

Wei Han

A thesis submitted for the degree of Doctor of Philosophy.

The University of Edinburgh.
January 2010

Multi-core Architectures with Coarse-grained
Dynamically Reconfigurable Processors for
Broadband Wireless Access Technologies

 I

Broadband Wireless Access technologies have significant market potential, especially the

WiMAX protocol which can deliver data rates of tens of Mbps. Strong demand for high

performance WiMAX solutions is forcing designers to seek help from multi-core processors

that offer competitive advantages in terms of all performance metrics, such as speed, power

and area. Through the provision of a degree of flexibility similar to that of a DSP and

performance and power consumption advantages approaching that of an ASIC,

coarse-grained dynamically reconfigurable processors are proving to be strong candidates

for processing cores used in future high performance multi-core processor systems.

This thesis investigates multi-core architectures with a newly emerging dynamically

reconfigurable processor – RICA, targeting WiMAX physical layer applications. A novel

master-slave multi-core architecture is proposed, using RICA processing cores. A SystemC

based simulator, called MRPSIM, is devised to model this multi-core architecture. This

simulator provides fast simulation speed and timing accuracy, offers flexible architectural

options to configure the multi-core architecture, and enables the analysis and investigation

of multi-core architectures. Meanwhile a profiling-driven mapping methodology is

developed to partition the WiMAX application into multiple tasks as well as schedule and

map these tasks onto the multi-core architecture, aiming to reduce the overall system

execution time. Both the MRPSIM simulator and the mapping methodology are seamlessly

integrated with the existing RICA tool flow.

Based on the proposed master-slave multi-core architecture, a series of diverse

homogeneous and heterogeneous multi-core solutions are designed for different fixed

WiMAX physical layer profiles. Implemented in ANSI C and executed on the MRPSIM

simulator, these multi-core solutions contain different numbers of cores, combine various

Abstract

 II

memory architectures and task partitioning schemes, and deliver high throughputs at

relatively low area costs. Meanwhile a design space exploration methodology is developed

to search the design space for multi-core systems to find suitable solutions under certain

system constraints. Finally, laying a foundation for future multithreading exploration on the

proposed multi-core architecture, this thesis investigates the porting of a real-time operating

system – Micro C/OS-II to a single RICA processor. A multitasking version of WiMAX is

implemented on a single RICA processor with the operating system support.

 III

I hereby declare that the research recorded in this thesis and the thesis itself was composed

by myself in the School of Engineering at The University of Edinburgh, except where

explicitly stated otherwise in the text.

Wei Han

Declaration of originality

 IV

This thesis would not have been what you are seeing now, without the help of my

supervisors and colleagues. Foremost, I would like to thank my PhD supervisors Prof.

Tughrul Arslan and Dr. Ahmet T. Erdogan for their support and guidance during my study. I

would also like to thank my colleagues, Dr. Ying Yi who made great contributions to our

multi-core project and did a lot of work which I was too lazy to do, Mr. Mark I.R. Muir for

his valuable guidance and parser libraries, Dr. Ioannis Nousias for his help on MRPSIM

simulator design, Mr. Xin Zhao and Dr. Cheng Zhan for their contributions on WiMAX

implementations. Meanwhile, I would like to thank all RICA team members: Dr. Sami

Khawam, Dr. Mark Milward, Dr. Ioannis Nousias, Dr. Ying Yi and Mr. Mark I.R. Muir for

their brilliant invention – the RICA architecture and its tool flow. In addition, many thanks to

all members in SLI group for their help throughout my PhD study.

A very special thank to my wife Xinyu Chen who encourages me with her love, stays with

me getting through all tough times and cooks delicious food for me. Finally, I would like to

express my deepest appreciation to my parents for their love, guide and support to me

throughout my life.

Acknowledgements

 V

3G Third Generation

ADSL Asymmetric Digital Subscriber Line

AES Advanced Encryption Standard

ALM Adaptive Logic Module

ALU Arithmetic Logic Unit

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

ASIP Application-Specific Instruction Set Processor

ASSP Application Specific Standard Product

BPSK Binary Phase-Shift Keying

BS Base Station

BWA Broadband Wireless Access

CDMA Code Division Multiple Access

CLB Configurable Logic Block

CMP Chip-Level Multiprocessing

CP Cyclic Prefix

CPS Cycles Per Second

DC Direct Current

DL Downlink

DSL Digital Subscriber Line

DSP Digital Signal Processor

DR Dynamically Reconfigurable

EV-DO Evolution-Data Optimized

Acronyms and abbreviations

 VI

FEC Forward Error Correction

FFT Fast Fourier Transform

FIR Finite Impulse Response

FPGA Field Program Gate Array

GF Galois Field

GFLOPS Giga Floating-Point Operations Per Second

GPP General Purpose Processor

GSM Global System for Mobile communications

GPU Graphics Processing Unit

HDL Hardware Description Language

HPT Highest Priority Task

HSPA High Speed Packet Access

HSDPA High Speed Downlink Packet Access

HSUPA High Speed Uplink Packet Access

IFFT Inverse Fast Fourier Transform

ILP Instruction Level Parallelism

IP Intellectual Property

IPI Inter-Processor Interrupt

IPS Instructions Per Second

ISA Instruction Set Architecture

ISDN Integrated Services Digital Network

ISI Intersymbol Interference

LL Load-Link

LUT Look-Up Table

MAC Media Access Control

Mbps Megabits per second

MIMO Multi-Input Multi-Output

ML Maximum Likelihood

 VII

MDF Machine Description File

MRPSIM Multiple Reconfigurable Processor Simulator

OFDM Orthogonal Frequency-Division Multiplexing

OS Operating System

PHY Physical Layer

PLD Programming Logic Device

PPE Power Processing Element

PRBS Pseudo-Random Binary Sequence

PSE Processing and Storage Element

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase-Shift Keying

RA Reconfigurable Architecture

RAM Random Access Memory

RICA Reconfigurable Instruction Cell Array

RISC Reduced Instruction Set Computer

RRC Reconfigurable Rate Controller

RPU Reconfigurable Processing Unit

RS Reed-Solomon

RTL Register Transfer Level

RTOS Real-Time Operating System

SC Store-Conditional

SDL System Description Level

SIMD Single Instruction Multiple Data

SoC System on Chip

SOFDMA Scalable Orthogonal Frequency Division Multiple Access

SMP Symmetric Multiprocessing

SPE Synergistic Processing Element

SPMD Single Program Multiple Data

 VIII

SPS Steps Per Second

SRAM Static Random Access Memory

SS Subscriber Station

TDD Time Division Duplex

TLM Transaction-Level modeling

TTA Transport Triggered Architecture

UL Uplink

UMTS Universal Mobile Telecommunications System

VLIW Very Long Instruction Word

WiMAX Worldwide Interoperability for Microwave Access

WLAN Wireless Local Area Network

 IX

Publication from this work

Journals

1. W. Han, Y. Yi, M. Muir, I. Nousias, T. Arslan, and A. T. Erdogan, “Multi-core
Architectures with Dynamically Reconfigurable Array Processors for Wireless Broadband
Technologies,” IEEE Transaction on Computer Aided Design of Integrated Circuits and
Systems (TCAD), Vol. 28, Issue 12, pp. 1830-1843, December 2009.

2. W. Han, Y. Yi, M. Muir, I. Nousias, T. Arslan, and A. T. Erdogan, “Efficient
Implementation of WiMAX Physical Layer on Multi-core Architecture with Dynamically
Reconfigurable Processors,” Scalable Computing: Practice and Experience Scientific
international journal for parallel and distributed computing, Vol. 9, pp.185-196, ISSN
1097-2803, 2008.

Conference and Workshops

1. W. Han, Y. Yi, Xin Zhao, M. Muir, T. Arslan, and A. T. Erdogan, “Heterogeneous
Multi-core Architectures with Dynamically Reconfigurable Processors for WiMAX
transmitter”, the 22nd Annual IEEE International SOC Conference (SOCC’09), pp. 97 - 100,
Belfast, UK, 9 – 11 September, 2009.

2. W. Han, Y. Yi, Xin Zhao, M. Muir, T. Arslan, and A. T. Erdogan, “Heterogeneous
Multi-core Architectures with Dynamically Reconfigurable Processors for Wireless
Communication”, the 7th IEEE Symposium on Application Specific Processors in
conjunction with Design Automation Conference 2008 (SASP’09), pp. 1 - 6, San Francisco,
California, 27 - 28 July, 2009.

3. Y. Yi, W. Han, X. Zhao, A. T. Erdogan and T. Arslan, “An ILP Formulation for Task
Mapping and Scheduling on Multi-core Architectures,” the Conference on Design,
Automation and Test in Europe (DATE’09), pp. 33-38, Nice, France, 20 – 24 April, 2009.

4. W. Han, Y. Yi, M. Muir, I. Nousias, T. Arslan, and A. T. Erdogan, “MRPSIM: a TLM
based Simulation Tool for MPSoCs targeting Dynamically Reconfigurable Processors,” the
21st Annual IEEE International SOC Conference (SOCC’08), pp. 41-44, Newport Beach,
California, 17 - 20 September, 2008.

5. Y. Yi, W. Han, A. Major, A. T. Erdogan, and T. Arslan, “Exploiting Loop-Level
Parallelism on Multi-Core Architectures for the WiMAX Physical Layer,” the 21st Annual
IEEE International SOC Conference (SOCC’08), pp. 31-34, Newport Beach, California, 17
– 20 September, 2008.

6. W. Han, Y. Yi, M. Muir, I. Nousias, T. Arslan, and A. T. Erdogan, “Multi-core
Architectures with Dynamically Reconfigurable Array Processors for the WIMAX Physical

 X

Layer,” the 6th IEEE Symposium on Application Specific Processors conjunction with
Design Automation Conference 2008 (SASP’08), pp.115-120, Anaheim, California, 8 – 9
June, 2008.

7. W. Han, Y. Yi, M. Muir, I. Nousias, T. Arslan, and A. T. Erdogan, “Efficient
Implementation of Wireless Applications on Multi-core Platforms based on Dynamically
Reconfigurable Processors,” 2008 International Workshop on Multi-Core Computing
Systems, pp. 837-842, Barcelona, Spain, March 2008.

8. W. Han, I. Nousias, M. Muir, T. Arslan, A.T. Erdogan, “The Design of Multitasking
Based Applications on Reconfigurable Instruction Cell Based Architectures,” the 17th
International Conference on Field Programmable Logic and Applications (FPL’07), pp.
447-452, Amsterdam, Netherlands, 27 – 29 August, 2007.

9. W. Han, M. Muir, I. Nousias, T. Arslan, A.T. Erdogan, “Mapping Real Time Operating
System on Reconfigurable Instruction Cell based Architectures,” 2007 IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM’07), pp.301-304, Napa,
California, 23 – 25 April, 2007.

 XI

1 Introduction ……………………………………………………………………………..…1
1.1 Motivation ... 1
1.2 Objective ... 3
1.3 Contribution .. 4
1.4 Thesis structure.. 5

2 Broadband Access Technologies and WiMAX…...……………………………….………7
2.1 Introduction ... 7
2.2 Wired broadband access technologies ... 8

2.2.1 DSL.. 8
2.2.2 Cable .. 9
2.2.3 Optical fibre ... 9
2.2.4 Others... 9

2.3 Broadband wireless access technologies ... 10
2.3.1 HSPA ... 10
2.3.2 EV-DO ... 11
2.3.3 Satellite .. 11
2.3.4 Wi-Fi .. 12
2.3.5 WiMAX ... 12

2.4 WiMAX PHY processing chain .. 14
2.4.1 Randomising .. 15
2.4.2 FEC encoding .. 15

2.4.2.1 Reed-Solomon encoding ... 16
2.4.2.2 Convolutional encoding .. 17
2.4.2.3 Puncturing ... 18

2.4.3 Interleaving .. 19
2.4.4 Data modulation... 20
2.4.5 OFDM processing.. 21

2.4.5.1 Pilot modulation and insertion .. 22
2.4.5.2 DC and guard band insertion... 23
2.4.5.3 FFT/IFFT .. 23
2.4.5.4 Cyclic prefix extension ... 24

2.4.6 Synchronisation ... 25
2.4.7 Data demodulation... 26

Contents

 XII

2.4.8 FEC decoding...26
2.4.8.1 Viterbi decoding ..26
2.4.8.2 Reed-Solomon decoding ...27

2.5 Summary ...28

3 Multi-core Processors and Reconfigurable Architectures…….……………………..….29
3.1 Introduction ...29
3.2 Multi-core processors ..30

3.2.1 The advantages of multi-core processors...31
3.2.2 Taxonomies of multi-core processors ..32

3.2.2.1 Computing markets ...32
3.2.2.2 Heterogeneity and Homogeneity...33
3.2.2.3 Core types ...35

3.3 Reconfigurable architectures ...36
3.3.1 Execution structures...36
3.3.2 Granularity ...37

3.3.2.1 Fine-grained reconfigurable architectures...37
3.3.2.2 Coarse-grained reconfigurable architectures...38
3.3.2.3 Medium-grained and very coarse-grained reconfigurable architectures40
3.3.2.4 Mixed-grained reconfigurable architectures ...40

3.3.3 Reconfiguration schemes ...41
3.4 Reconfigurable instruction cell array ..41

3.4.1 Architecture..42
3.4.2 Standard tool flow..44

3.5 Traditional WiMAX silicon implementations ...45
3.5.1 Custom chip implementations..45
3.5.2 GPP/DSP based SoC implementations ..46
3.5.3 FPGA/PLD implementations ...47

3.6 Multi-core implementations of WiMAX ...47
3.6.1 PicoArray ...48
3.6.2 Freescale MSC8126 ...49
3.6.3 Cell Broadband Engine ..49
3.6.4 Intel IXP 2350 network processor..50
3.6.5 Sandbridge SB3010 ...50

3.7 RICA based multi-core architecture ..51
3.8 Summary ...51

4 A RICA Processor based Multi-core Architecture…………………………….………...53
4.1 Introduction ...53
4.2 The proposed multi-core architecture..54

4.2.1 Processing cores...56
4.2.2 Memory architecture..57

4.2.2.1 Shared memory/local memory ..57

 XIII

4.2.2.2 Shared register file .. 58
4.2.2.3 Stream buffer... 60

4.2.3 Arbiter.. 62
4.2.4 Crossbar switch.. 62
4.2.5 Interrupt controller ... 63
4.2.6 Router .. 63

4.3 Synchronisation methods and atomic operation support ... 64
4.4 Custom instruction integration .. 66
4.5 Summary ... 67

5 Multiple Reconfigurable Processors Simulator…………………………….….………...69
5.1 Introduction ... 69
5.2 Related work on multiprocessor simulators .. 70
5.3 Trace-driven simulation... 71
5.4 SystemC and transaction-level modeling .. 74
5.5 TLM model ... 76
5.6 MRPSIM command line options ... 79
5.7 Mpsockit - a subsidiary tool .. 81
5.8 Results ... 82
5.9 Summary ... 84

6 Homogeneous Multi-core Solutions for WiMAX……………………………….………..87
6.1 Introduction ... 87
6.2 Mapping methodology .. 88
6.3 Task partitioning methods ... 90

6.3.1 Task merging and task replication.. 91
6.3.2 Loop-level partitioning .. 93

6.4 Development of multi-core projects .. 96
6.5 Synchronisation between tasks.. 97
6.6 Results ... 98
6.7 Summary ... 104

7 Heterogeneous Multi-core Solutions for WiMAX…...……………………….…….…...105
7.1 Introduction ... 105
7.2 Design space exploration... 106
7.3 Timing optimisation .. 111

7.3.1 Code optimisation .. 111
7.3.2 Architectural optimisation ... 113

7.4 Area optimisation .. 114
7.5 Results ... 115
7.6 Summary ... 123

8 Multitasking WiMAX on an RTOS…...………………………………...…….…….…...125

 XIV

8.1 Introduction ...125
8.2 The selection of RTOSes ...127
8.3 Porting Micro C/OS-II to RICA ..130

8.3.1 Hardware requirements ..130
8.3.2 Software requirements ...131

8.4 The multitasking implementation of WiMAX on Micro C/OS-II132
8.5 Results ...136
8.6 Summary ...138

9 Conclusions…………………………...…………………………………..…….……..…..141
9.1 Introduction ...141
9.2 Review of thesis contents ..141
9.3 Specific findings..144
9.4 Directions for future work ...146

