor technology, computer architecture and software systems have advanced to the point that 

the time is ripe to realize such a system.  To illustrate, let us examine each of the key aspects of self-

aware computation including introspection, approximation, goal orientation, adaptation and self healing. 

We will discuss how they might be built in a practical way, and identify the fundamental challenges that 

we will have to overcome. 

Introspection or self awareness implies that the system can observe itself while it is executing. 

The processor hardware can include mechanisms to observe instantaneous cache miss rates, bit positions 

in data words that are changing, cache sets that are hot versus others that are idle, numbers of errors in 

data transmissions or memory access, branch directions, network and memory latencies and queue 

lengths, among many others. These measurements will feed adaptation mechanisms that will adapt the 

architecture as needed. Introspection or self awareness requires foundational changes to computer 

architecture - self aware computers need mechanisms to observe themselves. Fortunately, semiconductor 

technology makes available billions of transistors on a single chip, so throwing transistors at the problem 

of building observers and recording state is eminently feasible today. Our challenge will be to identify 

what metrics are worth observing, how to make the measurements without impacting the execution, and 

what we can do with the results. For example, in recent unpublished work, we have shown that we can 

observe phase changes in program execution and change the cache access hash function to optimize cache 

miss rates. We have demonstrated that cache miss rates can be halved for many applications in this 

manner. In another body of work related to tiled architectures, we have used an adjacent helper tile to 

observe the execution (in particular, memory reference patterns) of a given master tile and prefetch data 

into the master tile's cache before it is needed [1]. 

Approximate computation implies that the computer does not always use the most available 

precision to accomplish a task. For instance, modern day processors have reached 64 bits of digital data 
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widths. This data width is used in all computations whether it is needed or not. There are many classes of 

computations for which this precision is overkill. As an extreme example, imagine an image recognition 

task in which the final answer to the user is a single bit - yes or no (for example, is there a tank in this 

image or not). It is quite possible that a simple edge representation using just one bit per pixel might 

suffice to perform the pattern recognition task. Approximation can be applied in many other areas of 

digital design as well, and in fact, we question the very basic overkill digital design philosophy, i.e., 

requiring signals to be fully restored after each logic element.  The computer can try to use the minimal 

precision and probably even multilevel logic or the analog representation in its computations to produce a 

result. One research challenge with approximation is to figure out the minimal precision needed for a 

given computation. Another challenge will be to discover the best way to introduce analog representation 

into what is fundamentally a digital computer. Some recent work in this area includes compiler supported 

bitwidth analysis [2][3]. Other work that directly applies here is that of Rinard et al. [4][5] which has 

shown the possibility of highly reliable computation even when erroneous data values are ignored and 

allowed to propagate during program execution. 

Goal orientation implies a revolutionary transition in architecture and algorithm design from a 

procedural style of specification to a goal oriented style. Goals indicate precisely what the user wants, not  

how to get there. This way, the computer can determine how best to achieve a user's goals depending on 

the conditions on the ground. Goal orientation can be applied at all levels of a system -- from the 

specification of the application all the way down to transmission of bits on a wire. In the latter case, a 

communications channel within the chip might choose to perform lossy compression to achieve 

effectively higher bandwidth transfer if the goal of the higher level application does not care about an 

exact representation.  An example of an architectural goal can be to maintain no more than a maximum 

bandwidth demand on the memory system. An example of a system goal might be to maintain a given 

maximum power dissipation. Recent work along these lines includes the GOALS system [6][7][8] which 

is a software system that attempts to meet user-driven goals, rather than follow set procedures. 

Adaptation is the ability of the computer to change what it is doing or how it is doing a given 

thing at run time. A key part of adaptation is the development of a control system as part of the computer 

architecture that observes execution, measures thresholds and compares them to goals, and then adapts the 

architecture or algorithms as needed. A key challenge is to identify what parts of a computer need to be 

adapted and to quantify the degree to which adaptation can afford savings in metrics of interest to us. 

Examples of mechanisms that can be adapted include various cache parameters such as associativity and 

replacement algorithm, prefetch methods, number of tiles used in a computation, and the presence or 
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absence of coding or compression when transmitting data. Recent research on reactive synchronization 

[9][10] is another example of adaptation in which the waiting algorithm was tailored at run time to the 

observed delay in lock acquisition. 

Self healing is an extremely important special case of adaptation. We give it independent billing 

because in the future era of multiple billions of transistors on a chip and deep submicron technologies, 

continuous correct operation in the presence of transient and hard failures will become a basic 

requirement. Thus a self healing system can use introspection to observe where errors are occurring and 

perform appropriate adaptation to fix the problem. For example, if errors are seen during data 

transmission on a given link, then the system can use one of two mechanisms to self heal. (1) It can use 

introduce coding to correct errors, or (2) it can cause messages to be rerouted to bypass the faulty region. 

The same technique can be used in caches to turn off cache banks that are producing errors. 

Much like in the DARPA Polymorphic Computing Architectures program, self-aware 

computation applies to all levels of a computer system including computer architecture, VLSI chip 

design, operating systems, runtime software systems, compilers, programming libraries, and applications.  

3 Summary of Accomplishments 

The following is a summary of the major accomplishments achieved by this project.  They will be 

described in detail later in the report. 

 

1. Created a comprehensive vision for self-aware systems including key attributes, components, and 

interfaces.  Prepared a detailed presentation describing this vision and offering many specific 

examples of ways that self-aware concepts can be incorporated into computing systems. 

2. Designed the architecture for a self-aware Organic Operating System (OOS) including key 

components, interfaces, and required hardware support. 

3. Developed the Evolve architecture and Partner Cores methodology to allow secondary cores on a 

multicore processor to observe and optimize the operation of a primary application core.  

4. Created the Organic Template Library (OTL) which extends the C++ Standard Template Library 

with adaptive, self-optimizing data structures.  These structures are able to dynamically adjust 
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various aspects of their underlying implementation including: the size of storage elements, the 

distribution of data across parallel nodes, and the internal organization of data (e.g., list vs. tree). 

5. Developed the concept of an Organic Cache which is composed of a single pool of memory that 

can be partitioned between data and instruction usage.  Studied different algorithms for 

dynamically adjusting the partitioning during runtime and evaluated performance on several 

benchmarks. 

6. Designed and began the implementation of fos, a “factored” operating system for large scale 

multicores.  fos is designed from the ground up to be highly scalable, adaptable, and resilient by 

implementing OS services (e.g., memory allocation, file systems, etc) as collections of 

cooperating servers distributed across a multicore chip.  While fos is designed for a broad range 

of systems (not just self-aware systems), this project played a significant role in shaping some of 

its mechanisms and services. 

7. Created KLab, a new large-scale, distributed multicore simulator based on Intel's Pin dynamic 

binary translator.  This (partially complete) simulator allows us to simulate chips containing 

thousands of cores using a cluster of commodity workstations.  The simulator uses flexible 

models of processing cores, caches, cache-coherence directories, on-chip networks, and DRAM 

that allow us to implement and experiment with new self-aware hardware components.  For 

example, models of organic caches have been added to the simulator. 

4 Accomplishments and Progress 

This project identified and investigated several different techniques and mechanisms that can be used to 

build self-aware computer systems.  They are described briefly in the following paragraphs.  They can be 

applied individually to add self-aware capabilities to existing systems or all together to form a new type 

of self-aware computer system. 

The heart of a complete self-aware system is a new “organic” operating system (OOS).  The OOS 

acts as the ringleader, monitoring applications and making adjustments to hardware and software to 

increase performance, efficiency, and reliability automatically.  
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The Partner Cores framework provides mechanisms that allow secondary cores to monitor the 

execution of a primary core and perform on-line analysis and dynamic optimization of its application and 

hardware resources. 

The Organic Template Library provides a set of data structures and algorithms (similar to the C++ 

Standard Template Library) that dynamically optimize their own implementations and behaviors.  

Because the OTL uses a standard sequential programming interface it is a good example of a self-aware 

technology that can be put use in today's existing systems.  

An Organic Cache is a new hardware mechanism that allows a shared pool of local memory to be 

dynamically partitioned between different L1 caches and buffers.  It is an example of a self -aware 

hardware component that would be managed by the OOS. 

fos is a new type of operating system designed from the ground up for scalability, reliability and 

adaptability in large-scale multicore systems.  It implements all system services using sets of servers 

distributed across multiple cores.  fos provides an excellent framework on which to build a compete 

organic operation system. 

KLab is a new distributed, parallel simulator for large-scale multicore processors.  It provides an 

experimental testbench that can be used to study self-aware hardware and software ideas. 

 

The following sections describe each of these ideas in more detail. 

4.1 Organic Operating System 

An Organic Operating System (OOS) is the heart of a complete self-aware system.  It monitors 

application execution and hardware parameters and performs adjustments and optimizations to ensure that 

the applications are meeting their goals.  There are four key components of an OOS: the application 

interface, the hardware interface, the analysis and optimization engine, and self-aware system services.  

Figure 1 shows how all of these components come together to form a self-aware system. 
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Figure 1: Organic Operating System (OOS) architecture 

 

The application interface allows applications to communicate their goals and status to the OOS.  

Goals can relate to system characteristics (e.g., minimize energy consumption) or application 

performance (e.g., maintain a certain framerate).  Application-specific performance information is 

delivered to the OOS using a heartbeat.  A heartbeat is a periodic call that the application makes to the 

OOS to ensure that the application is still functioning and making progress.  The OOS can use the 

intervals between heartbeats to measure application performance and verify that it is meeting its goals. 

For example, a video encoding application wishing to maintain a framerate of 30 fps, might make one 

heartbeat call for every frame encoded and specify a goal of maintaining 30 heartbeats per second.  

The application interface is also used to control configurable parameters within an application.  

Many applications can be implemented with a variety of different algorithms or contain adjustable 

algorithmic parameters (e.g., bounds on search or data blocking granularity).  Often the programmer 

cannot be certain which algorithms or parameters will produce the best results at runtime.  Rather than 

arbitrarily picking one, the programmer can implement multiple algorithms and allow the OOS to choose 

between them at runtime.  In the video encoding example, the application could implement different 

algorithms that tradeoff image quality for performance.  If the OOS detects that the application is not 

meeting its framerate goal, it could tell it to switch to a lower-quality but higher-performance algorithm. 

Besides communicating with the application, the OOS needs to be able to monitor and control the 

system hardware.  Future self-aware hardware platforms will contain a variety of sensors and counters to 
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allow introspection.  Individual components will maintain data about themselves and communicate it to 

the OOS.  Examples include temperature, energy consumption, cache miss rates, and utilization.  These 

components will also have control interfaces that allow the OOS to adjust things like hard drive spindle 

speed, frequency, voltage, and cache associativity.  The design of new configurable hardware components 

is a fertile area for future self-aware research. 

The analysis and optimization engine (AOE) is responsible for making optimization decisions 

based on the goals and data it receives from the applications and hardware.  It employs a standard ODA 

(Observe, Decide, Act) loop to continually refine the system's operation and adapt to changing conditions.  

First, the ODA observes the current state of the system using the interfaces previously described.  Next, it 

employs simplified models of component behavior and machine learning techniques to evaluate different 

potential optimizations and select the best options.  Finally, the ODA acts by adjusting device 

configurations, changing application algorithms, or setting policies for system services.  The ODA then 

observes the results of these changes and the cycle repeats.  As the ODA tries different options, it updates 

its internal models and learns how to achieve optimal results.  

The final component of an OOS is self-aware versions of standard system services such as file 

systems, schedulers, and memory managers.  System service policies can have a large impact on overall 

application performance, particularly when multiple applications are running simultaneously.  By varying 

those policies, the OOS can find a better overall result.  For example, the OOS might instruct the 

scheduler to take time from an application that is running faster than needed and give it to one that is 

underperforming.  If all apps are now exceeding their goals, the OOS might be able to lower the clock 

frequency and supply voltage to save energy. 

Due to its unique ability to interact with both the hardware and software in a system, the operating 

system is able to take maximum advantage of self-aware concepts.  The development of sophisticated 

organic operating systems, and particularly intelligent AOE's, is the key to the success of future self-

aware systems. 

4.2 Partner Cores 

Partner Cores [1] is an optimization framework for future computer systems with many cores. Its goal is 

to provide high performance, reliability, and low energy consumption through auto-tuning, insulating the 

programmer as much as possible from the added software complexity it would require to achieve this goal 

manually. 

In the framework, some cores are devoted to running application code while others work as 

helpers or partners. Partners take as input hardware counter and other performance readings from 
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application cores and run decision processes to optimize the execution of the application. Optimizations 

include performance tuning, fault tolerance, and minimizing energy consumption. As an example, a 

partner core can optimize an application's performance by examining its memory reference pattern, 

identifying a good prefetch algorithm for it, and then causing data to be prefetched into the application 

core's cache. 

 

 

Figure 2: Key operations in the Partner Cores framework 

 

The Partner Cores framework (shown in Figure 2) is a hardware and software framework.  

Application cores contain and expose hardware mechanisms for examining execution and monitoring 

various performance, reliability, and energy metrics.  For example, one way of monitoring execution is to 

record traces of memory accesses.  Examples for monitoring performance, reliability, and energy 

consumption include cache miss counters, execution signatures, and power readings, respectively. In 

addition to these observation mechanisms, application cores may contain special interfaces that allow a 

partner core to modify its state or cause events to happen in the background (such as prefetching a cache 

line).  While hardware mechanisms are typically used on an application core, the analysis and 

optimization performed by a partner core is implemented in software.  Typically, all cores would contain 

all of the required mechanisms so that cores can be flexibly assigned to either application or partner tasks.  
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Figure 3: Performance improvement of JPEG application using Partner Cores.  Blue bars 

represent ideal performance, red bars the performance using basic software-caching, and 

yellow bars the performance with software-caching and intelligent partner-core prefetching. 

 

To evaluate the Partner Cores methodology, we extended the architecture of the Raw manycore 

processor [11] to include Partner Core mechanisms and implemented our changes in the Raw cycle-

accurate simulator. As a case study, we implemented the partner core prefetching idea combined with a 

software data-caching scheme.  Using a synthetic benchmark application modeled after JPEG image 

encoding, a partner core is used to implement a prefetching algorithm that is “aware” of the pixel block 

data structure used in the JPEG algorithm. As shown in Figure 3, for three different machine models 

representing a high-performance desktop, a mid-range desktop, and an embedded system, the partner 

cores approach achieves nearly optimal performance (as though all data were already in the cache).  

The Partner Cores framework provides mechanisms for a wide variety of different optimizations 

and makes it possible to leverage the huge number of cores available on manycore processors to enhance 

existing sequential applications. 

4.3 Organic Template Library 

We have developed a software library of common data structures and algorithms that programmers can 

use to make parallel programming easier. We call it the Organic Template Library (OTL). OTL applies 

bio-inspired adaptation strategies to auto-tune itself during program execution to optimize performance, 
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parallelism, and power consumption so that programmers need not manually address these issues.  OTL 

has been implemented for the Tilera TILE64 platform [12][13][14]. 

OTL is patterned after the ISO C++ Standard Template Library (STL) [15] in that OTL's 

interfaces for data structures and algorithms are similar.  The OTL's interfaces present a sequential 

programming model but the underlying implementations are parallel. For suitable application domains, 

the sequential programming model provides a convenient abstraction that allows the programmer to 

ignore the complications of parallelism. 