Reference ………………………...…………………………………………………………….149

 XV

Figure 2.1 Fixed WiMAX physical layer processing chain .. 15
Figure 2.2 PRBS for the data randomisation... 15
Figure 2.3 Reed-Solomon encoder.. 17
Figure 2.4 Binary convolutional encoder with a constraint length of 7 and a code rate of 1/2..... 17
Figure 2.5 Trellis diagram representation of a simple convolutional encoder 18
Figure 2.6 BPSK, QPSK, 16QAM and 64QAM modulation schemes in WiMAX 20
Figure 2.7 Frequency domain representation of an OFDM symbol in fixed WiMAX.................. 22
Figure 2.8 OFDM downlink processing in the transmitter side of fixed WiMAX........................ 22
Figure 2.9 PRBS for pilot modulation .. 23
Figure 2.10 Data flow graph of an 8-point radix-2 FFT.. 24
Figure 2.11 Signal flow representation of a radix-2 butterfly ... 24
Figure 2.12 Timing synchronisation.. 25
Figure 2.13 16QAM soft decision data demodulation .. 26
Figure 2.14 Viterbi decoding process for a convolutional code with a 1/2 code rate.................... 27
Figure 2.15 Reed-Solomon decoding process... 28
Figure 3.1 The RICA architecture ... 43
Figure 3.2 Standard RICA tool flow ...45
Figure 3.3 PicoArray interconnection and the inter-processor communication 48
Figure 4.1 Proposed master-slave multi-core architecture .. 55
Figure 4.2 Custom instruction cell MULTIPTBK_REG_FILE .. 59
Figure 4.3 A 4-bank shared register file in the proposed multi-core architecture 60
Figure 4.4 Stream buffers in the proposed multi-core architecture ... 61
Figure 4.5 RICA custom cell generation environment and custom tool flow 67
Figure 5.1 The interface and internal structure of MRPSIM simulator... 72
Figure 5.2 Traditional SoC design flow without SystemC.. 74
Figure 5.3 SoC design flow with SystemC ... 75
Figure 5.4 An example demonstrating the TLM model of a multi-core architecture.................... 77
Figure 5.5 The simulation speed (steps/sec) ... 83
Figure 5.6 The simulation speed (instructions/sec)... 83
Figure 5.7 The simulation speed (cycles/sec).. 84
Figure 5.8 The simulation time (sec)... 85
Figure 6.1 Mapping methodology... 89
Figure 6.2 Task merging and task replication methods ... 92
Figure 6.3 Decoding loop partitioning .. 95

List of Figures

 XVI

Figure 6.4 Integration of MRPSIM in Eclipse ..96
Figure 6.5 Speedup and parallel efficiency of transmitter scenarios...101
Figure 6.6 Speedup and parallel efficiency of receiver scenarios ...102
Figure 7.1 The main blocks in 16QAM based WiMAX transmitter and receiver....................... 110
Figure 7.2 Task partitioning, mapping and scheduling in receiver Design 4121
Figure 8.1 The Micro C/OS-II based system...130
Figure 8.2 Hardware requirements for porting Micro C/OS-II to RICA.....................................131
Figure 8.3 Multitasking WiMAX function blocks ..132
Figure 8.4 Program flow chart of WiMAX running on Micro C/OS-II133
Figure 8.5 Detailed program flow diagram for the execution of channel coding and OFDM
downlink tasks...134

 XVII

Table 2.1 Pros and cons of wired and wireless broadband access technologies.............................. 7
Table 2.2 Comparison of 802.11 standards ... 12
Table 2.3 Comparison of broadband Internet access technologies.. 13
Table 2.4 Comparison between Fixed and Mobile WiMAX... 14
Table 2.5 Puncturing patterns in WiMAX... 19
Table 3.1 Comparison of multi-core processors.. 35
Table 3.2 Comparison of coarse-grained reconfigurable architectures ... 39
Table 3.3 RICA Instruction Cells .. 42
Table 3.4 MSC8126 loading and task allocation... 49
Table 4.1 Access modes and configuration bits for RMEM and WMEM cells............................. 57
Table 4.2 Pin descriptions of MULTIPTBK_REG_FILE cells ... 59
Table 4.3 Access modes and configuration bits of MULTIPTBK_REG_FILE cells 59
Table 4.4 Pin description of SBUF instruction cells ... 61
Table 4.5 Access modes and configuration bits of SBUF cells ... 61
Table 4.6 Access modes and configuration bits for LL/SC instructions.. 66
Table 5.1 Functionality of main SystemC processes and functions in MRPSIM modules 78
Table 5.2 Command line options of MRPSIM.. 80
Table 5.3 Formats for original and compressed traces .. 81
Table 5.4 Mpsockit options ... 82
Table 6.1 IFFT Loop Partitioning.. 94
Table 6.2 Synchronisation between tasks.. 97
Table 6.3 Homogeneous multi-core scenarios for WiMAX transmitter.. 98
Table 6.4 Homogeneous multi-core scenarios for WiMAX receiver .. 98
Table 6.5 Configurations of both a standard core and a custom core.. 99
Table 6.6 Performance comparison for transmitter scenarios ... 102
Table 6.7 Performance comparison for receiver scenarios.. 103
Table 7.1 Pseudo code of the design space exploration methodology .. 108
Table 7.2 A code example of replacing jumps with multiplexers.. 111
Table 7.3 Storing constants in registers for 16QAM modulation.. 112
Table 7.4 Comparison of transmitter design configurations.. 116
Table 7.5 Comparison of receiver design configurations.. 116
Table 7.6 Comparison between standard and custom RICA cores used in transmitter designs .. 117
Table 7.7 Comparison between standard and custom RICA cores used in receiver designs....... 118
Table 7.8 Results from the exploration methodology for transmitter designs............................. 119

List of Tables

 XVIII

Table 7.9 Results from the exploration methodology for receiver designs 119
Table 7.10 Comparison of multi-core solutions ..122
Table 8.1 Survey of RTOSes ...127
Table 8.2 Comparison in term of memory size and multiprocessing support129
Table 8.3 Comparison in term of ported devices and specific features129
Table 8.4 Micro C/OS-II machine dependent files for RICA..131
Table 8.5 Results of WiMAX with/without RTOS support ...136
Table 8.6 Comparison of multitasking WiMAX on RICA and ARM7TDMI137

1

1.1 Motivation

Growing from an academic tool to owning almost one and half billion users nowadays, the

Internet stands as a pivotal success. People have come to depend on the Internet more and

more in their daily lives. Now users not only need traditional applications like Web surfing

and emails, but also demand to experience multimedia services like interactive gaming,

real-time audio and video streaming, and even high-definition TV. These applications are

becoming an integral part of business as well as recreation, leading to the increased push for

broadband access technologies with higher data rates, better reliability and enhanced user

experience. Meanwhile currently the desire to access the Internet at any time from anywhere

is dramatically rising. By combining the convenience through wireless access and the

outstanding broadband performance, Broadband Wireless Access (BWA) technologies

demonstrate great interests to end users and a remarkable potential success in commerce.

Among various BWA solutions, Worldwide Interoperability for Microwave Access

(WiMAX) defined in IEEE 802.16 standard family [1, 2] becomes more and more popular

Chapter 1
Introduction

Introduction

 2

and may help make the vision of pervasive connectivity a reality. According to the

announcement from the WiMAX forum, more than 133 million WiMAX users are

anticipated by 2012 [3]. Meanwhile, the WiMAX market is forecasted to reach $3.5 billion

and 4% market share of the overall broadband market by 2010 [3].

As an embedded application, WiMAX demands high throughput, strict low power, and

in-field reprogrammability in order to follow evolving standards. Single-core processors fall

short of meeting all these requirements. Historically, processor manufacturers answered the

requirement for more processing power primarily by delivering faster processor speeds. The

technology advances, such as Instruction Level Parallelism (ILP) and increased frequency

due to advanced process technology, have delivered exponential performance gains for

microprocessors over the last three decades. However things have changed and these

traditional approaches will not provide the same gains in the future. It is mainly because

high performance single-core microprocessors have reached three walls. Firstly, the memory

wall results from the fact that the memory performance has a much slower growth rate than

the processor performance. Therefore the gap between memory and processor speeds keeps

increasing. In spite of the use of larger caches, this trend has not been curbed [4]. As a result,

high frequency processors have to spend a significant amount of time waiting for the

response from memory. The second wall comes from the limitation of ILP, called ILP wall.

Even with various ambitious hardware and software techniques, only very low average

parallelism can be found in the instruction streams and is far from enough to keep high

performance processors busy [5]. The final wall is the power wall which is the main

challenge incurred by high clock rates and deep submicron processes. In fact, in traditional

single-core architectures, power consumption has increased at a greater rate than the clock

speed. Meanwhile high processor density in sub-90 nm processes results in high power

density which has already reached the level of 100W/cm2 found in a nuclear reactor and

probably soon will rise to the level of 1,000W/cm2 found in space rocket nozzles [6].

These three walls drive people to look for alternative solutions, instead of continuing to

Introduction

 3

build complicated single-core processors. One of such scale-out solutions is to put two or

more simpler and smaller processing cores on a chip. It is called Chip-Level Multiprocessing

(CMP) or a multi-core processor. In multi-core solutions, multiple simple processing cores

with lower operating frequency can deliver excellent overall performance while reducing the

thermal output. Another drive for the adoption of multi-core processors is that parallelism

exists in most real world applications such as multimedia processing and Fast Fourier

Transform (FFT). As a parallel architecture, a multi-core architecture can effectively bring

the parallel nature of applications into full play.

However one question arising from multi-core architectures is that what kind of processing

core would be the best candidate for multi-core architectures targeting embedded

applications like WiMAX? Obviously, General Purpose Processors (GPPs) are not well

suited to this task, due to their generic features and proportion of the silicon for computation.

On the other hand, Very Long Instruction Word (VLIW) Digital Signal Processor (DSP)

architectures face the problem due to the limited amount of ILP found in programs [7].

Filling the gap between the high flexibility of DSPs and the high performance of

Application-Specific Integrated Circuits (ASICs), Dynamically Reconfigurable (DR)

processors offer an attractive solution for developing multi-core architectures. This thesis

investigates multi-core processor architectures building upon coarse-grained dynamically

reconfigurable processing cores to meet the rigorous requirements from BWA applications,

such as WiMAX.

1.2 Objective

The objective of this thesis is to explore a multi-core architecture by using coarse-grained

dynamically reconfigurable processing cores, and develop tools and a mapping methodology

which allow sequential ANSI C programs to be executed on the multi-core architecture.

Afterward, based on this multi-core architecture, this thesis aims to design efficient

multi-core solutions for broadband wireless access technologies, particularly WiMAX

Introduction

 4

applications.

1.3 Contribution

The major contributions of the thesis are split into seven key aspects:

1. A novel master-slave multi-core architecture using a newly emerging

coarse-grained DR processor, Reconfigurable Instruction Cell Array (RICA), has been

proposed. This architecture provides a variety of memory architectural options for different

application requirements and system constraints, as well as supporting inter-processor

synchronisation through providing atomic operations.

2. A SystemC Transaction-Level modeling (TLM) based trace-driven simulator has

been designed for modeling this multi-core architecture. This simulator delivers high-speed

simulation and maintains timing accuracy. By providing flexible architectural options to

configure the multi-core architecture, this simulator enables fast analysis and exploration of

multi-core architectures as well as rapid application verification.

3. A profiling-driven mapping methodology has been developed to partition a target

application into multiple tasks as well as schedule and map these tasks onto multi-core

architectures, aiming to reduce the overall system execution time. This mapping

methodology supports both homogeneous and heterogeneous multi-core solutions.

4. Several homogenous multi-core solutions have been developed for the Binary

Phase-Shift Keying (BPSK) based fixed WiMAX physical layer application. These

multi-core solutions combine different memory architectures and task partitioning schemes,

and deliver high speedups compared to single-core implementations.

5. A design space exploration methodology has been presented to find suitable

single-core and multi-core solutions under certain system constraints. Furthermore, several

Introduction

 5

timing and area optimisation techniques have been addressed for WiMAX applications,

targeting the proposed multi-core architecture.

6. Several heterogeneous multi-core solutions have been developed for the

16-Quadrature Amplitude Modulation (QAM) based fixed WiMAX physical layer

application. These solutions deliver high throughputs at relatively low area costs.

7. A Real-Time Operating System (RTOS) – Micro C/OS-II has been ported to a

single-core RICA processor. A multitasking design of a fixed WiMAX physical layer

program has been implemented on RICA processor with this operating system support.

1.4 Thesis structure

This thesis is structured as follows.

Chapters 2 and 3 contain descriptions of the background and existing literature. Chapter 2

provides an overview of mainstream broadband Internet access technologies and detailed

descriptions for a fixed WiMAX physical layer. Chapter 3 introduces multi-core processors

and reconfigurable computing technologies, and emphasises a dynamically reconfigurable

processor – RICA, which is used in the proposed multi-core architecture. Meanwhile,

Chapter 3 presents existing WiMAX implementations on various technologies.

Chapters 4 through 8 address my PhD research achievements. Chapter 4 proposes a basic

multi-core architecture containing RICA based processing cores, and details the main

components of this architecture as well as the inter-processor synchronisation methods.

Chapter 5 presents a SystemC TLM trace-driven simulator which models the multi-core

architecture described in Chapter 4. In addition, a trace preprocessing tool – Mpsockit is

described in Chapter 4. Chapter 6 introduces homogeneous multi-core solutions for WiMAX,

based on the proposed multi-core architecture. A mapping methodology and several task

partitioning methods are described in this chapter as well. Chapter 7 focuses on

Introduction

 6

heterogeneous multi-core implementations for WiMAX. A design space exploration

methodology is presented to find suitable single-core or multi-core solutions under specific

system and performance constraints. Chapter 8 investigates the porting of a real-time

operating system to RICA processor and a multitasking based WiMAX on a single-core

RICA processor with an operating system supported.

Finally, the thesis is concluded with the summary in Chapter 9.

7

2.1 Introduction

As broadband services are frequently upgraded, the minimum bandwidth or data rate for

defining broadband is gradually increased. Generally speaking, nowadays a broadband

access technology should provide data rates beyond 1 Megabits per second (Mbps).

Broadband access technologies can be classified into wired broadband access and broadband

wireless access. Both the two categories have their own pros and cons shown in Table 2.1.

In some places, they are complementary, while in other places, they compete with each other.

Chapter 2
 Broadband Access

Technologies and WiMAX

Table 2.1 Pros and cons of wired and wireless broadband access technologies

 Pros Cons

BWA

Provide portable, nomadic, mobile service;
Serve extremely wide areas;
Good solution for areas lacking wireline
infrastructures

Lower capacity than wired
broadband;
Less reliable and secure

Wired
broadband

High capacity at high data rates
High reliability and security

Expensive to deploy new
networks, especially in places
lacking infrastructures

Broadband Access Technologies and WiMAX

 8

As currently the desire to access the Internet at any time from anywhere dramatically

increased, BWA technologies demonstrate remarkable advantages over their wire based

counterparts in many emerging markets such as the burgeoning mobile Internet market

where wired broadband solutions are helpless. Meanwhile BWA technologies are gradually

taking more market share from traditional markets such as the last mile delivery. Here the

term of last mile represents the final step in the connection from Internet service providers to

end users, and does not really mean that the actual distance is one mile.

In this chapter, a brief overview is provided for both wired and wireless broadband access

technologies in Sections 2.2 and 2.3, respectively. Mainstream broadband Internet access

technologies are reviewed. In Section 2.4, an introduction is given for WiMAX physical

layer with the details of each functional block. The aim of Section 2.4 is to present the

background and context necessary for understanding the WiMAX physical layer.

2.2 Wired broadband access technologies

By delivering Internet services through physical wires (e.g. twisted pair and television cable),

wired broadband access technologies have inherent advantages over their wireless

counterparts in reliability and security. Nowadays, there exist various wired technologies,

some of which such as Digital Subscriber Line (DSL) and cable are predominant

technologies in the market. The following subsections describe mainstream wired

technologies available in the commercial market.

2.2.1 DSL

DSL is the most popular technology for the last mile delivery. According to the world

broadband statistics report [8], almost 65 percent of wired broadband subscribers are using

DSL by Q2 2008. Actually, DSL is a family of technologies transmitting data over the high

frequency band of telephone lines, while keeping voice delivered over the low frequency

band. Among DSL technologies, Asymmetric Digital Subscriber Line (ADSL) is the most

Broadband Access Technologies and WiMAX

 9

common type used for home users and offers a much faster speed in the download direction

than the upload direction. The latest ADSL standard provides data rates up to 24 Mbps and

3.5 Mbps for download and upload, respectively [9]. One of main drawbacks of DSL

technologies is that data rates deteriorate with the distance from customers to providers’

facilities increasing.

2.2.2 Cable

Cable Internet is a technology to enable Internet access over the existing cable television

network, especially popular in North America. According to the world broadband statistics

report [8], cable Internet has up to 82 million users, more than 55 percent of them from

North America. Unlike DSL which is distance sensitive, cable can maintain the same data

rate over 100 kilometres. As defined in an international standard DOCSIS 2.0 [10], cable

Internet can provide maximum data rates of 50 Mbps and 27 Mbps for download and upload,

respectively.

2.2.3 Optical fibre

Currently, many Internet service providers especially the ones in U.S. are using the optical

fibre to deliver last mile communication, by directly connecting fibre to subscribers’

premises. This fibre to the premises service includes the forms of fibre to the home and fibre

to the building [11]. Depending on areas and communication protocols, the fibre to the

premises offers data rates ranging from several Mbps to over one hundred Mbps. One

disadvantage of this technology is the much more expensive connection charge and annual

rental compared to other Internet access methods.

2.2.4 Others

Other wired broadband technologies include Integrated Services Digital Network (ISDN),

power line, T1/E1 and so on. Like DSL, ISDN is based on the telephone network. It was

Broadband Access Technologies and WiMAX

 10

popular prior to the emergence of DSL and cable. Now ISDN is gradually being superseded

by DSL. Broadband over power line is a technology aiming to provide a broadband Internet

at a data rate of over 100 Mbps via electric power lines. IEEE P1901 [12] is a draft standard

for specifying this technology. During the thesis writing, this standard is still waiting for the

approval. As for T1/E1, it can provide up to 2 Mbps bandwidth and is used for leased lines

which directly connect customers such as companies to remote exchanges.