Under the hood, OTL's implementations are very different from STL's.  OTL components 

dynamically self-optimize in response to runtime conditions and performance feedback, and they adapt to 

environmental factors such as input data characteristics and the availability of system resources. Some 

example observables analyzed during optimization are execution times, cache miss rates, memory load, 

network congestion, API usage history, and input data samples.  

 

 

Figure 4: Key components of the Organic Template Library 

 

The Organic Template Library consists of three parts: a client API, a server runtime system, and 

one or more data structure nodes (see Figure 4). The client API gets compiled into the user code. The 

runtime system and data structure nodes run alongside the user code concurrently on separate processors. 

The client API is the user code's interface to its OTL data structures. The client API shepherds user data 

structure method calls or algorithm calls to the runtime and responses from the runtime back to the user 

code. The runtime transparently manages the parallel workings and dynamic adaptation of the OTL. It 

translates user requests into commands which get issued to the data structure nodes. Taken together, the 

data structure nodes provide a distributed implementation of the OTL data structures and algorithms used 

by the user code. Object data is distributed across the nodes and the nodes contain code to carry out 

commands from the runtime. 
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Figure 5: Invocation and mechanics of an OTL operation 

 

Figure 5 illustrates the mechanics of how a call to a method or algorithm operation in the client 

API gets executed in parallel by the runtime and data structure nodes.  This example makes use of several 

organic containers and algorithms (e.g., ovector, oaccumulate).  These routines provide the same 

functionality and external interfaces as their standard STL counterparts (found by removing the leading 

“o” in the name) [15].  In the example, the user code instantiates an ovector, fills it with sample data, then 

normalizes that data. Normalization uses the oaccumulate and ofor_each algorithms. The example walks 

through how the OTL handles the first call, the oaccumulate call. First, the client API conveys what the 

user code wants to do to the runtime and waits for the action to complete. Then, the runtime looks up the 

ovector named “data” in a directory and sees that it is distributed across four data structure nodes. The 

runtime instructs each node to accumulate the data stored there and report the result back to the runtime. 

The data structure nodes do as instructed and then the runtime accumulates their subtotals and forwards 

the final total back to the client API.  Finally, the oaccumulate call returns the value to the user code.  

The runtime contains a runtime engine for each type of data structure supported in the OTL. Each 

runtime engine is responsible for controlling the adaptation of any live OTL objects of its type. The 

implementation of runtime engines varies somewhat from one data structure to the next since each data 
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structure presents unique challenges and optimization opportunities. In general, however, a runtime 

engine draws from a specific basis of execution-time observables from which it is able to infer which 

choices it should make about algorithms, data organization, and parallelism. The runtime engine keeps a 

trace of data structure method and algorithm operation calls. It records performance statistics such as 

execution times, cache miss penalties, memory load, and network congestion by instrumenting the code in 

the data structure nodes. It samples object data (input characteristics) to discern its properties. Finally, the 

runtime monitors time-varying environmental factors such as a power budget or competition for resources 

among concurrently executing applications. 

The trace of API calls gives information about the way data structures and algorithms are being 

used (e.g., the relative frequencies of ofind and oinsert operations in a omap) which impacts what internal 

data organization should be used (a tree, list, or other). Performance feedback can be used to infer which 

algorithm is best in a specific situation (e.g., which method of data partitioning and placement is highest 

performing for a particular hardware platform under a specific set of runtime conditions). Performance 

feedback can be combined with API call tracing to infer load at each processor and allow the runtime to 

redistribute computation. Input sampling can be used for algorithm adaptivity (e.g., an ovector of data that 

is fairly pre-sorted already may be faster to sort using one method despite the fact that another method 

may be better in the general case). Finally, information about environmental factors enables the runtime 

to improve overall system performance or efficiency by adjusting the parallelism of its data structures.  

 

 

Figure 6:  Performance of Deep Packet Inspection application under various workloads 
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To evaluate the OTL, we studied an important application in computer networking and security 

called deep packet inspection [16]. Deep packet inspection is a form of packet filtering that searches 

through the data and header of a packet, typically detecting and blocking things like intrusions, viruses, or 

spam or keeping statistical information for data mining. Using the OTL, we built a spam-blocker that 

searches packets for spam keywords and keeps statistics about packet sources to increase detection 

confidence. Statistics are associated with a packet identifier and stored in a map, an OTL omap. The omap 

API provides a callback that allows the programmer to remotely execute a kernel on a <key, value> pair. 

In this case, we use the pattern matching function as the callback. Internally, the omap intelligently load 

balances lookups and packet inspection computation across data structure nodes.  As shown in Figure 6, 

OTL achieves up to 13x performance improvement over a baseline implementation across various input 

traffic patterns and levels of inspection detail.  The baseline implementation is identical to the omap with 

optimizations turned off (e.g., static data layout versus dynamic migration). 

4.4 Organic Cache Memory 

A typical modern processor (or core) contains several small memories including an instruction cache, a 

data cache, a TLB, and even a branch predictor.  One of the tasks of a processor designer is to choose a 

size for each of memories, given a fixed total budget.  However, different applications can place very 

different demands on these memories.  For example, one application may execute a very small kernel of 

code that processes a huge amount of data, while another may execute a very long and complex algorithm 

on a small array.  The first application needs very little storage for instructions but would benefit greatly 

from a large data cache.  The second application has just the opposite needs.  Therefore the fixed sizes 

chosen at design-time are always a compromise and are seldom ideal for any particular application.  

 

 

Figure 7: Organic cache memory 

 

Processor 

Pipeline

Organic

Manager

Mem Pool

BP

D$ci

co

Hit Logic

d

d
a

a

I$

TLB



 16 

An “organic cache” is a single memory that can be dynamically partitioned among multiple uses 

as shown in Figure 7.  It replaces all of the small memories in a processor with a flexible pool of memory 

that can be allocated to whichever use provides the most benefit at a given time.  For example, a 32 KB 

organic cache could be configured to provide 16 KB of instruction cache and 16 KB of data cache or 4KB 

of instruction cache and 28 KB of data cache.  This reconfiguration can be performed between 

applications or even dynamically within an application as it enters different phases of execution.  An 

organic cache would allow a self-aware computer to automatically and transparently optimize the sizes of 

its caches and buffers to perfectly suit a program's needs.  

To evaluate the benefits of an organic cache, we modified the Raw and KLab (see Section 4.6) 

simulators to include a cache that can be adjusted to trade-off instruction versus data capacity.  The sizes 

of the two caches are adjusted by changing their associativity.  For example, the organic cache can be 

configured as two 4-way set-associative caches or a 3-way cache plus a 5-way cache or a 2-way cache 

plus a 6-way cache, etc.  Both caches always have the same number of lines so changing the number of 

ways in each line changes their total capacities.  

 

Table 1: Performance of an organic cache on the MPEG2 benchmark 

Cache Configuration <I/D> I$ misses D$ misses  DRAM accesses Savings over 32k/32k 

Static Configurations     
<32k/4-way, 32k/4-way> 6658  414342  421000  0.00%  

<24k/3-way, 40k/5-way> 7815  392185  400000  4.99%  

<16k/2-way, 48k/6-way> 15949  385051  401000  4.75%  

<8k/1-way, 56k/7-way> 118417  382583  501000  -19.00%  

Dynamic Configuration     
init: <32k/4-way, 32k/4-way> 7747 391253 399000 5.23% 

 

Table 1 shows the benefits of an organic cache on the MPEG2 benchmark from the Mediabench 

suite [17].  The static configurations keep the division of resource constant during the entire program run.  

They essentially show the benefit of being able to customize the sizes of caches for a particular 

application.  The dynamic configuration shows what happens when we allow the split between in struction 

and data caches to change dynamically at runtime.  The caches are initialized to the 32k/32k configuration 

but the boundary is adjusted using a heuristic that pushes the I-cache smaller until the miss rate increases 

significantly.  Even using this simple heuristic, the dynamic configuration outperforms all of the static 

configurations. 



 17 

4.5 fos: A Factored Operating System 

4.5.1 Overview 

fos [18] is a new portable operating system designed from the ground up for scalability and targeted at 

1000+ core systems.  The main feature of fos is that each service that the OS provides is built like a 

distributed Internet server.  Each service is implemented by multiple server processes which are spatially 

distributed across a multicore chip.  These servers collaborate, exchange information and, in aggregate, 

provide the overall system service.  fos distributes both high-level services as well as low-level services 

and data-structures typically found deep in OS kernels such as physical page allocation, scheduling, and 

memory management. 

fos provides an excellent foundation for implementing new self-aware applications and OS 

services.  The distributed nature is ideal for creating self-aware services that can observe and optimize an 

application as it runs.  These services run on cores that are separate from the application, thereby allowing 

continuous monitoring of the application without stealing resources from it.  

Implementing an OS kernel as a distributed set of servers has many advantages.  First, internal 

OS communication is made explicit and exposed, thus making it easier to troubleshoot and optimize.  

Second, the number of servers can be varied based on the number of cores or other system characteristics, 

providing scalability and the ability to adapt to changing conditions or demands.  Third, because servers 

run on dedicated cores, the operating system and application do not compete for local resources such as 

caches and TLBs.  Finally, because there are multiple servers for each service, there are no single points 

of failure in the system.  If an OS or user core has a failure, one of several introspection cores will 

observe the problem and cause the affected server or application code to be restarted on a different core.  

4.5.2 Architecture 

A factored operating system environment is composed of three main components: a thin hypervisor, sets 

of servers that together provide system services (which we call the OS layer), and applications that utilize 

these services.  The lowest level of software management comes from the hypervisor.  A portion of the 

hypervisor executes on each processor core to control access to resources (protection) and provide a core-

to-core communication API.  Applications and servers execute on top of the hypervisor and share core 

resources with the hypervisor. 
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Figure 8: Example of fos OS and application clients executing on a large multicore processor  

 

The OS layer is composed of sets of function-specific servers.  Each core operating system 

function is provided by a different set made up of one or more servers.  For instance, there is a set that 

manages physical memory allocation, a set that manages file system access, and a set that manages 

process scheduling and layout.  As shown in Figure 8, the servers within a set are distributed across the 

multicore chip to provide local access for the cores in their areas.  By default each server executes solely 

on a dedicated processor core.  Servers communicate only via the messaging interface provided by the 

hypervisor layer. 

In fos, an application executes on one or more cores.  Within an application, cores may 

communicate using either shared memory or messaging, depending on what the hardware supports.  The 

OS layer uses only explicit messages (which can be implemented efficiently on both shared-memory and 

message-passing machines) for internal communication.  When an application requires OS services, the 

underlying communication mechanism is via hypervisor messaging.  A more traditional system-call 

interface is exposed to the application writer and a small translation library is used to turn system calls 

into messages to an appropriate server. 

Currently a basic fos hypervisor has been implemented.  It contains a messaging API with 

messaging layer allowing servers to communicate.  A spawning and memory management API has been 

developed and is being added into the fos hypervisor.  A proof-of-concept system service has been built 

and runs within fos.  More advanced system services are currently being developed.  fos is currently 

running on x86_64 hardware and emulators, but is designed to be easily ported to other architectures.  
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When ready, fos will be released to the open source community to foster additional research on self-aware 

multicore systems. 

fos will be the basis for a new self-aware operating system.  System servers will be developed that 

can detect the run-time needs of the application mix and spawn new servers to meet application 

requirements.  By changing the number of servers dedicated to each service, fos is able to scale itself up 

or down as needed.  By building the appropriate interfaces into these services, fos will be able to optimize 

itself and the applications it is running to meet their runtime goals and requirements. 

4.6 KLab Multicore Simulator 

To experiment with new self-aware hardware mechanisms and massive multicore processors that do not 

yet physically exist, we have developed the KLab multicore simulator.  KLab is a fast, flexible simulator 

designed to simulate future large-scale multicore processors on today's multicore servers.  To achieve the 

performance necessary to effectively simulate such large systems, KLab was designed from outset to run 

in parallel across a cluster of servers. 

KLab is implemented using Intel's Pin dynamic binary instrumentation infrastructure [19].  Pin 

allows one to modify an application as it is running.  Using Pin, we can allow the majority of the 

application being studied to execute directly on the host machine for maximum performance.  Where 

there are differences between the host machine and the simulated machine, Pin is used to insert code to 

simulate the new experimental features.  Pin can also insert code into the program to model the 

performance of the application on the simulated system. 
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Figure 9: Core-to-thread mapping in the KLab simulator 

 

As shown in Figure 9, KLab has been designed to take advantage of the parallelism of host 

architectures such as multicores or clusters. It models each core within the simulated system using a 

separate kernel thread, independently schedulable by the OS. The OS maps the threads to the host 

hardware, enabling the simulator to exploit the available parallelism. Cores (threads) communicate using 

calls to a simple API which represents the intrinsic capabilities of the simulated architecture, e.g., 

broadcast, point-to-point message-passing, etc. KLab replaces API calls within the application with calls 

to simulator functions that implement the corresponding functionality and update the simulation clock of 

the appropriate cores using a model of the communication cost. The implementation of the API functions 

within the simulator depends on the communication mechanisms available on the host architecture.  For 

example, the implementation of inter-core communication uses buffers in shared memory for threads on 

the same machine and MPI over Ethernet for threads running on different machines in a cluster. 

We have chosen to base our multicore simulator on Pin because it offers several advantages over 

creating our own simulator from scratch.  First, the Pin infrastructure is reliable: it is mature, robust, and 

well-supported. Second, it is high performance: it natively executes application code on the host hardware 

rather than interpreting it. Third, using Pin shortens our simulator toolchain development time: it allows 

us to use existing tools for compiling multicore applications (gcc, binutils, etc.) instead of having to 

develop them ourselves. 
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5 Conclusions and Recommendations for Future Work 

This project has defined the key components of a self-aware computer system and investigated several 

promising examples of those components.  We believe that the rapidly growing complexity of modern 

machines combined with the massive quantities of computational resources those machines provide has 

created the perfect setting for self-aware systems.  Whereas existing systems are designed to simply 

follow instructions, future systems must be intelligent to help the programmer deal with their baffling 

complexity.  Happily, that complexity also means that there are plenty of resources available (in the form 

of cores or transistors) to implement that intelligence.  Self-aware systems are the key to maximizing 

performance and efficiency while increasing programmer productivity.  

The field of self-aware computing is in its infancy and therefore there is plenty of room for future 

research.  The most important (and challenging) goal is the development of intelligent algorithms for 

making optimization decisions.  Fortunately there is already a large body of work in machine learning that 

can be applied to these problems [20][21][22]. 

However, before we can make optimization decisions, we need to have quality information.  

Therefore the development of good APIs for communicating goals, capabilities and status is also crucial.  

In particular, the concept of an application heartbeat is a simple but powerful of idea that warrants 

additional study.  Where should heartbeat calls be inserted into a program?  What information sho uld be 

passed to the OS with each heartbeat?  How should goals be specified in terms of heartbeats?  