2.3 Broadband wireless access technologies

Although currently wired broadband access technologies can offer better reliability and

security, BWA technologies have very close performance in these fields. More importantly,

BWA systems enable mobility and ubiquitous Internet access, especially in areas where their

wired counterparts are not available. Since the first generation BWA systems (e.g. local

multipoint distribution systems and multichannel multipoint distribution services) were

deployed in the late 1990s, many BWA technologies have emerged with higher data rates,

longer ranges and better reliability. They include Code Division Multiple Access (CDMA)

based High Speed Packet Access (HSPA) [13] and Evolution-Data Optimized (EV-DO) [14]

as well as Orthogonal Frequency-Division Multiplexing (OFDM) based Wi-Fi [15] and

WiMAX. In the following subsections, mainstream BWA technologies are introduced.

2.3.1 HSPA

HSPA is a family of protocols to improve the data transfer speeds in Universal Mobile

Telecommunications System (UMTS). UMTS is one of Third Generation (3G) technologies,

and combines wideband CDMA air interface and popular Global System for Mobile

communications (GSM) infrastructures. HSPA delivers data through the UMTS network,

and hence enables mobile broadband by using UMTS handheld devices. HSPA mainly

consists of two standards, High Speed Downlink Packet Access (HSDPA) and High Speed

Uplink Packet Access (HSUPA). Using approaches such as fast scheduling and link

Broadband Access Technologies and WiMAX

 11

adaptation, HSDPA offers a maximum data rate of 14.4 Mbps for the user downloading,

while its uploading complement HSUPA provides an uploading speed up to 5.76 Mbps

through the help of methods like an enhanced dedicated physical channel [16].

2.3.2 EV-DO

EV-DO was designed to improve the data rates of another 3G technology, CDMA2000.

Defined in [14], a combination of up to fifteen 1.25 MHz channels can boost the theoretical

maximum rate of EV-DO to 73 Mbps. However, a typical deployment would involve just 3

channels to provide a download data rate of 14.7 Mbps. By using many of the same

optimisation technologies as HSPA, EV-DO can achieve a similar spectral efficiency as

HSPA. While one disadvantage of EV-DO is that EV-DO can not satisfy both voice and

high-speed data communication concurrently, since it uses just one separate narrower

channel for data service, compared to the efficient resource allocation for voice and data in a

5MHz channel used in HSPA. Moreover EV-DO has much less users than HSPA, as the

UMTS network which HSPA is based on has more than nine times the subscribers of

CDMA2000 [16].

2.3.3 Satellite

Satellite broadband is a wireless broadband access method which transmits and receives data

via satellites in the geostationary orbit. There are two types of this method, one is one-way

communication where the uploading and the downloading are through telephone lines and

satellites, respectively. The other is two-way communication which enables both uploading

and downloading via satellites. Satellite broadband is suitable for locations where other

Internet access methods are not available, such as the remote rural areas and vessels at sea.

The main drawback of this method compared to others is the much higher latency due to the

very long signal trip. In one-way communication, the signal travel path is 70,000 km, while

two-way communication has a path of 140,000 km. Meanwhile, satellite broadband is more

Broadband Access Technologies and WiMAX

 12

likely affected by the weather and obstacles. Furthermore, the devices for satellite broadband

are highly expensive [17].

2.3.4 Wi-Fi

Recently, Wireless Local Area Network (WLAN) technologies, especially Wi-Fi, have

become popular. Nowadays, almost every desktop or laptop computer is shipped with Wi-Fi

functions, and varied handheld devices such as smart phones have built-in Wi-Fi chips.

Moreover many cities have developed or are developing a municipal Wi-Fi project to enable

a whole city or at least the city centre Internet accessible through setting up hundreds of

Wi-Fi access points. Wi-Fi technologies are specified in IEEE 802.11 standards [15], four

main versions of which are compared in Table 2.2. Even though the popularity of Wi-Fi,

compared to other BWA technologies, Wi-Fi has some intrinsic drawbacks such as too short

range, not supporting mobility and inefficient collision avoidance protocols [18].

2.3.5 WiMAX

Being the commercial name of IEEE 802.16 family of standards, WiMAX can provide up to

tens of Mbps symmetric bandwidth over many kilometres. This gives WiMAX a significant

advantage over other alternative last mile technologies like Wi-Fi and DSL. Based on

OFDM, WiMAX can offer higher peak and average data rates, greater flexibility and system

capacity, compared to CDMA based technologies, such as HSPA and EV-DO [18]. Table

2.3 provides a comparison between WiMAX and other broadband access technologies

Table 2.2 Comparison of 802.11 standards

Standard Release year Operating
frequency

Data rates
(Typical/Max)

Range
(Indoor/Outdoor)

802.11a 1999 5 GHz 23/54 Mbps ~35/120 m

802.11b 1999 2.4 GHz 4.5/11 Mbps ~38/140 m

802.11g 2003 2.4 GHz 19/54 Mbps ~38/140 m

802.11n Nov 2009 2.4/5 GHz 74/600 Mbps ~70/250 m

Broadband Access Technologies and WiMAX

 13

described in previous sections, in terms of Downlink/Uplink (DL/UL) data rates and the

coverage. In this context, the downlink represents the transmission path from a Base Station

(BS) to a Subscriber Station (SS), and the uplink represents the converse transmission path.

In Table 2.3, for wired broadband access technologies, the range represents the typical

distance between the subscribers’ devices to a DSL access multiplexer, a cable model

termination system or a fibre local central office. Among these technologies, WiMAX offers

the highest symmetric data rates on downlink and uplink, as well as very good coverage.

Usually, WiMAX standards offer a wide variety of options, such as a selectable channel

bandwidth and spectrum profiles, which allow the industry to set up very flexible

deployments to satisfy requirements from different markets. Due to this flexibility, the

WiMAX Forum was formed to certify and promote interoperable industry solutions based

on the IEEE 802.16 standards. Currently there are more than 400 certified WiMAX trial or

commercial networks developed around the world. One such example is WiBro developed

in South Korea. The IEEE 802.16 standard family includes two major standards,

802.16-2004 (i.e. 802.16d) [2] and 802.16-2005 (i.e. 802.16e) [1] which define fixed

WiMAX and mobile WiMAX, respectively. Table 2.4 provides a comparison between the

two standards in some basic characteristics. It can be seen that both fixed WiMAX and

mobile WiMAX have their own advantages and target applications.

This thesis focuses on the fixed WiMAX technology defined in IEEE 802.16-2004 standard.

Table 2.3 Comparison of broadband Internet access technologies

Technology Access method Max DL/UL (Mbps) Range

DSL wired 24/4.6 3 km

Cable wired 50/27 160 km

Fibre wired 50/20 20 km

HSPA wireless 14.4/5.8 40 km

EV-DO wireless 14.7/5.4 50-70 km

Satellite wireless 16/2 35,000 km

Wi-Fi wireless 54/54 250 m

WiMAX wireless 70/70 50 km

Broadband Access Technologies and WiMAX

 14

Fixed WiMAX is much likely to succeed in three Internet service markets: residential area

and small or medium enterprises, leased lines for business as well as the backhaul for Wi-Fi

hotspots [18]. The first category of market demands services like high-speed file

downloading, voice over Intellectual Property (IP) and multimedia applications. For this

market, fixed WiMAX based broadband services can be provided by either installing an

outdoor antenna or an indoor cable-like modem. Therefore, fixed WiMAX is superior to

wired based cable and DSL in terms of faster and easier installation, lower deployment and

operational costs. The second potential market is the leased line connecting large companies

directly to remote exchanges. In this field, fixed WiMAX is good enough to compete with

the dominant technology - T1/E1 by providing higher speed services for enterprise

customers which are not able to access fibre. Another major opportunity for fixed WiMAX

is to serve as a faster and more cost-efficient alternative to the wired backhaul technology

for Wi-Fi hotspots. Meanwhile fixed WiMAX is technically and commercially viable for the

area lack of good wired infrastructures, such as developing countries and rural areas in

developed countries.

2.4 WiMAX PHY processing chain

In this thesis, the target application is the fixed WiMAX Physical Layer (PHY) including

both transmitter and receiver. Figure 2.1 provides an overview of the digital domain blocks

in a typical fixed WiMAX PHY.

Table 2.4 Comparison between Fixed and Mobile WiMAX

Feature Fixed WiMAX (802.16-2004) Mobile WiMAX (802.16-2005)

Status Completed June 2004 Completed December 2005

Spectrum 2-11 GHz 2-6 GHz

Application Wireless DSL and Backhaul Mobile Internet

Transmission
Scheme 256-sub-carriers OFDM Scalable Orthogonal Frequency-division

Multiple Access (SOFDMA)

Service Fixed and portable Nomadic, portable and mobile

Typical Cell Radius 4-6 miles 1-3 miles

Broadband Access Technologies and WiMAX

 15

2.4.1 Randomising

In WiMAX, randomisation is used to provide a simple encryption and prevent vicious

receivers from decoding the data [2]. Each burst of information data is randomised in the

transmitter side and de-randomised in the receiver side. Randomisation and

de-randomisation are functionally equal by using a Pseudo-Random Binary Sequence

(PRBS) with a generator polynomial of 11415 ++ XX . The PRBS initialisation sequence is

either a sequence of 100101010000000 or dependent on some parameters, such as OFDM

symbol number and BS identification. The PRBS generator structure is shown in Figure 2.2.

2.4.2 FEC encoding

Forward Error Correction (FEC) coding is a channel coding, broadly used in wireless

communication. FEC can detect and correct errors without the need to retransmit the data

through the channel which may have a large propagation delay. It is achieved by

Figure 2.1 Fixed WiMAX physical layer processing chain

Figure 2.2 PRBS for the data randomisation

Broadband Access Technologies and WiMAX

 16

incorporating redundant bits into the transmitted data and recovering the data in the receiver

side. However, the consequence of this approach is a lower net bit rate caused by the

introduced redundant bits [19]. In a WiMAX PHY, an FEC encoding is built by

concatenating a Reed-Solomon (RS) block code and a punctured convolutional code [2].

The RS code is used as the outer code, and the convolutional code is used as the inner code.

It means that the information data are firstly passed through the RS encoder in a block

format and then encoded by a convolutional encoder followed by a data puncturing. A

zero-tailing byte is appended to the end of each data package generated by RS encoding to

reset the convolutional encoder state. In WiMAX, the RS encoding is applied with all

modulation schemes except BPSK. Other FEC modes such as block and convolutional turbo

codes are optional in the fixed WiMAX standard, and not addressed in this thesis.

2.4.2.1 Reed-Solomon encoding

Due to its outstanding performance for error correction especially for burst errors,

Reed-Solomon encoding [20] is widely used in communication and storage systems. An RS

(n, k) code can correct up to t errors, where n represents the data block size after

encoding, k represents the data block size before encoding and t is equal to 2/)(kn − .

In WiMAX specifications, an RS (255, 239) code is used to correct up to 8 errors, each sized

one byte. The code generator polynomial is shown as Equation 2.1 [2]

 ∑=++++=
=

− t

i

i
i

t xgxxxxxg
2

0

12210)())()(()(λλλλ K (2.1)

where 020x=λ . Both multiplication and addition operations in Equation 2.1 are performed

in Galois Field (GF). Figure 2.3 shows the diagram of an RS encoder in WiMAX. Usually,

the input block size 'k is less than 239 bytes. Hence the first '239 k− bytes need to be

padded with zeros. As the RS (255, 239) code is systemic, the output block directly contains

the input block. The information bytes are appended by 2T’ bytes generated redundancy,

where the value of T’ depends on the modulation scheme and puncturing pattern.

Broadband Access Technologies and WiMAX

 17

2.4.2.2 Convolutional encoding

A convolutional encoder is based on a linear finite-state shift register which consists of K

m -bit registers and n modulo-2 adders, where K is called constraint length [21]. A

convolutional code has n generator polynomials, each of which represents the connections

of all registers to one modulo-2 adder. By passing each m -bit information through the

encoder, n output bits are generated through n modulo-2 adders. The code rate is

defined as nmR /= . Shown in Figure 2.4, WiMAX uses a binary convolutional encoder

with a constraint length of 7 and a code rate of 1/2 [2]. For 1=m , only 1−K one-bit

registers are needed, since the input bit can be directly fed into the modulo-2 adders. The

Figure 2.3 Reed-Solomon encoder

Figure 2.4 Binary convolutional encoder with a constraint length of 7 and a code rate of 1/2

Broadband Access Technologies and WiMAX

 18

two generator polynomials are G1(1,1,1,1,0,0,1) and G2(1,0,1,1,0,1,1), respectively.

In addition, theoretically the convolutional encoding operation can be graphically

represented in three different ways: state diagram, tree diagram and trellis diagram. Among

these diagrams, the trellis diagram is broadly used, due to its presentation of the passage of

time. Here a brief introduction is given for the trellis diagram which is used in convolutional

decoding as well. Figure 2.5 shows the trellis diagram for a simple convolutional encoder

with a code rate of 1/2 and generator polynomials as G1(1,1,0) and G2(1,1,1). The

horizontal axis represents time, while the vertical axis shows the encoder states which are

the value of registers. Each new input bit causes a state transition which is represented by

one connection from the current state to the next state through either a solid line for a 0 input

or a dashed line for a 1 input. The corresponding output bits are shown in parentheses. The

encoding operation starts from state 00. Figure 2.5 also highlights the encoding path for an

input sequence of 1100 in red, where the most significant bit is fed into the encoder firstly.

The generated output for this sequence is 11001001.

2.4.2.3 Puncturing

The convolutional code in WiMAX has a native code rate of 1/2 which means for every

input bit, the convolutional encoder will introduce one redundant bit. If a higher code rate is

demanded, a different encoder is needed. However, data puncturing can be used after a

convolutional code to achieve higher code rates and also improve the flexibility of the

Figure 2.5 Trellis diagram representation of a simple convolutional encoder

Broadband Access Technologies and WiMAX

 19

encoder without involving different encoders. During data puncturing, some bits in the

encoder output are selectively deleted. Table 2.5 shows the puncturing patterns supported in

WiMAX, which give different final convolutional code rates from 1/2 (no puncturing) up to

5/6 (minimal redundancy) [2]. In this table, “1” means corresponding bit is kept, otherwise

removed.

2.4.3 Interleaving

The data transmitted in channels with multipath fading may suffer burst errors which can not

be easily corrected by FEC codes. An effective method is interleaving the coded bits before

the modulation, so that the burst errors can be distributed to different modulated data

symbols and then corrected by FEC decoding [21]. In WiMAX, the interleaver involves two

permutations given in Equations 2.2 and 2.3 [2], respectively.

1,,1,0)12/()12/(12mod −=+×= cbpscbpsk NkkfloorkNm K (2.2)

1,,1,0))/12(()/()mod(−=×−++×= cbpsscbpskcbpskkk Nk NmfloorNmsmfloorsj K (2.3)

where k , km and kj are the indices before and after the first and second permutations,

respectively, and)2/(cpcNceils = . cpcN represents the number of coded bits per

subcarrier and depends on the modulation scheme. While cbpsN represents the interleaver

block size or coded bits per OFDM symbol, decided by both the modulation scheme and the

Table 2.5 Puncturing patterns in WiMAX

Code rate 1/2 2/3 3/4 5/6

X 1 10 101 10101

Y 1 11 110 11010

Output X1Y1 X1Y1Y2 X1Y1Y2X3 X1Y1Y2X3Y4X5

Broadband Access Technologies and WiMAX

 20

number of subchannels. In the receiver side, de-interleaving is performed in two

permutations as well, but in an inverse direction, given in Equations 2.4 and 2.5.

() 1,,1,0))/12(()/(mod −=×++×= cbpsscbpsj Nj Njfloorjsjfloorsm K (2.4)

1,,1,0)/12()1(12 −=××−−×= cbpscbpsjcbpsjj NjNmfloorNmk K (2.5)

where j , jm and jk are the indices before and after the first and second permutations,

respectively.

2.4.4 Data modulation

After interleaving, the data bits are mapped to constellation points, which are complex

valued symbols, by data modulation or symbol mapping. Each symbol can represent one-bit

or several bit data according to the modulation scheme. In WiMAX, various modulation

schemes are supported, including BPSK, Quadrature Phase-Shift Keying (QPSK), 16QAM

Figure 2.6 BPSK, QPSK, 16QAM and 64QAM modulation schemes in WiMAX

Broadband Access Technologies and WiMAX

 21

and 64QAM [2]. Among these schemes, BPSK is most robust and 64QAM offers the highest

data rate. Figure 2.6 shows the constellations for each modulation scheme. For normalisation,

the absolute value of each constellation point is multiplied with a factor c shown in Figure

2.6.

2.4.5 OFDM processing

One of the major challenges for high-data-rate wireless broadband systems is the

Intersymbol Interference (ISI) due to the multipath propagation. ISI becomes very severe

when the symbol time sT is much less than the channel delay spread τ. It is especially true

for WiMAX which has a long range and a high data rate [18]. In WiMAX, OFDM is used to

overcome the ISI. OFDM is a popular multicarrier modulation technology widely used in

many high-data-rate systems such as Wi-Fi and DSL. In a WiMAX physical layer, OFDM

processing is one of key computation functions, composed of pilot insertion, DC and guard

band insertion, inverse FFT (IFFT) and Cyclic Prefix (CP) extension in downlink processing

together with CP removal, FFT, pilot removal, DC and guard band removal in uplink

processing. In WiMAX, after data modulation, OFDM splits a high-rate single carrier into

N low-rate subcarriers, each of which is orthogonal to each other and does not affect the

encoded data on other subcarriers. Then OFDM uses IFFT to create a composite OFDM

symbol stream by taking the encoded data of each subcarrier [22]. Therefore, the OFDM

symbol time becomes NTs * which can be significantly larger than τ. Additionally through

the use of CP, the channel can be made entirely ISI-free. Usually, for fixed WiMAX OFDM,

there are 256 subcarriers consisting of 192 information subcarriers, 8 pilots, one Direct

Current (DC) subcarrier and 55 guard subcarriers [2]. Figure 2.7 shows the frequency

domain representation of an OFDM symbol for fixed WiMAX. While Figure 2.8 illustrates

the OFDM downlink processing in the transmitter side for fixed WiMAX. In the receiver

side, the OFDM uplink processing restores the high-rate single carrier by using FFT and

removing CP, DC, guard band as well as pilots. In the following subsections, each sub-block

Broadband Access Technologies and WiMAX

 22

of OFDM is described.

2.4.5.1 Pilot modulation and insertion

In fixed WiMAX OFDM, eight subcarriers carry pilot signals which are used for

synchronisation in the receiver side. The values of DL and UL pilots for OFDM symbol k

are obtained from Equations 2.6 and 2.7, respectively [2], where kw is generated by a

PRBS with a generator polynomial of 1911 ++ XX , as shown in Figure 2.9. The PRBS

initialisation sequences for downlink and uplink are given in Figure 2.9 as well. Each pilot is

BPSK modulated and inserted into the corresponding position of an OFDM symbol as

illustrated in Figure 2.7.

DL: kwcccc 2188633888 −==== −− and kwcccc 2138131363 −==== −− (2.6)

UL: kwcccccc 21886338133888 −====== −− and kwcc 211363 −== −− (2.7)

Figure 2.7 Frequency domain representation of an OFDM symbol in fixed WiMAX

Figure 2.8 OFDM downlink processing in the transmitter side of fixed WiMAX

Broadband Access Technologies and WiMAX

 23

2.4.5.2 DC and guard band insertion

In fixed WiMAX OFDM, there are 56 null subcarriers which are not allocated any transmit

power [2]. These subcarriers include one DC subcarrier and 55 guard subcarriers whose

positions in OFDM frequency domain are shown in Figure 2.7. The DC subcarrier, whose

frequency is equal to the centre frequency of radio frequency, is used to prevent any

saturation effect or DC offset suffered by the receiver side. Guard subcarriers are located at

the edge of the spectrum to reduce the interference between a WiMAX channel and its

neighbour channels. Another reason to insert the guard band is that the size of FFT is always

equal to n2 , some dummy subcarriers should be padded to both edges [18].

2.4.5.3 FFT/IFFT

In OFDM processing, IFFT and FFT are used in the transmitter and receiver, respectively.

An N -point IFFT transforms N frequency domain data into N time domain data, while

FFT performs the opposite operation. IFFT and FFT have very similar structures. There are

various algorithms to implement FFT/IFFT including radix-2 [23], radix-4 [24], split-radix

[25] and so on. In this thesis, a simple and popular radix-2 algorithm, which is suitable for

n2 point FFTs, is used. Figure 2.10 shows the data flow graph of an 8-point radix-2 FFT,

where the horizontal axes signify the computation stages. There are in total 3 stages for an

8-point radix-2 FFT, and each stage has four butterfly operations. A signal flow

Figure 2.9 PRBS for pilot modulation

Broadband Access Technologies and WiMAX

 24

representation of a radix-2 butterfly is given in Figure 2.11 where W , called twiddle factor,

is a trigonometric constant coefficient. After the transformation, the order of output data

should be reversed into the numerical order.

2.4.5.4 Cyclic prefix extension

After the IFFT operation, the interference between symbols is eliminated. However each

OFDM symbol still suffers Inter-Carrier Interference (ICI) or ISI within one OFDM symbol.

It is because of the feature of the multicarrier modulation where many subcarriers are tightly

packed into one channel, so that even small frequency shifts will cause ICI [22]. To

overcome ICI, a guard time is inserted in front of each OFDM symbol. In OFDM, the guard

time is implemented by duplicating a tail portion of an OFDM symbol at the beginning of

this symbol. This method is termed as cyclic prefix extension. In the receiver side, the CP

Figure 2.10 Data flow graph of an 8-point radix-2 FFT

Figure 2.11 Signal flow representation of a radix-2 butterfly

Broadband Access Technologies and WiMAX

 25

will be removed before FFT performs. The ratio of CP length to useful symbol length is

called guard fraction G . As shown in Figure 2.8, after the cyclic prefix extension, the

symbol time becomes sTG ')1(×+ . Obviously, a long guard time or large G will reduce

the net bit rate, while a too short guard time or small G would not protect symbols from

ICI. In WiMAX, G can have a value of {1/4, 1/8, 1/16, 1/32}. Many multi-core WiMAX

solutions (e.g. Freescale WiMAX solution [26]) use 1/16 as the value of G . For the sake of

comparison, a fraction of 1/16 is used in this thesis.

2.4.6 Synchronisation

The synchronisation block performs the symbol timing synchronisation to determine the

symbol arrival time offset and the optimal timing instant by using the maximum likelihood

(ML) estimation algorithm [27]. As shown in Figure 2.12, assume that we observe 2N+L

consecutive samples represented in a 1-D vector r)]2()1([LNrr +L and these samples

contain one complete CP extended OFDM symbol consisting of N+L samples, In Figure

2.12, N is the length of an OFDM symbol, L is the length of CP, and θ is the unknown

time offset. The ML estimation of θ can be obtained by Equation 2.8 [28].

)}(|)({|arg
^

θρθγθ
θ

Φ−= MaxML (2.8)

where ∑ +=
−+

=

1 *)()()(
L

k
Nkrkr

θ

θ
θγ , ∑ ++=Φ

−+

=

1 22 |)(||)(|
2
1)(

L

k
Nkrkr

θ

θ
θ and

1+
=

SNR
SNRρ .

Figure 2.12 Timing synchronisation

Broadband Access Technologies and WiMAX

 26

2.4.7 Data demodulation

In the receiver side, the soft decision based data demodulation restores the original bits from

the complex valued symbols by comparing the values of real and imaginary parts with some

threshold values [2]. Figure 2.13 shows the soft decision demodulations for 16QAM where d

is the threshold. 64QAM has more threshold values but maintains the similar idea of

16QAM demodulation. As for BPSK and QPSK, the original bits can be easily recovered

according to the sign of the real and imaginary parts, as shown in Figure 2.6.

2.4.8 FEC decoding

In the receiver side, FEC decoding performs the inverse order of FEC encoding, and consists

of de-puncturing, Viterbi decoding used to decode convolutional codes and Reed-Solomon

decoding. The de-puncturing is simply performed by inserting 0 at the punctured positions.

Viterbi and RS decoding are described in the following subsections.

2.4.8.1 Viterbi decoding

The basic idea behind the decoding of convolutional codes is to compare the received

sequence with all possible valid sequences, by using the trellis diagram. In WiMAX PHY,

Figure 2.13 16QAM soft decision data demodulation

Broadband Access Technologies and WiMAX

 27

the Viterbi algorithm [29] is applied to decode convolutional codes. The Viterbi algorithm

allows multiple possible paths calculated concurrently and is much faster than other

decoding algorithms like Fano algorithm which deals with only one path at a time. However,

the Viterbi algorithm costs more resources if implemented in hardware. The Viterbi

algorithm calculates branch metrics between the incoming bits and each possible branch of a

state in the trellis diagram, and then accumulates the metric values along each path to

generate a path metric. When two possible paths converge on one state node, the path with

the lower path metric is kept as a survivor, with the other one discarded. Eventually, only the

path with the lowest path metric is the ultimate survivor. Usually the Hamming distance is

used as the metric. Figure 2.14 shows the decoding process for the convolutional code in

Figure 2.5 by using the Viterbi algorithm. Assuming the received sequence is 10011001, it

has two bit errors compared to the output sequence 11001001 of the convolutional encoder.

In Figure 2.14, the Hamming distance for each path is shown in parentheses at each state

point which the path reaches. The discarded paths have a red cross on them. Finally, the path

with lowest Hamming distance of 2 is the survivor, highlighted in blue. The corresponding

decoded sequence is 11001001, matching the output sequence of the encoder shown Figure

2.5.

2.4.8.2 Reed-Solomon decoding

In RS decoding, up to t errors (in WiMAX, t=8) can be detected and corrected following

Figure 2.14 Viterbi decoding process for a convolutional code with a 1/2 code rate

Broadband Access Technologies and WiMAX

 28

the process shown in Figure 2.15 [30]. Firstly the received data is fed into the syndrome

computation block for detecting whether the data contains any errors. Then the generated

syndromes are used for retrieving the locations and values of errors. The Berlekamp-Massey

algorithm [30] is chosen to generate an error-location polynomial. If the degree of the

location polynomial is greater than t which is the maximum number of correctable errors,

the decoder is only able to detect the presence of errors and will stop without any further

correction. Otherwise the roots of this polynomial are obtained by an exhaustive search

performed in Chien search block. Once the errors have been located, the error evaluation

polynomial and Forney algorithm blocks will calculate the error values. Then error values

together with error locations and received data are sent to the error correction block for

recovering the original data. Each of blocks shown in Figure 2.15 involves plenty of GF

calculations, the detail of which can be found in [30].

2.5 Summary

This chapter has reviewed current mainstream broadband access solutions including both

wired and wireless technologies. Some comparisons were given to exhibit the advantages of

WiMAX over its counterparts. Due to its merits, WiMAX was demonstrated to be a

promising solution to promote ubiquitous Internet access. As the main target of this thesis is

fixed WiMAX, Section 2.4 introduced the structure of fixed WiMAX physical layer and

described the function and algorithm for each main block of both transmitter and receiver.

Figure 2.15 Reed-Solomon decoding process

29

3.1 Introduction

Applications such as WiMAX demand high performance, strict low power, and in-field

reprogrammability in order to follow evolving standards. Traditional single-core

architectures could not satisfy all these requirements, since in the past few years, people

have not seen great gains, but instead diminishing returns in single-core processor

performance through increasing operating frequency. It is well known that the development

of single-core processors hits three walls: memory wall, ILP wall and power wall. Now both

industry and academia are all agreed that the continuing increases in the transistor count and

operating frequency can no longer make a microprocessor faster, instead multiple or many

simpler processing cores should be put on a chip. As a result, the processing load of

complicated applications can be distributed across multiple processing cores. This approach

can deliver more overall performance through parallelism, as well as consume less power.

On the other hand, in recent years, several new coarse-grained dynamically reconfigurable

Chapter 3
 Multi-core Processors

and Reconfigurable Architectures

Multi-core Processors and Reconfigurable Architectures

 30

architectures have emerged, such as Transport Triggered Architecture (TTA) [31], Pleiades

[32], DAPDNA-2 [33] and Reconfigurable Instruction Cell Array [7]. Incorporating a

DSP-like flexibility as well as a close performance and power efficiency of ASICs [7],

coarse-grained DR processors (e.g. RICA) are promising to be candidates for processing

cores in high performance embedded multi-core processors.

Through gradually introducing the background knowledge of multi-core processors,

reconfigurable architectures and RICA technology, this chapter indicates the reasons why

RICA reconfigurable technology based multi-core architecture is explored in this thesis.

This chapter is structured as follows. Section 3.2 investigates the advantages of multi-core

processors over single-core processors and the taxonomies of multi-core processors. Section

3.3 introduces reconfigurable architectures in terms of different classifications. Section 3.4

focuses on a detailed introduction of a course-grained DR architecture – RICA, which is the

target processing core used to build the proposed multi-core architecture in this thesis.

Section 3.5 reviews the traditional WiMAX implementations on ASICs, GPPs and Field

Program Gate Arrays (FPGAs). Section 3.6 addresses some existing work on multi-core

WiMAX implementations. Section 3.7 summarises the reason why the RICA technology is

chosen for the proposed multi-core architectures in this thesis.

3.2 Multi-core processors

As a kind of parallel architecture, a multi-core processor architecture combines two or more

independent cores (e.g. GPP and DSP cores) into a single integrated circuit die. Actually

parallel computing is not a new concept. Ever since the first effort to design a parallel

machine (called SOLOMON) was made in 1958 [34], the parallel computing paradigm has

been improving dramatically. Within the past half century, many advanced technologies

have been created and become popular, such as Single Instruction Multiple Data (SIMD),

Symmetric Multiprocessing (SMP) and multithreading. Now multi-core processors adopt

many of these technologies which were originally developed for mainframes and

Multi-core Processors and Reconfigurable Architectures

 31

supercomputers.

Currently many multi-core processors have been fabricated for different markets such as

servers, personal computers and embedded systems. These multi-core processors include

Intel Quad-Core Xeon [35], Nvidia GeForce GTX260 [36], ARM11 MPCore [37], Ambric

Am2000 family [38] and so on. With the release of more and more multi-core processor

products from top semiconductor companies, multi-core architectures are believed by many

people as the trend of the development of processors and highly anticipated to exceed the

common interpretation of Moore’s Law [39].

3.2.1 The advantages of multi-core processors

Multi-core processors have many advantages. First of all, the salient characteristics of a

multi-core processor enable it to avoid or move the three walls that single-core processors

face further away. The placement of multiple processing cores on a single chip allows

high-speed shared caches or stream buffers incorporated into the chip. The integrated shared

memory blocks can operate at a much higher clock rates and have lower access latencies

than on-board shared memory blocks which signals have to travel off-chip to access. Hence,

the speed gap between processing cores and memory can be efficiently alleviated.

Meanwhile thread level parallelism or multithreading has become more popular and can take

better advantage of computing resources than ILP. In a multi-core environment,

multithreading can bring potential into full play, since every core can support multithreading.

Additionally, as multi-core processors can do more tasks or threads in parallel, multi-core

processors can be designed to operate at lower frequencies than single-core processors.

Theoretically, power consumption increases proportionally with the frequency, especially

dynamic power consumption which is responsible for 80% of the overall power

consumption [40]. Therefore multi-core processors can have a relaxed power budget, and

mitigate the pressure in the cooling system. Moreover, if a processing core is not used, it can

be switched off, so that the overall static power consumption can be reduced as well.

Multi-core Processors and Reconfigurable Architectures

 32

Secondly from the software point of view, multi-core processors can dramatically slash the

response time for computation-intensive tasks like antivirus scan and video playback. It is

achieved by assigning each such application to one core, so that the tasks will not compete

for the computing resources on the same core as super-threading does on single-core

processors. This design reuse has far less design risk than developing a new processor

starting from scratch. In addition, multi-core processors can be fault-tolerant. If one core

fails, the faulty core can be switched off. The rest of the system can still correctly function,

even though delivering a reduced performance. Furthermore, a multi-core processor has

advantages over a multi-chip module, which incorporates multiple die in one package,

across all performance metrics. The advantages are mainly due to the shorter distances,

which the signals between processing cores have to travel, as well as the reduced space

multi-core processors require.

3.2.2 Taxonomies of multi-core processors

Multi-core processors can be categorised in term of different taxonomies such as the target

markets, heterogeneity or homogeneity as well as the types of cores used to build the

multi-core architectures.

3.2.2.1 Computing markets

Recording computing markets, multi-core processors are broadly used in three different

markets, servers, desktop and laptop computing as well as embedded systems. These

markets are distinct from each other in applications and requirements [41]. For servers, it is

crucial to reliably and efficiently provide services such as Internet searching and online

transactions. Commercial multi-core processors targeting servers include Intel Xeon [35],

AMD multi-core Opteron [42], IBM dual-core POWER6 [43], Sun Microsystems eight-core

UltraSPARCT1/T2 [44] and so on. The desktop and laptop computing market is

continuously driven to improve price/performance ratio. This field is dominated by Intel and

AMD x86 architecture based products. One exception is IBM dual-core PowerPC 970MP

Multi-core Processors and Reconfigurable Architectures

 33

[45] for Apple Power Mac G5 computer. Currently desktop and laptop multi-core processors

contain up to four processing cores. Such processors include Intel Core 2 Quad [46] and

AMD quad-core Phenom [47].

Recently with more and more computation-intensive applications, such as wireless

communication and multimedia, incorporated into embedded systems, there is an increasing

trend to use multi-core processors in embedded devices such as game consoles and WiMAX

base stations. Many embedded systems demand real-time performance meaning that a

service or an application must be completed before a deadline. Meanwhile portable

embedded devices need to be highly energy efficient for extending battery life. Usually

multi-core processors in this field are especially designed for some dedicated applications or

application domains. Examples include the Cell processor [48] initially designed for

PlayStation 3, Ambric Am2000 family [38] targeting video processing and picoChip

multi-core DSPs [49] looking at wireless communication. Considering the issue of power

consumption, a number of embedded multi-core processors are composed of many simpler

processing cores with lower frequency, compared to their counterparts in the other two

markets. For example, Am2045 [38] consists of 360 32-bit processors with a 333 MHz clock,

while picoChip PC101 [50] contains 430 16-bit processors and runs at 160MHz.