Even perfect optimization decisions are useless without parameters to tune.  Additional research is 

needed in flexible, configurable hardware and software components that will give the OOS something to 

adjust.  We believe that some of the enormous quantities of transistors that will be available in future 

chips should be applied to make systems easier to use instead of simply providing raw resources (such as 

additional cores).  Hardware components that can monitor and report on their own behavior and morph 

themselves into different modes will make self-aware systems much more efficient. 
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7 List of Symbols, Abbreviations and Acronyms 

AOE – Analysis and Optimization Engine 

API – Application Programming Interface 

D$ – Data cache 

DARPA – Defense Advanced Research Projects Agency 

DRAM – Dynamic Random-Access Memory 

FFT – Fast Fourier Transform 

fps – Frames Per Second 

I$ – Instruction cache 

IPTO – Information Processing Techniques Office (division of DARPA) 

ISO – International Standards Organization 
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ITS – Intrusion Tolerant Systems 

KB – Kilobyte 

MPI – Message Passing Interface 

ODA – Observe, Decide, Act 

OOS – Organic Operating System 

OS – Operating System 

OTL – Organic Template Library 

STL – Standard Template Library 

TLB – Translation Lookaside Buffer 

VLSI – Very Large Scale Integration 
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2

 Current systems are procedural

 Their behavior is pre-programmed

 Based on guesses about resource 
availability 

 Ill-suited to complex multicore systems

 Results in sub-optimal performance in the 
face of changing conditions

 Self aware systems learn how they can be 
used to address a particular problem

 Respond to user goals 

 Build self-performance models

 Identify what they needs to learn

 Adapt to changing goals, resources, 
models, operating conditions

 Gracefully adapt to failures

 Optimize their own behavior 

Characteristics of Self-Aware 

Systems

Act

Do it

Observe

Decide Act

27



3

Outline

 Introduction

 Vision and Goals

 Limitations of Today‟s Systems

 How to Build a Self-Aware System

 Why Now?

 Potential Impact

 Program Timeline
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System Complexity Becoming 

Unmanageable
 System complexity is increasing rapidly

 Multicore architectures with parallelism and 
heterogeneity at many levels

 Distributed, deep, and heterogeneous memory 
hierarchies

 Special-purpose functional units and special 
instructions

 Unreliable components (hard and soft errors)

 Physics introducing new constraints such as power, 
energy and wire delay

 Traditional abstraction layers are failing
 The ultra-wide sequential superscalar processor is 

dead. Multicore and parallelism are the future

 Additional complexity is dumped on programmers‟ 
shoulders

 Complete system models are nuance-ridden and too 
complex to comprehend

 Programmers cannot make efficient use of the 
available resources

 Too many possible failure modes to anticipate

 Current abstractions and APIs do not comprehend the 
new constraints

 Static and brittle designs – currently developer 
must anticipate all mission and system dynamic 
changes
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The Consequences

 Programming has become very difficult
 Our programming models are in the dark ages

 Parallel programming requires experts

 Impossible to balance all constraints manually

 Suboptimal results

 Systems are too complex for programmers to understand

 Programmers have no idea how to optimize energy utilization

 No program portability
 Impossible to write programs that perform well on a large 

variety of machines

 Failure rates are increasing
 Smaller devices more susceptible to cosmic rays, 

manufacturing variations, electromigration, thermal variations

 With huge numbers of devices, even low-probability events 
happen frequently

 Anecdotal evidence that today‟s servers fail routinely –
software often blamed

 Development costs are skyrocketing

 Verification and validation is increasingly challenging

 Code development and optimization taking a lot longer

 The n-squared problem: Each new environment needs 
independent validation and optimization

 Several validation engineers to a single developer
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Outline

 Introduction

 Vision and Goals

 Limitations of Today‟s Systems

 How to Build a Self-Aware System

 Why Now?

 Potential Impact

 Program Timeline
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The Vision: Self-Aware Computing

Self-Aware Computing – a computing paradigm characterized 
by systems that can observe their runtime behavior, learn, 
and take actions to meet desired goals

A self-aware system is

 Introspective

 Observes itself, reflects on its behavior and learns

 Goal-oriented

 Tell computer what you want, computer‟s job to 

figure out how to get there

 Adaptive

 System analyzes the observations, computing the 

delta between the goal and observed state, and 

takes actions to optimize its behavior

 Self-healing

 System continues to function through faults and 

degrades gracefully

 Approximate

 System does not expend any more effort than 

necessary to meet goals

Observe

Decide Act

Learner

Perf. Models
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A Self-Aware Computing System

 An Organic Operating System (OOS) is a key enabling technology for self -aware systems

 OOS includes learning based ODA loop to optimize resource management

 Observation and control interfaces added to all apps, SW and HW components. 

 Observe temp, heartbeat/performance, miss rates, queue lengths, util. of resources, etc.

 Control alg., #cores allocated,  cache config, scheduler policy, affinity, freq., precision

 Application communicates goals and options to OOS

 OOS uses component perf. models to decide how best to meet goals under given system constraints (e.g. 
performance, quality, temp, power)
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The Possibilities…

 Imagine a 1K-multicore serving up a 
computational video application that runs cooler 
and produces higher quality video the longer it 
runs

 Imagine a piece of code that can run on a 
massive multicore server producing high-quality 
results while meeting a real-time goal …

… and can also run on a 4-core handheld radio 
meeting the same real-time goal, but 
compromising somewhat on result quality
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Self-Aware Computing Goals

 To build general purpose systems that can meet targets 
(such as performance, reliability, power) while satisfying 
certain constraints (power, energy, area) under changing 
mission conditions and dynamic ground situations

 To build easy-to-program systems where the user does not 
have to understand the interaction between system 
components and write code for every specific combination of 
conditions, and where the programmer does not have to 
maintain a complete system model in their mind

 To build portable systems where the user does not have to 
manually redesign, rewrite, and retune code for each new 
system or environment, where the system automatically 
optimizes for different platforms

 To build systems that are automatically resilient to faults

Rethinking computer systems to reflect 21st

century constraints and opportunities
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Self-Aware Computing Program

 Although creation of complete self-aware systems is the ultimate goal, this program takes the 
first steps by developing the key enabling technologies including an Organic OS and minimum 
set of related components and APIs. Specifically, this program will create:

 1. Self aware operating system – rethink operating systems from the ground up

 2. Software and hardware components minimally enabled for operation within a self -aware 
system

 3. APIs for self-aware interactions

 1. Develop brand new self-aware operating system: OOS
 Experimental, research-grade implementation

 Complete Observation, Decision making, and Action engine (ODA loop)

 Evaluation of various competing technologies for learning and decision making

 2. Develop performance models and prototypes of software and hardware components 
required to support OOS, for example:
 Observable and controllable schedulers and device drivers

 Applications that establish goals and targets for performance and reliability

 Adaptive, introspective data structures

 Reconfigurable caches that report miss rates, utilization, etc.

 Adaptive I/O (adjustable voltage/frequency)

 3. Develop APIs for communication with components and applications
 For applications to communicate their goals, configurable parameters, and internal component models 

to the OOS

 For OOS to receive status information from software and hardware components and control their 
configurations

 How to access and organize the massive amounts of data that the software and hardware can collect
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Present Day

 With some exceptions, mostly 
procedural approach to all aspects 
of computing

 Behavior is completely specified 
ahead-of-time by programmer or 
system developer

 User manually applies goals and 
constraints to each individual 
component, not to system as a 
whole

 This problem applies to architecture, 
runtimes, compilers, operating 
systems, languages

Procedure
while(foo) 

{

sched += bar;

foo = hrs – 1;

follow yellow line;

…

printf;

}

Computer 

System
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A Contrast – Self Aware vs 

Procedural

Observe

Decide Act

Self Aware Procedural

Self-aware frameworks 

show the characteristic 

ODA loop

Procedural 

frameworks run open 

loop 

Act

Do it
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Current Operating Systems

 Procedural: Responds to immediate requests (via system calls) from apps

 Runs open loop: No feedback from hardware/software (inferred from requests)

 No long-term goals or performance model to guide decisions
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Processing Core

Disk I/O

Devices

App 1 App 3App 2

Memory

Management

File

System

Device

Drivers
Scheduler

System Call

DRAM

App 2

App 1

App 3

Idle/Busy

Processing Core

Cache CacheAct

Do it
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What’s Wrong With This

 No automatic adjustment to conditions

 Computer blindly follows instructions

 Programmer is responsible for any 
dynamic behavior

 Programmer must anticipate all possible 
operating conditions

 Different quantities of resources

 Different energy envelopes

 Unexpected input/mission 
threats

 Poor code portability

 Not fault tolerant

 Programming model assumes all parts 
work perfectly 
at all times

 Impossible for programmer to consider 
all possible failure modes 

 Whole-system checkpointing with 
rollback is not practical for real-time 
systems or frequent errors

 Non optimal

 Individual component optimization is non 
optimal

 Need to overprovision resources in all 
dimensions

 User must manually compose 
constraints into a global end to end 
number
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The Result?