3.2.2.2 Heterogeneity and Homogeneity

Depending on whether processing cores are identical, multi-core processors can be

categorised into homogeneous multi-core and heterogeneous multi-core. As its name implies,

all processing cores in a homogeneous multi-core architecture are same. A heterogeneous

multi-core architecture consists of different cores, each of which could be optimised for

certain applications running on it. It allows heterogeneous multi-core architectures offer

better performance for domain specific applications. However, heterogeneous multi-core

architectures may face more challenges than its homogeneous twin in terms of Application

Programming Interface (API) support, task partitioning and mapping, as well as compiler

Multi-core Processors and Reconfigurable Architectures

 34

and language development [51]. Now it is still debated that homogeneity or heterogeneity

will be the future of multi-core processors [52]. Recently most multi-core processors used in

servers as well as desktop and laptop computing are homogeneous. As to embedded systems,

both homogeneity and heterogeneity architectures are widely used. The rest of this section

describes more details about heterogeneous multi-core processors, since homogeneous ones

are built by replicating processing cores.

Each core of a heterogeneous multi-core architecture may differ in size, functionality,

performance and complexity or even come from totally different processor families.

Heterogeneous multi-core architectures can be further divided into single Instruction Set

Architecture (ISA) heterogeneity and multi-ISA heterogeneity. Multi-ISA heterogeneity

architectures contain processing cores based on different ISAs and hence may involve

multiple tool flows. The hybrid feature makes this type of architecture more difficult to

design and program for. In contrast, all cores in a single-ISA heterogeneous multi-core

architecture share a same ISA. It allows any core to execute any application used to run on

other cores, with little effort on system reconfiguration and program modification.

Previously mentioned commercial products, such as the Cell processor and picoChip

multi-core DSPs, are heterogeneous.

A variety of heterogeneous multi-core systems have been proposed in academia as well,

based on either single-ISA [53-55] or multi-ISA [56]. The authors in [53] proposed a

single-ISA heterogeneous multiprocessor consisting of two processor types EV5 and EV6. It

demonstrated that heterogeneous architectures could provide significantly higher

performance than their equivalent-area homogeneous counterparts. In [54], a heterogeneous

multiprocessor architecture was proposed for high definition video. Using Silicon Hive

technology, this architecture employed five processors based on three different hardware

templates. In [55], the authors presented a heuristic to efficiently explore the design space

for a pipeline based heterogeneous multiprocessor system. This system uses a commercial

Application-Specific Instruction-Set Processor (ASIP) – Xtensa LX from Tensilica [57].

Multi-core Processors and Reconfigurable Architectures

 35

JPEG and MP3 applications were taken as case studies. Shikano et al. [56] presented a

heterogeneous CMP consisting of three SuperH processors and two FE-GA processors for a

MP3 encoder.

3.2.2.3 Core types

Multi-core processors can be structured with varied types of processing cores such as GPP

cores, DSP cores, Graphics Processing Unit (GPU) cores, ASIP cores, dynamically

reconfigurable cores or a mix of these. Most multi-core processors used in servers as well as

the desktop and laptop computing are based on GPP cores, except those used for special

purposes such as Nvidia GeForce GTX200 GPUs. Due to the variety of embedded systems,

there are many more choices in building embedded multi-core processors. For instance,

Table 3.1 Comparison of multi-core processors

Multi-core No. of Cores Target market Homo/Heterogeneity Core type

Opteron [42] 2/4/6 Server Homogeneous GPP

POWER6 [43] 2 Server Homogeneous GPP

Processor in [53] 8 Server Heterogeneous GPP

UltraSPARC T1/T2 [44] 8 Server Homogeneous GPP

Xeon [35] 2/4/6 Server Homogeneous GPP

Core 2 Duo/Quad [46, 58] 2/4 Desktop/laptop Homogeneous GPP

GeForce GTX200 [36] 10 Server/desktop/laptop Homogeneous GPU

Phenom [47] 3/4 Desktop Homogeneous GPP

PowerPC 970MP [45] 2 Desktop Homogeneous GPP

Am2045 [38] 336 Embedded Homogeneous DSP

ARM11 MPCore [37] 2/3/4 Embedded Homogeneous GPP

Cell [48] 9 Embedded Heterogeneous Mix

DAPDNA-2 [33] 2 Embedded Heterogeneous Mix

IXP 2350 [59] 5 Embedded Heterogeneous Mix

MSC8126 [26] 4 Embedded Homogeneous DSP

PC101/102 [49, 50] 430/308 Embedded Heterogeneous DSP

MRC6011 [60] 6 Embedded Homogeneous DR

Processor in [55] 4/5/6/9 Embedded Heterogeneous ASIP

Processor in [56] 5 Embedded Heterogeneous Mix

SB3010 [61] 5 Embedded Heterogeneous Mix

Multi-core Processors and Reconfigurable Architectures

 36

Freescale MSC8126 multi-core DSP [26] is equipped with four SC140 VLIW DSP cores,

ARM11 MPCore [37] can be configured to have up to four GPP cores, and Freescale

MRC6011 [60] consists of six coarse-grained DR cores. Moreover, some embedded

multi-core processors are built with a mix of different types of cores. Examples of such

multi-core processors include Intel IXP 2350 [59] and IPFlex DNPDNA-2 [33]. IXP 2350 is

a network processor which has an XScale GPP core and four microengine cores, designed

for line-rate packet processing. DNPDNA-2 is comprised of a high-performance Reduced

Instruction Set Computer (RISC) core called DAP and one coarse-grained reconfigurable

fabric called DNA. Obviously, such kind of multi-core processor must be heterogeneous, but

heterogeneous multi-core processors are not necessarily to be built with different types of

cores. Table 3.1 summarises some popular commercial and academic multi-core processors

in terms of the number and types of cores and their targets.

3.3 Reconfigurable architectures

Reconfiguration Architectures (RAs) refer to systems containing a Reconfigurable

Processing Unit (RPU) which can be customised to execute different applications after

fabrication through multiple configuration bits. Basically, an RPU is an array of

computational elements connected through a set of programmable routing resources [62].

Offering a good balance between implementation efficiency and flexibility, reconfigurable

architectures can achieve much higher performance than GPPs and DSPs, while maintaining

software-like flexibility by post-fabrication programmability. To date, there is no unified

taxonomy established for reconfigurable architectures. Usually several architectural

characteristics are used to classify RAs, including execution structures, granularity and

reconfiguration schemes [63].

3.3.1 Execution structures

According to the structure of executing datapaths and control paths, reconfigurable

Multi-core Processors and Reconfigurable Architectures

 37

architectures can be classified into two categories [63]. In the first category, a RA is a

combination of a RPU for datapath operations and a main processor for control operations.

Actually, the RPU acts as a hardware accelerator to execute the computation-intensive part

of the application, while the main processor (e.g. RISC or VLIW based) is usually

responsible for control operations, RPU configuration and the synchronisation with the RPU.

This kind of architecture may involve plenty of manual work on separate programming for

the RPU and the main processor as well as the synchronisation between the two different

components. The typical examples of such architectures are Montium [64] and MorphoSys

[65]. According to the type of coupling of the RPU to the main processor, this category can

be further split into loose coupling, where the RPU connects to the processor through

internal or external bus, and tight coupling where the RPU is even embedded into the

processor and communicates with it through shared registers [66]. In the second category,

the RPU can execute both datapath and control operations. Although a processor may exist

in this kind of RA, there is no need for moving a large mount of data and manual

synchronisation between the processor and the RPU. Such architectures include Pleiades [32]

and RICA [7].

3.3.2 Granularity

The granularity represents the size of smallest function units in a reconfigurable architecture.

Recording this parameter, reconfigurable architectures can be categorised into fine-grained,

coarse-grained, medium-grained, very coarse-grained and mixed-grained RAs [66].

3.3.2.1 Fine-grained reconfigurable architectures

Fine-grained RAs contain basic function units sized down to one bit. Many early FPGAs and

Programmable Logic Devices (PLDs) mainly consist of fine-grained basic logic blocks such

as transistors, NAND gates, an interconnection of multiplexers and Look-Up Tables (LUTs)

[67]. Among these fine-grained logic blocks, LUTs are broadly used in commercial

FPGAs/PLDs such as Xilinx Virtex 5 [68] and Altera Stratix III [69]. Typically, a LUT is

Multi-core Processors and Reconfigurable Architectures

 38

implemented by using Static Random Access Memory (SRAM) cells and can be used to

build any bit-level logic function with the same number of inputs [67]. Based on bit-level

blocks, fine-grained RAs can be configured as a wide range of hardware circuitries. The

flexibility comes at a price of significant routing overheads and a large number of

configuration bits, since each basic function unit should be connected and configured. As a

result, dedicated applications can not efficiently perform on fine-grained RAs, and consume

more power, space and configuration time with fine-grained implementations [66]. For

example, assuming an implementation of a 32-bit adder on a fine-grained FPGA, it will cost

logic blocks and corresponding routing resources. Obviously, this implementation is

inefficient for addition-intensive applications, compared to a reconfigurable architecture

with an array of 32-bit adders.

3.3.2.2 Coarse-grained reconfigurable architectures

Usually coarse-grained RAs are based on word-level building blocks which could be

Arithmetic Logic Units (ALUs) or some custom function units (e.g. adders and multipliers)

connected through interconnection networks such as mesh, crossbar and linear array [70].

Made less generic and more specific to some application domains, coarse-grained RAs have

several advantages over their fine-grained counterparts in terms of power consumption,

speed and area costs. However, some possible inefficient implementation on coarse-grained

RAs could happen when operations required by applications do not match the size of

building blocks. For example, an application requiring 8-bit addition operations could waste

resources of an RA built with only 32-bit blocks. Actually this kind of situation can be avoid

by either using vector operations or tailoring the resources to meet the requirement since the

application could be known in advance.

In the last twenty years, many commercial and academic coarse-grained RAs have been

proposed. In Table 3.2, a summary is given for the comparison of various coarse-grained

RAs. As shown in Table 3.2, most listed coarse-grained RAs are based on a format of a

Multi-core Processors and Reconfigurable Architectures

 39

control-responsible main processor paired with a computation-responsible RPU acting as a

coprocessor or a hardware accelerator. In Section 3.3.1, it has been pointed out that these

architectures will involve separate programming and complicated synchronisation. It is also

shown that many of coarse-grained RAs are programmed in low level languages (e.g.

assembly and netlist) or C subsets and extensions which are not fully compatible with ANSI

C. In Section 3.4, a newly emerging coarse-grained reconfigurable architecture RICA is

described in details. This architecture supports ANSI C programming and is able to run both

control path and datapath operations.

Table 3.2 Comparison of coarse-grained reconfigurable architectures

Architecture Execution structure Programmability Target application

Adapt2400 [71] RPU for control/datapath SiliverC (ANSI C
derivative)

Signal/image
processing

ADRES [72] VLIW for control; RPU for
datapath/limited control ANSI C Video

DAPDNA-2 [33] RISC for control;
RPU for datapath

MATLAB/Simulink;
ANSI C General purpose

HiveFlex CSP [73] VLIW for control;
RPU for datapath ANSI C OFDM

Matrix [74] RISC for control;
RPU for datapath

Assembly level macro
language General purpose

Montium [64] RPU as a co-processor for
datapath

Montium LLL language
(low level)

Wireless, image/
signal processing

MorphoSys [65] RISC for control; RPU for
parallel-data operations Assembly Pixel-processing

PACT XPP [75] RPU as a co-processor for
datapath

NML language
(low level) DSP

PADDI-2 [76] RPU as a co-processor for
DSP datapath Assembly DSP

PipeRench [77] RPU as an accelerator for
pipeline applications

DIL single-assignment
language (C subset) Pipelining

Pleiades [32] Main processor for control;
RPU for datapath/control Netlist for RPU Multimedia

RaPiD [78] RISC for control;
RPU for datapath RaPiD-C Pipelining

RICA [7] RPU for control/datapath ANSI C Wireless, image and
signal processing

TTA [31] RPU for control/datapath ANSI C DCT, Viterbi and etc.

Multi-core Processors and Reconfigurable Architectures

 40

3.3.2.3 Medium-grained and very coarse-grained reconfigurable architectures

Medium-grained structures have granularities sized between fine grains and course grains.

Examples of such architectures are Garp [79] and CHESS [80]. Garp [79] has an array of

2-bit reconfigurable ALUs, while the kernel of CHESS architecture [80] is a hexagonal array

of 4-bit ALUs targeting multimedia applications. As for very coarse-grained architectures,

the basic reconfigurable building blocks are based on a processor. In [81], RAW is built with

16 tiles, each of which is a 32-bit modified MIPS R2000 microprocessor. While REMAEC

[82] has an 8 by 8 array of 16-bit nanoprocessors.

3.3.2.4 Mixed-grained reconfigurable architectures

Currently many modern commercial FPGAs are built with a mixture of different logic

function units from fine-grained blocks like LUTs to coarse-grained blocks, such as

dedicated memory block, multipliers and adders [67]. These FPGAs are heterogeneous

structures and called mixed-grained RAs. Basically such a FPGA (e.g. a Xilinx or Altera

FPGA) contains an array of Configurable Logic Blocks (CLBs) [68] or Adaptive Logic

Modules (ALMs) [69] and routing resources. CLBs or ALMs are connected through a

reconfigurable interconnection network. Usually a CLB or an ALM contains several 4-input

or 6-input LUTs, flip-flops, multiplexers and even some arithmetic units. Meanwhile this

kind of FPGA feature an amount of block RAMs for meeting different memory

configurations and word-level arithmetic blocks like multipliers for accelerating

computation-intensive applications. These coarse-grained blocks have grown to take

dominant space on mixed-grained FPGAs. For example, the latest Xilinx Virtex 6 FPGAs

contain up to 864 DSP48E1 slices and 1064 dual-port RAM blocks. Each DSP48E1 slice

consists of a 25 x 18 multiplier, an adder, and an accumulator. Each block RAM can store 36

Kbits [83]. Some dedicated functions (e.g. DSP functions) can be effectively implemented

on these coarse-grained blocks and thus have significant advantages in terms of area, speed

and energy, compared to their implementations on CLBs or ALMs. However, if these

Multi-core Processors and Reconfigurable Architectures

 41

functions are not present in the target applications, those special blocks will become

redundant and thus reduce the area efficiency of mixed-grained FPGAs [67].

3.3.3 Reconfiguration schemes

In terms of the reconfiguration scheme, RAs can be classified into static, dynamic and

partially dynamic reconfiguration [66]. In the static reconfiguration, the hardware is

configured at system power up. Once the operation starts, the hardware will remain the same

configuration through the whole life of the application. One example of such statically

reconfigurable devices is Altera Stratix II FPGAs [84]. In contrast of the static

reconfiguration, dynamically reconfigurable architectures can be run-time configured to

execute different configuration contexts (the configurations for applications are partitioned

into multiple contexts) by swapping or switching these contexts. Most coarse-grained

architectures are dynamically reconfigurable. Both static and dynamic reconfigurations need

the devices to be fully reconfigured. Rather than this full reconfiguration, some devices such

as Xilinx Virtex 5 FPGAs [68] allow to selectively reconfigure a part of resources, in the

meantime keeping the rest of resources operating. This partial dynamic reconfiguration can

hide the reconfiguration time in the computation time.

3.4 Reconfigurable instruction cell array

In [7], a coarse-grained dynamically reconfigurable architecture is proposed, called

reconfigurable instruction cell array. In this thesis, the proposed multi-core architecture uses

processing cores based on this RICA architecture. The following subsections describe the

RICA architectural characteristics and its tool flow.

Multi-core Processors and Reconfigurable Architectures

 42

3.4.1 Architecture

The main part of the RICA architecture is a heterogeneous array of instruction cells

interconnected through an island-style mesh fabric. Each instruction cell can be configured

to do a small number of operations as listed in Table 3.3 which gives the description of both

standard instruction cells and some existing custom instruction cells. Figure 3.1 shows the

architecture view of RICA. One salient characteristic of RICA is that the array can be

customised at the design stage according to application requirements in terms of the number

of each certain cell, and even allows for new custom cells added. Another characteristic is

that RICA supports operation chaining – the ability to execute both dependent and

independent instructions in parallel in one configuration context (called step), which leads to

Table 3.3 RICA Instruction Cells

Standard Instruction Cell Associated Operations

ADD Addition and subtraction

MUL Multiplication

REG Registers

CONST Interconnection

SHIFT Shifting

LOGIC Logic operation (e.g. XOR and AND)

COMP Comparison

MUX Multiplexing

I/O REG Register with access to external I/O ports

RMEM Interface for reading data memory

WMEM Interface for writing data memory

DMA_interface Interface for DMA

I/O port Interface for external I/O ports

RRC Controlling reconfiguration rates

JUMP Branches

Custom instruction Cell Associated Operations

SOURCE Interface for reading files

SINK Interface for writing files

GFMULT Galois Finite Field Multiplication

SBUF Interface for accessing stream buffer banks

MULTIPTBK_REG_FILE Interface for accessing shared register files

Multi-core Processors and Reconfigurable Architectures

 43

high degrees of parallelism.