 Programming difficulty and effort is exploding

 Systems becoming too complex to internalize

 All this complexity is pushed to the programmer

 Programmer is responsible for handling all possible 
conditions/failures

 Very difficult to understand the interaction of all constraints

 Systems are expensive and fragile

 Overprovisioning of resources in all dimensions results in expensive 
systems

 Even slight variations in deployment conditions result in 
unpredictable behavior and errors

 In reality, programmers cannot handle this today

 Unhandled exceptions, latent bugs

 Programs must be rewritten/reoptimized to run on different 
machines

 Most applications are not fault-tolerant
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A Remote Briefing Example

 Situation

 Imagine a videoconferencing system painstakingly 
tuned for highest quality (e.g., 1080p resolution) for 
remote briefings between situation rooms using 
networking links with guaranteed QOS

 Suppose we want to port the system for briefings to 
soldiers in the field using energy-efficient handhelds 
with lower quality (e.g., QCIF resolution)

 The present day

 First, porting the software is a huge effort

 Second, even with an expensive port, it will drain 
the power of the handheld in minutes

 Further, video is unusable, because it is jumpy due 
to uneven frame rate caused by variable link 
conditions

 Self aware systems

 A self-aware system, on the other hand, would 
allow us to run the same application on the 
handheld without a porting effort

 It would adapt to the new screen resolution 
automatically, lower video quality and meet an 
energy constraint using energy optimized 
algorithms, and maintain an even framerate using 
interpolation

Soldier With Handheld

Situation Room 

Telepresence
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A Supercomputing Example

 The situation

 Imagine a supercomputer built out of a large number of 
components

 Suppose it must perform a long running computation

 The present day

 The programmer must program in resilience (i.e., manually code to detect there 
is an error, for example due to a wire break due to metal migration in some 
component)

 The programmer must introduce code for checkpointing, error detection and 
rollback for each application. This approach is static, complicated, and error 
prone

 Because it is static, system performance degrades significantly as the faulty 
component causes frequent errors and rollbacks. The system may also require 
a manual diagnostic check to remove the faulty component

 Self aware systems

 Self aware system is automatically resilient to faults and requires no manual 
checkpointing

 It will dynamically localize the error through self checks, and route around the 
faulty link
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Outline

 Introduction

 Vision and Goals

 Limitations of Today‟s Systems

 How to Build a Self-Aware System
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 Potential Impact

 Program Timeline
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The Inspiration

Nature abounds in complex, 

highly-parallel systems that are

 Adaptive

 Self-healing

 Evolving

 Goal-oriented

… while our engineering 

disciplines approach systems 

using

 Predetermined algorithms

 Manual procedural programming

 Deterministic (understandable) 

global state models

 Fragile assumptions (“all parts 

work”)46
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Organic Operating System (OOS)

 OOS includes learning based ODA loop to optimize resource management

 Observation and control interfaces added to all apps, SW and HW components. 

 Observe temp, heartbeat/performance, miss rates, queue lengths, util. of resources, 
etc.

 Control alg., #cores allocated,  cache config, scheduler policy, affinity, freq., precision

 Application communicates goals and options to OOS

 OOS uses component perf. models to decide how best to meet goals given global system 
constraints (e.g. performance, quality, temp, power)
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Processing

Cores

Operation of a Traditional Computer 

System
O

S

Disk I/O

MMSched.

DRAM

App1

FS DD

OS schedules an app to run on a 

core and then transfers control

App runs freely and makes calls to 

OS services as needed

OS only gets involved when app 

requests it, or to switch to new app

App2

App is solely responsible for its 

behavior and performance.  Any 

adaptability or fault tolerance must be 

explicitly pre-programmed

App has only a limited ability to adapt.  The OS “owns” the 

hardware and would need to be involved in any changes (e.g. 

change of clock freq., cache assoc., disk speed).  However, 

this support does not yet exist Execution Time

Energy constraint

P
e
rf

o
rm

a
n
c
e

faultApp performance

Performance

goal range
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Operation of a Self-Aware Computer 

System
O

O
S

Disk I/O

MM

S
c
h
e
d
.

Processing

Core

DRAM

App1

FS DD

OOS still provides basic services and 

application scheduling
App2

OOS monitors application status, 

performance,  and progress through 

heartbeat monitor

ODA queries apps and components to 

check on goals, temp, power, etc.

Apps use new self-aware API to pass 

goals and performance parameters to 

analysis & optimization engine

O

D A

Learner

Reasoner

Updating
Knowledge
DB

ODA uses component models and 

machine learning to predict effects of 

changes and to decide how to adapt

ODA acts by making changes in various 

system components and applications 

through self-aware APIs

Switch from full 

motion search to 

diamond search

Execution Time

Energy constraint

P
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self-aware
performance

fault

Performance
goal range
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Example 1: Remote Briefing on 

Traditional Computing System

Video system originally tuned for telepresence using 

256 cores, moved to handheld radio with 32 cores. 

System misses real time goals, batteries drain in 

minutes

iDCT optimized

for 16 tiles 
Precompiled

Motion

estimation with 

full search

High cache 

miss rates

Traditional System

Traditional OS
Runs application 

open loop 

Clock slowed due to high 

temperature and low energy

Temperature rises to 150oC,

and battery also drains

Rate starts on target at 30 

fps

Rate falls to 3 fps, video

becomes jerky and unusable, 

and batteries run out in minutes 

Execution Time

Energy constraint

P
e
rf
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n
c
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faultApp performance

Performance

goal range
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Example 1: Remote Briefing on

Self-Aware Computing System

Self aware video system originally built for telepresence, 

moved to handheld radio. System will adapt to smaller 

display, lower bandwidth link conditions, and energy 

constraints

iDCT optimized

for x tiles 

JIT

compile for 

n cores

Motion

estimation with 

m possible 

search algorithms

manage

cache for 

missrate goal m 

Self-Aware System

Organic OS (OOS)
monitors video quality 

and rate, and

assigns subgoals 

Heartbeat

Cache miss rate 4%

1M frame matches 

per second

Crunch, crunch, 

crunch…

Increase associativity

Temperature 104oC

Use diamond search

instead of full search

Rate drops to 24 fps „cos clk 

reduced to meet energy

constraint: 25% below target

Rate rises to 33 fps, but

diamond search results in 

slightly poorer quality

Observe

Analyze

Optimize

Observe

Decide Act

Learner

Perf. Models

Execution Time

Energy constraint

P
e
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o
rm

a
n
c
e

self-aware
performance

fault

Performance
goal range
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Example 2: Process Scheduler in 

Traditional OS

 Scheduler multiplexes a set of applications onto a set of cores

 Applications have no affinity for particular cores

 Threads just get the next available core and can move randomly

 Apps/threads are swapped at fixed intervals

 Not sensitive to application‟s requirements

 No communication about the amount of parallelism 
available/needed

 App creates some number of threads (maybe too many or too 
few) and throws them over the fence to the scheduler