In contract of traditional processors which have computation units on critical paths pipelined

to improve the throughput, the RICA architecture introduces variable clock cycles to ensure

longer critical paths consume more clock cycles. An instruction cell termed Reconfiguration

Rate Controller (RRC) is used to achieve that. RRC is a counter-like cell which contains the

amount of clock periods (called RRC periods) needed for the critical path of the current step.

Once counting down to zero, RRC generates an Enable signal for the program counter and

registers. The RRC period can be programmable as part of the RICA’s configuration [7].

Secondly, the distinction from a conventional processor is RICA’s memory access patterns

(for both data and program memory). The RICA architecture provides multiple memory

interface cells which allow for simultaneously reading and writing multiple data memory

locations within one single step. Meanwhile, the instruction stream fetch patterns are

unusual in that successive iterations of certain loops can be executed following only a single

fetch from the program memory, if the loop can be placed into one single step. This kind of

Figure 3.1 The RICA architecture

Multi-core Processors and Reconfigurable Architectures

 44

step is called a kernel. In addition, the instruction words are also quite large compared to

those in existing DSPs. Thirdly a multi-bank memory system is provided to meet the higher

data memory bandwidth demanded by the operation chaining in order to keep the array fed

with data. This is quite different to that seen in conventional processors as well.

As a reconfigurable architecture, RICA needs to be reconfigured for each updated step. The

time consumed by loading the next step and configuring the array is called configuration

latency. The configuration latency is variable according to the number of instruction cells

used and configured in each step. Basically, the execution time of a step is greater than the

configuration latency. Therefore, the configuration latency between consecutive steps can be

hidden through prefetching the next step when the current step is executed. The prefecthing

can work only if the current step has no branches or has an unconditional branch. The RICA

architecture does not need to be reconfigured when the step loops to itself, in which case

there is no configuration latency at all [7].

3.4.2 Standard tool flow

RICA supports the development from high level languages such as C in a manner very

similar to conventional microprocessors and DSPs. Figure 3.2 illustrates the standard tool

flow of RICA. As shown in Figures 3.1 and 3.2, ANSI C programs can be compiled into a

sequence of steps captured in a netlist, by means of a compiler and a scheduler specific to

the RICA architecture. These steps are switched between several times during the execution

of the complete program. Formed by a sophisticated scheduling algorithm [85], each step

packs together as many chains of operations as possible, and takes a variable number of

clock cycles to execute, in order for all chains to complete. The contents of each step are

executed concurrently by RICA according to the availability of hardware resources.

Multi-core Processors and Reconfigurable Architectures

 45

The generated steps can be executed on a SystemC based simulator or converted into

configuration bits by the placement and routing tool. The generated configuration bits can be

downloaded into the program memory on a real RICA chip. As shown in Figure 3.2, a

Machine Description File (MDF) containing the architecture and cell information is used as

an input to both the scheduler and the simulator. A number of algorithms have been tested to

demonstrate that RICA can achieve up to 8 times higher throughput than RISC processors

such as OR32 [7].

3.5 Traditional WiMAX silicon implementations

Traditionally, there are various WiMAX implementation solutions including custom chips,

GPP/DSP based System on Chips (SoCs), FPGAs and so on. These solutions are still

popular to some extent, even owning some non-neglectable drawbacks. These solutions are

described in the following subsections.

3.5.1 Custom chip implementations

Custom chip implementations are traditionally popular in designing wireless communication

Figure 3.2 Standard RICA tool flow

Multi-core Processors and Reconfigurable Architectures

 46

protocols. Usually those chips are fully customised for WiMAX applications and designed

through the standard ASIC design flow involving Register Transfer Level (RTL) coding,

logic synthesis and layout design. One such example is Intel WiMAX Connection 2400 chip

[86] which can deliver a maximum sustainable throughput at 20Mbps for DL and 5Mbps for

UL. Another is Wavesat NP7256 [87] providing a throughput up to 37.5Mbps. Other

commercial custom chip solutions include TeleCIS Wireless TCW 1620 chip, Philips

UXF234xx series and so on. Obviously, these ASIC based implementations can offer high

throughput, high power efficiency and small footprints for WiMAX applications. However

as they are fully customised, this kind of solution is inherently inflexible and can not be

upgraded and altered after fabrication. This is one of its main drawbacks, particularly when

this approach is used for wireless communication applications like WiMAX where the

standards always keep changing. Moreover, designing full custom chips requires more

human effort and can not meet the short time-to-market demands.

3.5.2 GPP/DSP based SoC implementations

Instead of designing basic components from RTL, another popular solution for design

companies is to use the third-party or their own GPP and DSP IPs to build SoCs for

WiMAX. This kind of solution usually uses GPPs for Media Access Control (MAC) layer

protocols and DSPs for PHY processing. One such example is Intel Pro/Wireless 5116 [88]

which features dual-core ARM 946E-S engines for MAC, PHY and protocol processing as

well as a DSP engine for OFDM processing. Some other SoC solutions, such as Fujitsu

MB873400 and ST STW51000, have MAC protocols performed by GPPs, but PHY

processed by their own proprietary ASICs. This kind of solution is more flexible and

significantly reduces the product development cycle, compared to full custom chips.

However, as Application Specific Standard Products (ASSPs), SoC solutions are still

time-consuming and expensive. In conclusion, it is very costly to enter the WiMAX market

with either the SoC solution or the custom chip solution.

Multi-core Processors and Reconfigurable Architectures

 47

3.5.3 FPGA/PLD implementations

WiMAX protocols can be mapped on FPGAs/PLDs for fast hardware prototypes and some

domains where the costs of power and area are not important concerns. FPGA/PLD based

solutions can provide more flexibility and shorter time-to-market compared with the above

two types of solutions. Announced in [89], Altera Stratix II FPGAs can be used to address

implementation challenges of designing a WiMAX system. Based on a 90-nm SRAM

process, Stratix II FPGA family owns up to 18k logic elements, 9 Mbit on-chip Random

Access Memory (RAM) and 384 18-bit multipliers. The authors in [90] implemented a fixed

WiMAX baseband on an Altera Stratix EP1S80 board containing an Altera EPM7064 PLD

which has more resources than normal FPGAs. About 57% of logic modules were occupied

to perform this implementation. In [91], another FPGA solution was presented to implement

a fixed WiMAX PHY on a Lattice ECP33 device. This implementation cost around 70% of

resources on this device which has 33k LUTs, 8 coarse-grained sysDSP blocks. Both Altera

and Lattice provide IPs to accelerate computation-intensive functions like RS coding,

Viterbi decoding and FFT. In addition, some other researches developed incomplete

WiMAX implementations on Xilinx FPGAs. For example, in [92], the authors presented a

WiMAX transmitter implementation on a Xilinx Virtex II Pro FPGA, using a pure VHDL

mapping approach and Xilinx AccelDSP tool, respectively. However, FPGAs/PLDs are not

power and area efficient for WiMAX implementations, as they cost much more power

consumption and area than ASICs [93].

3.6 Multi-core implementations of WiMAX

Recently, a significant demand for high performance and flexible WiMAX solutions is

forcing designers to move to multi-core systems. Several multi-core solutions, targeting

WiMAX applications, are introduced in the following subsections. These solutions are

different from each other in terms of architectures and core types. For example, both

Freescale MSC8126 DSP and picoChip PC102 are built with DSP cores, while others use

Multi-core Processors and Reconfigurable Architectures

 48

mixed core types.

3.6.1 PicoArray

PicoArray PC102 [49], from picoChip, is a heterogeneous multi-core DSP based on a tiled

architecture. It features 308 16-bit processors in three different variants as well as various

hardware accelerators. Based on the Harvard architecture and a common instruction set,

each processor variant has varying amounts of separate local data and program memory, and

extra custom instructions for facilitating dedicated functions. The inter-processor

communication and synchronisation is achieved through signals. All processors are bonded

to picoBus which connects many programmable bus switches to build up a deterministic

interconnect. The inter-processor communication is time division multiplexing based, and

determined during the compilation time, so that the communication bandwidth is guaranteed.

Moreover each picoArray has four inter-picoArray interfaces which allow it to connect to up

to four other picoArrays for exchanging data and extending the system. Figure 3.3 shows the

picoArray interconnection and one example signal path for the inter-processor

communication. In the picoChip PC7218 baseband reference design [94], two PC102 chips

are used for WiMAX PHY processing and can achieve a data rate up to 37Mbps, with

PC8520 fixed WiMAX software reference design [95].

Figure 3.3 PicoArray interconnection and the inter-processor communication

Multi-core Processors and Reconfigurable Architectures

 49

3.6.2 Freescale MSC8126

Freescale’s MSC8126 multi-core DSP [96] consists of four SC140 extended cores, a Viterbi

coprocessor and a turbo coprocessor. Each extended core features an SC140 DSP core operating

at 400 MHz or 500 MHz, 224 Kbyte level-1 data memory and 16-way 16 Kbyte instruction

cache. The level-l memory of each core can be accessed by any other cores for fast data transfer.

All the extended cores share an internal 475 Kbyte level-2 memory through a prioritised

round-robin mode. In [26], an MSC8126 DSP handles a fixed WiMAX PHY processing, with

one single core for the transmitter and the other three for the receiver. The allocated tasks and

loading for each SC140 core are shown in Table 3.4.

3.6.3 Cell Broadband Engine

Cell Broadband Engine [48] is jointly developed by IBM, Sony and Toshiba, and composed

of one Power Processor Element (PPE) and eight Synergistic Processing Elements (SPEs).

The PPE is based on the Power architecture and acts as a controller for SPEs by running

Linux. The SPEs are RISC processors with 128 bit SIMD acceleration, and carry out the

most of computational workload. The PPE and eight SPEs are linked together through a

circular ring bus which contains four channels and can deliver totally twelve transactions

concurrently. The Cell processor can execute 256 Giga Floating-Point Operations Per

Second (GFLOPs), running at 3.2 GHz. The initial target of the Cell processor was

multimedia acceleration and vector processing, but latter is used for many other applications

such as scientific computation and wireless communication. In [97], the authors

Table 3.4 MSC8126 loading and task allocation

 Allocated tasks Loading

Core 1 Randomising, FEC encoding, interleaving, modulation and
OFDM processing in the transmitter side 81%

Core 2 Synchronisation and OFDM processing in the receiver side 77%

Core 3 Demodulation, de-interleaving and Viterbi decoding 70%

Core 4 RS decoding and de-randomising 52%

Multi-core Processors and Reconfigurable Architectures

 50

implemented WiMAX PHY on a Cell processor where two SPEs used for the transmitter

and three used for the receiver, while the PPE handles the management and control. This

WiMAX implementation can achieve 20Mbps for both transmitter and receiver.

3.6.4 Intel IXP 2350 network processor

Targeting broadband access applications such as WiMAX and DSL, Intel IXP2350 network

processor [59] consists of four fully programmable multithreaded microengines and one

Intel XScale core. The microengines and XScale core can run up to 900MHz and 1.2GHz,

respectively. Announced in the product brief of Intel’s NetStructure WiMAX Baseband

Card [98], the Intel IXP2350 processor can provide a data rate up to 36 Mbps. In this

implementation, the microengines are programmed to perform PHY processing and the

MAC layer is mapped on the XScale core. In IXP2350, there are various technologies to

ensure the low latency communication between microengines targeting PHY. For example,

next neighbour registers can speedup data and information transfer between adjacent

microengines. Reflector mode pathways ensure the performance of unidirectional buses for

delivering data and global event signals between microengines. In addition, ring buffers

allow the intermediate data propagated along the pipeline built with microengines.

3.6.5 Sandbridge SB3010

Sandbridge’s SB3010 chip [99] contains an ARM9 RISC core and four multithreaded

Sandblaster DSP cores connected by a deterministic ring network. Each DSP core supports

up to 8 threads and runs at 600MHz. In [61], the authors proposed an ANSI C based

software implementation of fixed WiMAX on an SB3010 chip. In this design, one DSP core

is utilised to implement the transmitter, while the receiver is mapped to the other three cores.

Among overall used 24 threads, IFFT function is replicated across three threads for

operating three different OFDM symbols. A round-robin scheduling is used to manage the

data communication for this replication partition. This implementation delivers a data rate of

Multi-core Processors and Reconfigurable Architectures

 51

2.9 Mbps based on BPSK modulation and 1/2 rate convolutional code.

3.7 RICA based multi-core architecture

As described in Section 3.2, varied types of processing cores or their mix can be used to

build up multi-core architectures. As for the high performance embedded systems market

(e.g. consumer electronics), coarse-grained reconfigurable processing cores are very

promising candidates, due to their high flexibility, performance and power efficiency.

Among numerous coarse-grained reconfigurable architectures, RICA has many advantages

over others, including high level programming support (i.e. ANSI C), the ability to execute

both control path and datapath operations, and the ability to execute both independent and

dependent instructions in parallel in one configuration context. Therefore, the RICA

technology is chosen to implement the basic processing core in multi-core architectures

proposed in this thesis.

As mentioned in Section 3.4, the key component of the RICA architecture is an instruction

cell array which can be customised for dedicated applications before manufacture. In this

thesis, the research is carried out to explore multi-core RICA instead of a single-core RICA

with a very big instruction cell array. It is not only due to the advantages of multi-core

architectures over single-core architectures described in Section 3.2, but also because the

current RICA architecture does not support multithreading. It means a bigger single-core

RICA can not have high area efficiency and a high resource utilisation rate for each

configuration context.

3.8 Summary

This chapter described the advantages of multi-core processors and investigated the

categories of multi-core processors in terms of different taxonomies. In this thesis, a

coarse-grained dynamically reconfigurable processor – RICA is chosen as the target

Multi-core Processors and Reconfigurable Architectures

 52

processing core for the proposed multi-core architecture. Hence this chapter introduced the

background knowledge of reconfigurable architecture and especially highlighted the

architectural characteristics and tool flow of RICA. Meanwhile various traditional and

multi-core WiMAX implementations were addressed.

53

4.1 Introduction

The last chapter introduced the background knowledge of multi-core processors and

reconfigurable architectures, especially a coarse-grained dynamically reconfigurable

architecture - RICA. The RICA architecture can address all the desired requirements for

high performance embedded systems [7]. Meanwhile its cell array can be tailored towards

different application domains. This chapter presents a multi-core architecture using RICA

processing cores. Chapters 6 and 7 will develop multi-core solutions for WiMAX, based on

this proposed architecture.

Currently, there are a few multi-core processors based on coarse-grained DR processors,

including Freescale MRC6011 [60] and the work in [100]. Freescale MRC6011 consists of

six reconfigurable compute fabric cores connected through a flexible and high-speed fabric.

Each of the cores features one optimised 32-bit RISC engine and a coarse-grained

reconfigurable computing array. In each core, the RISC engine supports C programming and

Chapter 4
A RICA Processor based

Multi-core Architecture

RICA Processor based Multi-core Architecture

 54

handles the configuration and management of the array. Therefore, it is unavoidable that this

architecture involves significant synchronisation overheads between RISC engines and

reconfigurable computing arrays. In [100], a scalable and modular multi-core architecture

template is proposed based on Silicon Hive reconfigurable processing cores. Each core is

comprised of an array of Processing and Storage Elements (PSEs) built around a control

processor. Both the control processor and PSEs are programmed using standard C, however,

the timing synchronisation between them has to be coded manually. Another example is the

work on developing a multi-core processor based on Montium tile processor [64] from

RECORE. However, currently Montium tile processor does not support development from

high-level languages. Although Montium is application customisable, this processor is not

efficient in terms of the hardware resource occupancy, built with five identical 16-bit ALUs.

This chapter is structured as follows. Section 4.2 presents the overall multi-core architecture.

In this section, subsections 4.2.1 through 4.2.6 describe processing cores, the memory

architecture and other main components, respectively. Among these subsections, Section

4.2.2 addresses various architectural choices of memory available in this architecture,

including shared/local data memory, shared register file and stream buffer. The access to the

later two options requires custom instruction cells. Section 4.3 investigates the

synchronisation methods for inter-processor communications and atomic operations

developed for supporting synchronisation. Section 4.4 introduces how to integrate a custom

instruction cell into an RICA processor.

4.2 The proposed multi-core architecture

Typically, multiprocessors (a multi-core processor is a multiprocessor) can be classified into

two types, master-slave multiprocessing and symmetric multiprocessing [101]. In a

master-slave multiprocessing, there is one master processor and multiple slave processors.

The master processor assigns and schedules tasks to slave processors, controls and manages

interrupt system and I/O peripherals, and runs the operating system if the processor support

RICA Processor based Multi-core Architecture

 55

operating systems. The advantage of master-slave multiprocessing is its simplicity, since

only the master processor can manage tasks and access all resources. The Cell processor is

an example of mater-slave multiprocessing [48]. However, the master processor becomes a

bottleneck, because all slave processors have to access resources through the master

processor. On the contrary, each processor in SMP has equal power, equal access to all

resources and can schedule tasks itself. Therefore SMP is more efficient but much complex

than master-slave multiprocessing [101]. SMP is broadly used in multi-core processors with

a small number of cores such as desktops, laptops and servers.

In this thesis, a master-slave multi-core architecture is proposed as shown in Figure 4.1.

Actually, from the hardware point of view, this architecture is SMP. All processing cores are

based RICA technology. Each of them can access the shared memory and has its own

interrupt controller. However, one of cores is used as the master core which takes charge of

task management and will run operating system in future. Therefore this architecture has the

SMP-like efficiency but maintains the software simplicity of master-slave multiprocessing.