App 1

App 2

App 3
Execution Time

App1P
e
rf

o
rm

a
n
c
e Traditional

Goal range

App2

Improper allocation  missed goals

Traditional slows entire

chip when over-heated
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Example 2: Intelligent Process Scheduler 

in

an OOS
 Scheduler uses spatial information to allocate cores to 

applications

 Applications communicate goals and parameters to OOS

 OOS monitors core temps and app performances (via heartbeats)

 Scheduler reallocates resources to meet applications‟ needs
 Allocate more cores to applications not meeting goals

 Remove cores from applications exceeding goals

 Reduce clock frequency on hot and/or lightly loaded cores

 Migrate apps to improve communication locality or reduce hotspots

 Continuous readjustment based on changing needs and goals

O

D A OOS

App1

App2App2
Intelligent

Scheduler

Learner

Performance

Models

Decision Tree

Need to develop models and learning 

algorithms to decide which actions to 

take, e.g. migrate vs reduce freq.
Execution Time

App1P
e
rf

o
rm

a
n
c
e

Self-aware

Goal range

App2

Cores reallocated

Self-aware

migrates
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Example 3:  Traditional HW  

Fixed-Size Local Memories

 Current processors have several separate physical 
memories in each core

 Instruction and Data Caches

 Branch Prediction history table

 Translation Lookaside Buffer (virtual memory mapping cache)

 Fixed allocation of space selected by processor designer

 Fixed-function, managed by hardware --- no opportunity for 
operating system to reconfigure or optimize behavior

Traditional

OS
TLB

BP
D-$

Processing Core

I-$
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co

ci

Example 3: Self-Aware HW 

Reconfigurable Memory Pool

OOS

 Each core contains a pool of local memory that can be allocated 

to instruction and data caches, branch predictor, and TLB

 OOS monitors miss rates in I$, D$, BP, TLB via probes P i

 OOS includes performance and energy models for each 

component

 OOS composes component results into global performance 

model

 OOS searches configuration space for optimal strategy

 OOS reallocates resources (using component API) for maximal 

performance or power efficiency P1

P2

P3

size

p
e
rf TLB

size

p
e
rf BP

size

p
e
rf I$

size

p
e
rf

D$

D$, TLB yield best return
Mem Pool

TLB

BP

I$

D$

Logic

Challenge: Our field needs to 

develop analytical and empirical 

models for each component

Challenge: Need fast methods 

for solving this constrained 

optimization problem

Learner

O

D A

Perf. Models

Challenge: Need to develop 

configurable software and 

hardware components
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Intelligent ODA Loop

 ODA loop in the operating system 
involves observing the situation 
(O), decision making (D), and 
taking action (A)

 Decision making (D) is a key 
component  involving learning, 
knowledge acquisition, and 
reasoning
 Learning algorithms update 

knowledge DB with system and 
application status

 Knowledge examples
 Situational; Eg. system alarms
 Temporal patterns; Eg. System 

phases
 Experience-based; Eg. cases, 

outcomes
 Performance-based; Eg. System 

and application models
 Operational; How to do it
 Remedial/diagnostic; How to fix it 

 Reasoning algorithms reference 
knowledge DB to perform 
analysis and optimization 

Observe

learning

Decide Act
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Decision Engine: 

Performs Analysis and Optimization

model-based 

reinforcement

probabilistic 
estimation

statistical

Statistical decision
making 

Model based
control

Classical systems
control

Adaptive searchLearning
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Key Innovations

 Self-aware OS (not programmer) handles the complexity

 Programmer specifies goals, OOS figures out how to meet them

 System is dynamic and adaptable to changing conditions or 
requirements

 Same program will work on many different systems

 System detects and handles errors as needed

 Degree of reliability can be specified as a goal

 Example: Fault-tolerance

 User simply requests a required degree of reliability

 OOS enables error detection routines and hardware

 OOS rolls back affected core after soft error, or routes around faults

 System-level goals and constraints

 Current systems use individual models and constraints

 Current systems must overprovision resources in all dimensions

 Self-aware system ensures that goals are met without exceeding 
global constraints (e.g. maximum power, temperature)
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Technical Challenges
 Self aware operating system

 What are good learning and optimization algorithms for the OS to use when 
selecting configurations? Competing technologies include

 Learning engines

 Neural networks 

 Genetic models

 Classical control theory

 Stochastic control

 How to create predictive performance and related models for the OS to be able to 
assess the expected impact of its actions

 Performance and energy cost tradeoffs in the OOS itself

 How can we synchronize the timescale of learning and speed of adaptation with 
system and application shifts?

 Self aware components and applications

 How do we build reconfigurable (controllable), introspective (observable) 
components? 

 What are the miminal changes required in current software (e.g., apps, paging 
systems, schedulers, device drivers, memory allocators, data structure libraries), and 
hardware components (e.g., caches, processors, networks, I/O devices, disks, 
coherence engines, DRAM) to enable self aware operation

 How do we create simplified performance, reliability, and energy models of these 
components for the OS to use

 E.g. How will changing cache associativity affect miss rate, power, temperature

 Self aware APIs

 What are the right APIs between the operating system and self-aware components?

 What information do applications communicate to the OOS for it to be able to assess 
the performance and other implications of configuration changes
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Why Now?

 Resources have changed dramatically over the years
 Quantity of transistors, memory, have increased 

exponentially

 Speed of components has increased by orders of 
magnitude

 Level of integration has increased dramatically

 We continue to apply outdated approaches to using 
these resources
 Key computer science abstractions have not changed 

since the 1960‟s

 Operating systems, languages, etc. we use today were 
designed for a different era

 For example, OS still time multiplexes a single core 
between OS and user app – applies to the era when 
compute resources were expensive

 It‟s time for a fresh approach to the way systems are 
designed and used
 Leverage the new balance of resources to improve 

performance, utilization, reliability and programmability

 We will first address the OS, followed by architectural 
support
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The New Balance of Resources

Trade these…

 Transistors

 Cores

 On-chip 
bandwidth

Self-aware computing makes a new set of tradeoffs

Advancing VLSI technology and multicore architectures have 

created a disruptive cost inversion!

BEFORE

 Resources (cores) were expensive

 Energy was cheap

 Sequential programming was easy

 Devices were fairly reliable

NOW

 Transistors and cores are free

 Energy is a first-order constraint

 Programming is hard

 Hard and soft error rates are 
increasing

Massive multicore is both the problem and the enabler of the solution

for these…

 Energy

 Time to 
completion

 Programmer effort

 Reliability

 Off-chip 
bandwidth

E.g., throw transistors at the problem 

of creating extensive counters
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Building on Key New Technologies

 Previous projects have created the key mechanisms

 DARPA Polymorphic Computing Architectures
 Polymorphic, adaptable hardware

 But, manually reconfigured/adapted

 Did not address faults

 DARPA Power Aware Computing and Communications
 Energy monitoring mechanisms

 Recent advancements in learning and reasoning algorithms 

 Continuous optimization technologies, but in limited domains

 IBM continuous program optimization
 Framework to collect system data

 Dynamic adjustment of memory page size

 Remembers Java JIT optimization heuristics between runs

 Auto tuners, FFTW, STAPL, Atlas, OTL

 Virtual architecture reconfiguration [CGO 2006]
 Used in architectural emulation

 Inspect current architecture and instruction stream

 Change config. to suit program‟s needs (e.g., number of tiles allocated to trace 
caching)

 Self-Aware Computing will create the high-level operating system 
necessary to automatically use and coordinate these primitive 
mechanisms and apply them to build broadly applicable general-
purpose systems
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Impact of Self-Aware Computing 