In the context of this thesis, this architecture is referred as a master-slave multi-core

architecture. In addition, this architecture can be configured as Single Program Multiple

Data (SPMD) mode where all processing cores execute a same task but with different data.

Figure 4.1 Proposed master-slave multi-core architecture

RICA Processor based Multi-core Architecture

 56

Described in Chapter 5, the MRPSIM simulator has a command line option --arch which

can set the simulator to work as either master-slave mode or SPMD mode.

Consisting of one master core and multiple slave cores, this architecture is designed to be a

basic architecture used in both homogeneous and heterogeneous multi-core WiMAX

solutions introduced in Chapters 6 and 7. This architecture contains an interrupt system and

a flexible memory architecture. One of the key characteristics of this architecture is that it

provides support for DR processors (e.g. RICA) that may issue multiple concurrent memory

access requests per cycle.

4.2.1 Processing cores

All processing cores including both the master and slaves in the multi-core architecture are

based on the 32-bit RICA architecture, since the RICA architecture is suitable for executing

both data path and control path programs. Each processing core has a set of memory

addressed control and status registers, an RRC unit, a prefetching unit and multiple memory

interface cells. Currently the main difference in functionality between the master and slaves

is that the master core is used to take charge of the task management. When the system starts

up, the master dispatches tasks to slaves by sending the task information through a router.

The task information sent by the master is written to a few registers in a slave which then

uses the information to choose a task to run. When a slave finishes its current task, it will

send a request for a new task to the master through an interrupt. Then the master dispatches

the information of a new task to that slave. Alternatively, as shown in Figure 4.1, an

Operating System (OS) can be ported to the master core for dynamically scheduling and

managing tasks. Except this control functionality, the master can do same computation

workloads as slaves. In addition, the instruction cell array of each core can be tailored to

particular tasks that the processing core is intended to execute.

RICA Processor based Multi-core Architecture

 57

4.2.2 Memory architecture

This multi-core architecture has a hierarchical memory architecture including shared

memory, local memory, shared register file and stream buffer. Among these memory blocks,

the shared register file is designed for loop level partitioning used for Viterbi and FFT

applications (the details will be described in Chapter 6), and stream buffers are designed for

image processing applications such as Freeman demosaicing. In the following subsections,

these memory blocks are described in detail.

4.2.2.1 Shared memory/local memory

To address the parallel memory access requirement of RICA cores, this multi-core processor

architecture is based on the Harvard architecture [41] where each core owns a program

memory and all processing cores share a multi-bank data memory. Besides a shared data

memory, each processing core can have its own local multi-bank data memory which cannot

be addressed by other cores. Due to the adjacency to processing cores and small size, a local

memory can have much lower access latency than the shared memory. By storing

non-shared data in a local memory, the conflict in accessing the shared memory can be

alleviated, and thus the throughput can be improved. In addition, each data memory bank

has an arbiter which arbitrates memory accesses to the bank from different cores or different

memory access interface cells of a same core. Table 4.1 describes the modes and

Table 4.1 Access modes and configuration bits for RMEM and WMEM cells

Mode Configuration bits Description

RMEM_SI 001 Read a single word

RMEM_SE_HI 010 Read a half word with sign extension

RMEM_ZE_HI 011 Read a half word with zero extension

RMEM_SE_QI 100 Read a quarter word with sign extension

RMEM

RMEM_ZE_QI 101 Read a quarter word with zero extension

WMEM_SI 00 Write a single word

WMEM_HI 01 Write a half word WMEM

WMEM_QI 10 Write a quarter word

RICA Processor based Multi-core Architecture

 58

configuration bits of RICA memory access interface cells used to access both shared and

local memory. Furthermore, for eliminating memory conflicts caused by simultaneous

accesses to the shared data from different RICA cores, synchronisation methods (e.g.

spinlock and semaphore) are developed to protect the shared data from multiple accesses at

any given time. The detailed explanation is provided in Section 4.3.

4.2.2.2 Shared register file

Besides shared and local data memory introduced in the last subsection, this multi-core

processor architecture also supports shared register files. Usually, a shared register file can

operate at a much faster speed than normal memory blocks and be used to speed up data

exchange in small scale as well as synchronisation between processing cores. Multi-port

register files are commonly used in VLIW processors which need to access several registers

simultaneously. It is well known that the number of ports and the size of the register file

affect its energy consumption, access time and area [102]. Most of the previous work on the

register file has been related to techniques of reducing the access time and power

consumption.

In [103] the authors used techniques to split the global micro-architecture into distributed

clusters with subsets of the register file and functional units. Similarly, the authors of [102]

proposed the use of distributed schemes as opposed to a central implementation. Multi-level

register file organisations have also been introduced to reduce the size of register files [104].

All the works mentioned above focus on reducing the number of registers. Other techniques,

such as the one in [105], split the register file into interleaved banks, reduce the total number

of ports in each bank, but retain the idea of a centralised architecture. In this thesis, a shared

register file architecture is proposed. This architecture is split into independent banks with a

reduced number of ports per bank. Each bank has one write port, one read port and

32x32-bit registers.

RICA Processor based Multi-core Architecture

 59

A custom register file interface cell, called MULTIPTBK_REG_FILE, is created and

integrated into the RICA processor to support accessing distributed shared register files. The

diagram of this interface cell is shown in Figure 4.2, and the pin description is given in

Table 4.2. This cell supports various access modes controlled by configuration bits, shown

in Table 4.3. Among these modes, MPREGFILE_LLNLY and MPREGFILE_SCNLY are

used for atomic operations which are described in Section 4.3. The number of register file

banks can be parameterised in the MDF. Figure 4.3 illustrates a design of a 4-bank shared

register file where each bank has an individual arbiter. All instruction cells in RICA cores

can be connected to shared register interface cells, and each interface cell is able to connect

Table 4.2 Pin descriptions of MULTIPTBK_REG_FILE cells

Name Type Bit width Description

write_data In 32 Data written to register files

write_address In 5 Write address

read_address In 5 Read address

conf In 3 Configuration bits

out Out 32 Data read from register files

Table 4.3 Access modes and configuration bits of MULTIPTBK_REG_FILE cells

Mode Configuration bits Description

MPREGFILE_RDNLY 000 Read only

MPREGFILE_RDBFWRT 001 Read before write

MPREGFILE_RDAFWRT 010 Read after write

MPREGFILE_WRTNLY 011 Write only

MPREGFILE_LLNLY 100 Load link only

MPREGFILE_SCNLY 101 Store conditional only

Figure 4.2 Custom instruction cell MULTIPTBK_REG_FILE

RICA Processor based Multi-core Architecture

 60

to only one register file bank. For example, register file interface cell RI0 is only connected

to Bank0, while interface cell RI1 can only access Bank1. This scheme keeps all possible

connections between these interface cells and the shared register banks with a reduced

interconnection complexity. The detail of how to introduce a new custom cell for a RICA

processor is given in Section 4.4.

4.2.2.3 Stream buffer

Stream buffers are widely used in many processors to facilitate data transfer for image,

video and communication applications, such as in Storm-1 stream processor [106]. In this

proposed multi-core architecture, stream buffers are implemented as bidirectional bridges

between each two adjacent processing cores for a mass data exchange, dramatically reducing

the shared memory bandwidth requirement. The stream buffers can only be accessed by

directly connected processing cores through a custom interface cell called SBUF which is

provided by the extended RICA processor. All other instruction cells in RICA cores can be

connected to these SBUF cells. Each SBUF cell can be used to access any stream buffer near

to the processing core.

Figure 4.3 A 4-bank shared register file in the proposed multi-core architecture

RICA Processor based Multi-core Architecture

 61

Figure 4.4 illustrates an example which has three cores and a total of five stream buffers. As

shown in Figure 4.4, the stream buffers are mainly used to store the intermediate data

between processing cores in a pipelined processing mode where the first core (the leftmost

one) reads input data from the memory block. The processing cores can set the initial writing

or reading address for connected buffers at a random access mode, then push data to or pop

data from the buffers. After each push or pop, the address will be automatically increased.

The pin description and access modes of SBUF cells are given in Tables 4.4 and 4.5,

Figure 4.4 Stream buffers in the proposed multi-core architecture

Table 4.4 Pin description of SBUF instruction cells

Name Type Bit width Description

write_data In 32 Data written to stream buffers

write_address In 12 Initial write address

read_address In 12 Initial read address

conf In 3 Configuration bits

out Out 32 Data read from stream buffers

Table 4.5 Access modes and configuration bits of SBUF cells

Mode Configuration bits Description

SBUF_SET_READ 101 Set initial read address

SBUF_SET_WRITE 110 Set initial write address

SBUF_SET_READ_WRITE 111
Set initial read and write address
simultaneously

SBUF_STREAM_READ 001 Read stream buffer

SBUF_STREAM_WRITE 010 Write stream buffer

SBUF_STREAM_READ_WRITE 011
Read and write stream buffer
simultaneously

RICA Processor based Multi-core Architecture

 62

respectively. The number of SBUF cells in each core, the number of stream buffers between

each two adjacent processors as well as the size of the stream buffers can be software

configured.

4.2.3 Arbiter

Every type of memory unit has arbiters, as for multi-bank memory units, such as data

memory and shared register file, each bank has its own arbiter. In the proposed multi-core

architecture, an arbiter arbitrates multiple accesses to a certain memory unit from different

cores or the same core. For example, when one processing core issues an access request to a

shared memory bank which is dealing with other access requests, this request will be

pending and put into a waiting queue in the arbiter. The duration of the pending period is

difficult to be predicted during compile time. If an arbiter receives multiple requests

simultaneously, it will use predefined priorities or configurable bits of instructions (e.g.

MULTIPTBK_REG_FILE) to decide the execution order. Due to the unknown run-time

memory access latency, an arbiter signals certain cores to stop or resume RRC counting if

access requests from these cores are pending or completed. Therefore RRCs can incorporate

the run-time delays in the total execution time. Meanwhile this signal approach does not

allow the follow-up instructions to be executed before the access instructions they depend on

finish. It can avoid wrong results and deadlocks. In addition, arbiters for shared data

memory and register file support atomic operations, the details of which are explained in

Section 4.3.

4.2.4 Crossbar switch

The proposed multi-core architecture supports up to 16 shared data memory banks. The

width of each bank is 8-bit. As shown in Table 4.1, RMEM and WMEM interface cells can

be used to access up to 32-bit data. Therefore, it is necessary to have devices like crossbar

switches to route the access request to the proper banks. Usually, a RICA processor has four

RICA Processor based Multi-core Architecture

 63

RMEM and four WMEM interface cells. In the proposed multi-core architecture, each

RMEM or WMEM interface in a processing core connect to all banks through a 4 x m

crossbar switch, where m is the number of banks. According to the value of m, the

referenced address and the accessing mode (e.g. single word access and half word access),

each memory access request to the shared data memory can be routed through switches to

the proper banks.

4.2.5 Interrupt controller

Each processing core has one local interrupt controller which controls interrupt requests

from different interrupt resources. All interrupt resources connect to interrupt controllers

through dedicated interrupt channels. Each time an interrupt controller only sends the

interrupt request with the highest interrupt priority to its coupled processing core. In each

interrupt controller, there are three memory addressed registers: interrupt status register,

mask register and interrupt service register. Each core can access these registers in its local

interrupt controller via memory addresses. Currently, the multi-core architecture supports

two kinds of interrupts, new task request interrupt and semaphore release interrupt. Both of

these are Inter-Processor Interrupts (IPIs) which are sent from one core to another core. The

new task request IPI can only be sent by slave cores to the master core. When a slave

finishes its current task, it sends this IPI to the master, requesting a new task. Then the

master runs a corresponding interrupt handler to dispatch the information of a new task to

that slave. The semaphore release interrupt happens when a processing core releases a

semaphore used to protect the shared data. The details about this IPI are given in Section

4.3.

4.2.6 Router

The master processing core can set registers in its interrupt controller and task related

registers in slave cores through a router. All these registers are memory mapped. This router

RICA Processor based Multi-core Architecture

 64

has an address-to-port map. According to the addresses sent by the master, the router can

deliver the information to the proper components through ports connected to them.

4.3 Synchronisation methods and atomic operation support

In order to avoid race conditions caused by simultaneous accesses to a shared resource from

different processing cores, two inter-processor synchronisation methods, spinlock and binary

semaphore, have been implemented. In the multi-core context, a process should require and

release a spinlock or a semaphore before and after accessing the shared data, respectively. A

spinlock is a lock where a process repeatedly checks the availability of the lock - a method

called busy-waiting. In other words, if a spinlock required by a process is not available, the

process will keep asking for this lock until it is released by one of the other processes that

previously acquired it. A spinlock allows only one process to access the shared resource

protected by the lock at any given time. Spinlocks are efficient when the waiting period is

short, as they can avoid overheads introduced by interrupt handling and context switching.

However, busy-waiting based spinlocks cause more power consumption and access

competition to the shared memory units where locks are stored. If the waiting processing

core is blocked for a long period, a binary semaphore is a more efficient approach to

implement the synchronisation. In this thesis, similar to spinlocks, binary semaphores make

protected shared resources available to only one process at any given time. But the

difference is that if a semaphore required by one process is unavailable, the process will go

to sleep and the core running this process will do nothing but wait. When the semaphore is

released by another process, the releasing process will send a signal to all waiting processes

through a semaphore release IPI, and inform the waiting ones that the semaphore is now

available. Otherwise, the waiting processes would not know the availability of the

semaphore, because they do not have a busy-waiting or regular check scheme. Then the

waiting processes will wake up and reissue a request for the semaphore, in case that there

are more than one processes waiting for the semaphore. This suspend-wakeup based

semaphore synchronisation method is broadly used in many operating systems [107]. The

RICA Processor based Multi-core Architecture

 65

only major difference is that the waiting processes are waked up by the OS instead of the

process releasing the semaphore. By using this semaphore approach, memory access

competitions caused by busy-waiting based spinlocks, which may take up a reasonable ratio

of the overall execution time, are eliminated.

Both spinlocks and semaphores are defined as global variables stored in shared memory

blocks. The requisition of a spinlock or a semaphore needs the support of atomic

read-modify-write operations. During the atomic operation, the value of a synchronisation

variable (either spinlock or semaphore) is guaranteed to be read, modified and written back

without any intervention by operations from other processing cores. An atomic

read-modify-write operation can be implemented by a single instruction such as test-and-set

or compare-and-swap. However, the use of a pair of special instructions – Load-Link and

Store-Conditional (LL/SC) - is seeing increasing popularity [108]. In this thesis, LL/SC

instructions are used to implement atomic operations and therefore synchronisation methods.

The idea behind LL/SC is that LL loads a synchronisation variable into a register, and is

immediately followed by an instruction that manipulates the variable. In this thesis, this

instruction is subtracting one. Then SC tries to write the variable back to the memory

location if and only if the location has not been written by other processing cores after LL

was completed. A pseudo-assembly code for a spinlock and a semaphore implemented by

LL/SC is shown below:

In the proposed multi-core architecture, for implementing LL/SC, each arbiter for shared

memory blocks contains a flag and an address register for each processing core. When an LL

instruction from one processing core reads a synchronisation variable, the corresponding

Acquire: LL reg1, location // LL the variable’s value to reg1
BEQZ reg1, Acquire/Sleep // if unavailable, try again or sleep
SC location, reg2 /SC the variable’s new value back
BEQZ Acquire //failed, try LL again

Release: WRITE location, 1 //write 1 to location
Sleep: NOP // do nothing

RICA Processor based Multi-core Architecture

 66

flag is set and the variable address is stored into the corresponding address register.

Whenever the referenced address of a write request (either normal write operation or SC) is

matched against the value of the address register, the flag is reset. An SC instruction enables

a check of the flag. If it has been reset, meaning that an intervening write operation occurred

before, the SC fails, otherwise, the SC succeeds. Table 4.6 describes access models and

configuration bits for LL/SC instructions. The original RICA processor does not support

atomic operations. Hence LL and SC instructions are temporarily represented by normal

RMEM and WMEM instructions in inline assembly code. It is because LL/SC instructions

have the same interface and pins as normal memory access instructions. Later in the trace

file, these temporary instructions will be modified to LL/SC instructions with proper

configuration bits, as shown in Table 4.6. These atomic instructions can be interpreted and

executed by MRPSIM simulator to be described in Chapter 5.

4.4 Custom instruction integration

The existing RICA tool-flow provides full support for the inclusion of both combinatorial

and synchronous custom instruction cells through simulator libraries. As shown in the

custom cell generation environment of Figure 4.5, the function descriptions of custom cells

such as MULTIPTBK_REG_FILE and SBUF are written in C++ via template classes

Table 4.6 Access modes and configuration bits for LL/SC instructions

Mode Configuration bits Description

LL_SI 1001 Load link a single word

LL_SE_HI 1010 Load link a half word with sign extension

LL_ZE_HI 1011 Load link a half word with zero extension

LL_SE_QI 1100 Load link a quarter word with sign extension

LL

LL_ZE_QI 1101 Load link a quarter word with zero extension

SC_SI 100 Store conditional a single word

SC_HI 101 Store conditional a half word SC

SC_QI 110 Store conditional a quarter word

RICA Processor based Multi-core Architecture

 67

provided by the RICA simulator. A fully automated system generator compiles standard

RICA simulator libraries together with the custom cell C++ model and the timing & area

information attained by synthesising the custom cell Verilog model. A custom MDF and a

custom simulator are generated to replace the standard MDF and simulator used in the

standard tool flow. Meanwhile the custom cell assembly interface is provided to enable

programmers use custom instructions as inline assembly in their programs.