Program

 Make complex systems easy to program

 Utilize massive resources efficiently

 Hide complexity from user

 Translate massive silicon resources into performance 
benefits

 Increase portability of software to different systems

 Decreases development costs

 Enable dynamic adaptation to changing mission requirements 
or operating conditions
 Currently very difficult to statically pre-program all possible 

variations

 Reduces verification effort and provides a safety net
 System ensures correct behavior by enforcing goals and 

constraints

 Test for known variables, system handles unknowns

 Maximize energy efficiency in highly dynamic situations
 System expends only the energy necessary for current 

conditions
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Impact of Self Aware Computing 

Program

Achieve orders-of-magnitude improvements in each 
of four key computing criteria

1. Programming Effort
– 10X decrease in average time to implement solution to 

achieve a given level of  performance under a specific set of 
constraints

– 100X increase in performance of quick implementation

2. Reliability
– 10X-100X increase in error-free operation time given faults

3. Energy
– 10X-100X decrease in energy as system optimizes itself

4. Performance
– 10X increase in performance while meeting constraints from 

initial run to steady state
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1. Programming Effort Example

Users/Applications focus on goals, not how to manipulate 
the minutiae of complex manycores to accomplish goals

 Application is no longer a single sequence of procedural 
code

 Application specifies goals and provides library of 
alternative techniques

 OOS runtime may supply libraries of techniques for common 
ops. E.g., a data repository with alternatives including hash-
table vs. red-black tree, list vs. heap, row-major vs. column-
major order, sparse vs. dense matrix

 Application passes goals and technique properties to OOS 
runtime through self aware API

 OOS creates tree of subgoals and develops a “plan” to 
achieve goals (a plan is a set of techniques)

 Leverage machine learning algorithms

 Plan is dynamically adjusted based on changing 
conditions/mission requirements

 Programmer does not need to understand interaction of 
different tradeoffs

 OOS may create different plans for the same goals on 
different machines or runtime conditions (program 
portability)

 OOS configures system SW and HW to best suit 
application

 E.g., OOS runtime observes usage patterns and reorganizes 
data structures to optimize common ops

 User does not have to worry about orchestrating all aspects 

subgoal

Alternative

techniques
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g
. 
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or, # of constraints

procedural

self-aware
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2. Reliability Examples

 Future exascale processors containing 100‟s of billions of transistors will 
experience frequent errors

 Using the current procedural approach, applications will fail to complete due 
to corruption

 OOS can automatically monitor machine and application execution, and take 
actions to ensure reliable execution

 Handling soft errors (e.g., bit-flips due to cosmic rays)

 OOS duplicates computation and compares execution signatures [e.g.,  Ceze, 
UIUC]

 Hardware introspection mechanisms to observe errors

 Roll back only the affected core and continue

 Tune checkpointing interval, datasets

 Hard faults (e.g., broken functional unit or on-chip router)
 OOS periodically self tests and characterizes machine components

 If a component is found to be broken, dynamically reorganizes computation to 
avoid failed hardware

 Alter on-chip routing tables

 Dynamically rewrite code to avoid functional unit

 Use JIT to recompile for a different number/configuration of cores

Exec. Time

constraint

P
e
rf

. 
(F

ra
m

e
 r

a
te

)

self-aware

fault
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3. Energy Examples

 Continually optimizing energy by adjusting core parameters

 Organic OS dynamically monitors and recompiles application for energy

 Target varying numbers of cores, shutting the others off

 Adjust voltage and frequency of each core to maintain minimum 
required throughput

 Migrates processes to increase communication locality, and hence 
energy efficiency

 Optimizing energy by reconfiguring memories

 OOS monitors cache usage and adjusts size to minimum needed

 Extra cache is turned off to save energy

 Alter cache hash functions to optimize hit-rate in given size

 70% of server power in external DRAM [Hetherington 2008]; working 
set based memory tuning

 Optimizing I/O energy

 Dynamically adjust I/O voltage and frequency to meet bandwidth 
requirements [Balamurugan, VLSI Circuits 07]

 Use predictive bus-coding [Wen, HPCA04] to reduce on-chip 
communication energy
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4. Performance Examples

 Key concept: Use introspection and dynamic reconfiguration by 
Organic OS to optimize software/hardware for a specific application

 Application-aware dynamic cache memory pool

 OOS observes app behavior and miss rates of each type of memory

 Has models of performance vs. size of each memory type

 Predicts and establishes best config for given app

 Adaptive Page Allocation

 OOS monitors memory controllers, queues, and cache miss latencies

 Remaps pages to balance load on all controllers and attempts to be 
fair to all applications 

 Approximate computation

 OOS receives programmer/app specified energy constraints and 
quality requirements

 Observes dynamic energy use and output quality (e.g., PSNR)

 Through self aware API suggests algorithmic policies to app

 Prune unnecessary computation and adjusts #cores used

 OOS controls JIT compiler to recompile app for different #cores

 Uses SIMD hardware to perform multiple smaller computations at 
once, for energy savings, but at a loss in accuracy

Exec. Time

P
e
rf

.

procedural

self-aware

70



46

Metrics for Evaluation 

 Programming Effort: Time to required solution
 Addresses: programming effort

 Create a set of “benchmark” problems with specific goals 
(e.g. performance) and constraints (e.g. energy) 

 Measure the average time it takes programmers to 
implement the benchmarks

 Expected 10X reduction vs. traditional system

 Why?: OOS frees the programmer from worrying about 
constraint satisfaction and helps tune the architecture and 
application automatically

 Solution Quality: Performance of quick 
implementation
 Addresses: performance, energy, resiliency, prog. effort

 Specify benchmark problems and a programming time limit

 Measure performance, energy efficiency, resiliency of 
resulting solutions

 Resiliency = length of error-free operation with injected 
faults

 Expected 10X to 100X improvement vs. traditional system

 Why?: OOS handles performance tuning and fault 
tolerance
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Metrics for Evaluation (cont.)

 Continuous Optimization: Performance/Power 
improvement between initial run and steady state
 Addresses: adaptability, performance, energy

 Run benchmarks for a long period of time

 Performance/power should improve over time

 Expected 10X-100X improvement between initial run 
and steady state

 Why?: OOS observes system behavior and optimizes 
continuously

 Performance Stability: Adaptation to changing 
conditions as constraints and input conditions 
change
 Addresses: adaptability, resiliency

 Supply a set of applications and a profile of goals and 
constraints that change over time

 System must maintain goals and constraints, free 
variables may change

 Example: Video encoding
 Energy constraint

 Frame rate and resolution goals

 Video quality may vary

 Why?: OOS continually monitors goals and adjusts 
system to compensate for dynamic events/changes
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Outline

 Introduction

 Vision and Goals

 Limitations of Today‟s Systems

 How to Build a Self-Aware System

 Why Now?

 Potential Impact

 Program Timeline
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3-Phase Program

 Phase 1 (12 months)

 High-level OOS design

 Early proof of concept simulation studies

 Identify key learning,  introspection and adaptation mechanisms and 
algorithms

 Phase 2 (24 months)

 Complete simulation studies

 Build prototype OOS using existing hardware with selected self 
aware modules

 Phase 3 (24 months)

 Modify hardware components to make them self aware

 Integrate with OOS

 Build complete system

 Evaluate
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Background: An Operating 

System

 Abstracts away details of hardware to simplify application 
programming. Does so by providing abstract APIs (e.g., to 
print) and device specific drivers (e.g., printer driver)

 Coordinates sharing of resources between multiple 
applications
 Memory resources: OS memory protection, virtual memory

 CPU resources: OS Scheduler decides which application gets the 
CPU next and for how long

 I/O device resources: Device drivers arbitrate use of hardware 
devices

 Disk access and file systems
 Provides abstract concept of “files” to applications, handles all 

details of how they are actually stored

 Network stack for communicating with other machines

 User interface
 Not necessarily part of all operating systems (e.g. UNIX)

Software layer responsible for managing a computer 

system’s resources and activities
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