4.5 Summary

This chapter introduced a master-slave based multi-core architecture using a coarse-grained

dynamically reconfigurable processor – RICA. This architecture provides a variety of

memory architectural options for different application requirements. These options include

shared/local data memory, shared register file and stream buffer. For dealing with the

competitions for these shared storage resources, arbiters have been developed to arbitrate the

access requests. Crossbar switches were used for routing memory access requests from

processing cores to proper shared data memory banks. Meanwhile each processing core has

Figure 4.5 RICA custom cell generation environment and custom tool flow

RICA Processor based Multi-core Architecture

 68

an interrupt controller managing inter-processor interrupts, while the master core owns a

router unit which conveys information from the master core to its interrupt controller and

slave cores. In addition, two synchronisation methods (i.e. spinlock and semaphore) have

been developed for inter-process synchronisation. A pair of atomic options LL/SC was used

to implement the synchronisation methods. Furthermore, a custom cell generation

environment and a custom tool flow were introduced for integrating custom instruction cells

into the RICA architecture.

The next chapter will present a SystemC based simulator which models this proposed

multi-core architecture. Based on this architecture, Chapters 6 and 7 will focus on

homogeneous and heterogeneous multi-core solutions for WiMAX, respectively.

69

5.1 Introduction

As silicon process technologies shrink to the deep submicrometer region, more transistors

are allowed to be integrated into a single chip. As a result, computer architects are able to

build more sophisticated designs like multi-core processors. Intel’s Quad-Core Xeon

processor [35] is a practical example of this, based on 45nm and containing 820 million

transistors. Likewise, ever larger and more complicated applications are being developed,

fuelled by the abundant resources on multi-core processors. This is also true for embedded

systems where large and complex real-time applications like wireless communication and

multimedia are targeted. For fast verification of such high-end applications at an early

design stage, there is a high demand to produce rapid and accurate simulation tools for

modelling the underlying complex multi-core systems. Meanwhile, for developing efficient

multi-core solutions for certain applications, a simulation tool is the key for the design space

exploration.

Chapter 5
Multiple Reconfigurable

Processors Simulator

Multiple Reconfigurable Processors Simulator

 70

In last chapter, a RICA core based multi-core architecture has been presented. For modelling

this architecture and verifying applications on it, this chapter introduces a fast, flexible and

cycle-accurate simulation tool, called Multiple Reconfigurable Processors Simulator

(MRPSIM). MRPSIM is based on SystemC transaction-level modeling [109]. As a higher

abstraction level, TLM based simulation is much faster than RTL simulation. TLM enables

concurrent hardware/software co-design for early software development, fast architecture

modeling and functional verification. In MRPSIM, the functionality of the program is

decoupled from the timing simulation. This is done by feeding MRPSIM the execution trace

file generated from a cycle-accurate single RICA simulator shown in Figure 3.2.

This chapter is structured as follows. Section 5.2 reviews the existing work on

multiprocessor simulation tools. Section 5.3 explains how MRPSIM can provide fast

simulation speed and keep accuracy, based on a trace-driven approach. Section 5.4

introduces SystemC and transaction-level modeling, while Section 5.5 describes the details

of the TLM model for MRPSIM. Section 5.6 addresses the command line options offered by

MRPSIM. Section 5.7 presents a Perl based trace preprocessing tool – Mpsockit which can

facilitate the multi-core simulation. Section 5.8 demonstrates the simulation speed of

MRPSIM by running a range of test benches on it.

5.2 Related work on multiprocessor simulators

There are a number of multiprocessor simulation tools proposed in both industry and

academia, such as those in [110-115]. In [110], a multiprocessor enhancement was proposed

for SimpleScalar [116] which is a popular simulation tool in the research community and

models a MIPS-like architecture. The authors of [111] presented a simulator called Rsim for

shared memory multiprocessors with ILP processors. In [112-114], the approach of

decoupling the functionality from timing simulation was used as well, however in a different

manner to the approach taken in MRPSIM. Both GEMS [112] and RASE [113] simulators

interact with Simics [117], a full system simulator, by feeding timing information to it.

Multiple Reconfigurable Processors Simulator

 71

Obviously, the simulation speed can not be fast, since Simics is involved during the

multiprocessor simulation. SESC [114] uses instruction streams generated by MINT, an

emulator for the MIPS architecture, to model chip-level multiprocessors with out-of-order

processors. In [115], a simulation environment called MPARM was proposed based on

SystemC RTL and SWARM (software ARM) simulator [118]. However, partially describing

the system at a lower SystemC abstraction level, MPARM is inevitably slower than a TLM

based simulation tool. Moreover, most of these simulation tools are designed for

multiprocessors with conventional processors like ARM and MIPS. To the best of my

knowledge, there has been little research done on developing TLM based simulation tools

for chip-level multiprocessor using coarse-grained dynamically reconfigurable processors

(e.g. RICA).

5.3 Trace-driven simulation

MRPSIM is a trace-driven simulator. The advantage of trace-driven simulation over

execution-driven simulation is that once the trace has been collected, it can be reused as a

constant input to the simulator when the multi-core architecture varies. However, different

from other trace-driven simulators which sacrifice the accuracy for simulation speed,

MRPSIM can maintain the timing accuracy with a rapid architecture analysis. The idea is

that the functionality of programs and the calculation of static timing are decoupled from the

dynamic timing simulation. In my simulation approach, the entire simulation timing is

separated into static timing and dynamic timing. Static timing represents the time consumed

by the combinatorial critical path in each step and is not affected by the run-time execution.

The static timing for each step executed on each core is calculated by the scheduler through

using the timing results generated from logic synthesis. This is because each RICA core can

be individually synthesised, and that the behaviour of a given core is deterministic due to the

RRC. As for dynamic timing, it refers to the time taken by communication instructions (e.g.

read and write memory). Basically, these communication instructions are determined during

run-time in the multi-core simulation, due to the competition such as from multiple cores, or

Multiple Reconfigurable Processors Simulator

 72

multiple memory accesses from a same core.

To implement this decoupling approach, firstly the application is partitioned into multiple

tasks, and each task is executed by a single RICA processor simulator. The generated

execution trace file for each task is fed into MRPSIM simulator. Details of mapping and

partitioning are addressed in Section 6.2. Figure 5.1 shows the interface and internal

structure of MRPSIM simulator. Execution trace files record the detailed program execution,

including all the relevant information necessary for accurate timing, such as static timing

and the information for communication instructions. The format for a step in the execution

trace file is shown in Table 5.3 in Section 5.7. In Table 5.3, the value of RRC contains static

timing in terms of RRC cycles for the current step. The trace parser within MRPSIM

converts these machine-specific execution trace files into a machine-independent

intermediate representation that captures the static timing model and flattened program

control flow structure. Then, the dynamic delays imposed by memory access,

synchronisation and IPIs are obtained from the run-time behaviour of the TLM model. Since

execution traces already include static timing, MRPSIM only models the behaviour of

communication instructions, which contribute to dynamic timing. Computation and control

Figure 5.1 The interface and internal structure of MRPSIM simulator

Multiple Reconfigurable Processors Simulator

 73

instructions (e.g. addition and jump) are not executed in MRPSIM. In other words,

MRPSIM only needs to model the additional overhead incurred during run-time in

multiprocessing environments. These overheads include issues such as arbitrating the

memory access conflicts. This computation/communication decoupling approach has

popularly been used in many other research studies on cycle-accurate simulators such as

GEMS [112].

Other inputs of MRPSIM include ram files, multi-core MDF and command line options.

Ram files describe the layout of data symbols (e.g. synchronisation variables, shared/local

data) in the various data memories, and are mapped onto modelled hierarchical memory

modules. The MDF contains architectural information such as memory size and access delay

for both local and shared memory as well as RRC period. In addition to architectural

parameters in MDF, the executable file of MRPSIM is highly parameterisable by command

line options which are described in Section 5.6. All the parameters extracted from MDF and

command line options are used to set modules of processing cores and memory modules in

MRPSIM.

After performing simulations with MRPSIM, generated performance results are used as

feedback to change the design strategy such as the task partitioning method and architecture

parameters in order to achieve better performance. Besides generating basic performance

information such as timing, memory access count, and processing core idle ratio, MRPSIM

can produce advanced information like statistics and processor profiles. In MRPSIM, there

is a built-in statistics function for each fundamental module (e.g. processing cores, memory

units, and arbiter units). These statistics functions dump out raw statistics, for instance, the

detailed memory access information for each individual memory bank, register file bank,

and processing cores. These statistics have proven to be vital in analysing simulation results

and therefore the design space exploration for multi-core architectures. The processing core

profile records the starting time and the finish time for each step, and the request time and

finish time for each access to memory, register files and stream buffers. The profile

Multiple Reconfigurable Processors Simulator

 74

information is crucial for both performance analysis and debugging.

5.4 SystemC and transaction-level modeling

As more and more functions are integrated in SoCs, the current SoC design faces

unprecedented challenges in terms of explosive design complexity, time-to-market pressure

and increasing cost. However the classic SoC design flow is not the right answer to these

challenges [119]. In the traditional SoC design flow shown in Figure 5.2, a system

specification is partitioned into hardware development and software development, of which

different teams take the responsibility, respectively. There is little cooperation between the

two separate development paths, until either an FPGA prototype or a test chip is available.

Therefore any hardware or software error found in the system validation stage would result

in a new iteration of redesign which dramatically slows the time-to-market and increases the

cost. Meanwhile in the traditional hardware development, there exists another design

bottleneck. Due to the lack of a common environment, system designers write a conceptual

model of the hardware system in a high level language (e.g. C or Matlab) for verifying the

functionality, then hand over the model to RTL designers who later re-implement the

hardware system in a Hardware Description Language (HDL) according to this model.

Obviously, this transfer process is prone to error. Moreover, it usually happens that some

Figure 5.2 Traditional SoC design flow without SystemC

Multiple Reconfigurable Processors Simulator

 75

part of the conceptual model cannot be implemented in RTL, and modifying this model is

needed. Hence a costly redesign iteration is involved, since the different teams use two

different languages. Due to these inherent design bottlenecks of the traditional SoC design

flow, in recent years, a new SoC design flow has become popular [119, 120]. As shown in

Figure 5.3, this design flow enables hardware/software co-design by raising abstraction level

from RTL to TLM and provides a SystemC based common design environment for both

hardware system designers and RTL designers.

SystemC [120] is a System Description Language (SDL) as well as a hardware description

extension of C++. By adding a library of special classes, SystemC brings hardware design

concepts, such as hardware timing and concurrent processes, into C++. SystemC is fully

compatible with the standard C++ programming environment, and thus a SystemC model

can be compiled as a normal C++ program. As an open source programming language,

SystemC is free to be used and modified. It is a great advantage over its expensive

proprietary SDL counterparts such as SpecC. Moreover SystemC supports TLM. TLM [109]

is a transaction-based modeling approach which separates communication from computation

within a system following the concept of “divide and conquer”.

In the SystemC based design flow shown Figure 5.3, a TLM platform is built right after

Figure 5.3 SoC design flow with SystemC

Multiple Reconfigurable Processors Simulator

 76

HW/SW partitioning, serving as a unique reference for early software development,

architecture analysis and functional verification. The TLM platform is presented as an

executable file generated by the C++ compiler. TLM enables HW/SW co-design and

co-simulation by which hardware and software teams can have a more efficient cooperation

in the early phase of the system development. Hence the success probability of the first test

chip is significantly increased and time-to-market is shortened [119]. Meanwhile in this

design flow, the hardware development is fuelled by using SystemC in both system design

and RTL design teams. Based on the same design environment, it is an easier job for RTL

designers to refine System TLM model down to SystemC RTL compared to the traditional

approach. Furthermore, the SystemC based test bench developed by system designers can be

reused in RTL verification.

5.5 TLM model

Due to the advantages of SystemC TLM described in the last section, MRPSIM simulator is

implemented in SystemC TLM. Usually, in TLM, system components are modelled as

SystemC modules which contain a number of concurrent SystemC processes and/or

functions representing their behaviours. The communication among modules is achieved by

using transactions through abstract channels which implement TLM interfaces. As the kernel

of TLM, TLM interfaces can be accessed by SystemC processes through module ports [119].

In MRPSIM simulator, those components introduced in Chapter 4.2 are modelled as three

kinds of SystemC modules, initiators, targets and their combinations. An initiator contains

SystemC processes initiating transactions to the target modules which respond to these

transactions. Components modelled as initiators include arbiters and interrupt controllers,

while memory units, crossbar switches and the router behave as targets. As for processing

cores, they are initiators as well as targets. For example a processing core can issue a

memory access transaction to memory units through arbiters and respond to interrupt

transactions from its interrupt controller as well. Figure 5.4 shows a TLM example where

two processing cores can initiate write and read transactions to a memory bank through an

Multiple Reconfigurable Processors Simulator

 77

arbiter. As shown in Figure 5.4, modules connect each other by binding sc_port of an

initiator to an interface provided by sc_export of a target. In SystemC, binding of all ports to

interfaces is done during the elaboration phase and cannot be changed during simulation. In

write and read transactions, processes in processing cores put requests into their respective

arbiter channels and wait for corresponding responses. Processes in the arbiter scan all

access request ports, decide which request has the highest priority and forward it to the

memory bank. When the memory bank makes a response, the arbiter puts the response to the

relevant channel. Finally, the corresponding core collects the response and completes the

transaction.

Table 5.1 shows the functionality of main processes and functions in MRPSIM SystemC

modules. All these modules are defined as C++ classes and instantiated in the MRPSIM

program main function which incorporates various parsers as well. Meanwhile, modules of

processing cores instantiate submodules for communication instruction cells (i.e. WMEM,

RMEM, MULTIPTBK_REG_FILE and SBUF). The cell instance count can be read from

the MDF. In target modules, functions like read() and write() are called by the transaction

initiators through sc_export to implement the corresponding transactions. As shown in Table

5.1, those processes and functions followed by module names in parentheses only appear in

those particular modules.

Figure 5.4 An example demonstrating the TLM model of a multi-core architecture

Multiple Reconfigurable Processors Simulator

 78

Table 5.1 Functionality of main SystemC processes and functions in MRPSIM modules

Master/Slave core

boot (master) Initialise registers in slave cores; activate the run process in slave cores

run The main process executing every steps

pfu Pre-fetch the next step if prefetching conditions satisfied

rrc Reconfigurable rate controller

pauseRRC Pause or resume RRC according to signals from arbiters

Process

bottomHalfJob
(master)

Calculate and send a new task information to slave cores which sent
new task interrupts

isrJob (master) Rapid response to new task interrupts from slave cores; activate the
bottomHalfJob process

read (slave) Read registers, called by the master core through sc_export
Function

write (slave) Write registers, called by the master core through sc_export

Data/program memory/Register file/Stream buffer

initialise
(data/program

memory)

Initialise data/program memory by using data/instruction traces
extracted from ram/trace files

read Read memory blocks, called by processing cores through sc_export
Function

write Write memory blocks, called by processing cores through sc_export

Arbiters for Data memory/Register file/Stream buffer

scan Scan all connected access request ports and find access requests

run After scanning, forward the highest priority request to the memory
bank or activate read and/or write processes

pauseRRC Send signals to relevant cores to pause or resume RRCs, if access
requests from these cores are pending or completed

read (reg. file) Forward read requests to the register file bank

Process

write (reg. file) Forward write requests to the register file bank

Function addInterface Insert an access request port into a multimap variable

Switch

Function transport Forward the access request to proper shared data memory bank

Interrupt controller

Process run Forward the highest priority interrupt to the processing core

Function addInterface Insert an interrupt request port into a multimap variable

Router

Function transport Forward the information to master’s interrupt controller or slave cores

Multiple Reconfigurable Processors Simulator

 79

5.6 MRPSIM command line options

MRPSIM has a variety of command line options relative to architecture, performance

analysis, debugging and so on. By setting architecture options, the multi-core architecture is

highly parameterisable in terms of the number of slave cores, the number of data memory

banks, synchronisation methods, single core or multi-core model and so on. For example, in

single core mode, MRPSIM can model a single RICA processor and produces the same

timing accuracy as the cycle-accurate execution-driven simulator for RICA processor.

Performance analysis options control the output of advanced performance information.

While debugging options generate debugging information to assist verifying the program

functionality and debugging errors. These options are listed in Table 5.2.

Multiple Reconfigurable Processors Simulator

 80

Table 5.2 Command line options of MRPSIM

Architectural Option Description

--arch type Set the type of the multi-core architecture, accepted values of num:
0: SPMD mode; 1: master-slave shared memory mode

--bank num Specify the number of banks for the shared data memory

--dmem type Set the type of data memory architecture, accepted values of type:
0: share only; 1: share and local

--slave num Specify the number of slave cores, when num set to 0, MRPSIM is in the
single core mode

--sync type Set the type of synchronisation, accepted values of num:
0: lock; 1: semaphore

--pmem type Set the type of program memory architecture, accepted values of type:
0: share only; 1: local only

--sbuf-args nums Specify the number of stream buffer banks and the size of each bank

--source-args files nums Specify files as source files and the input bit width for each source file

--sink-args files nums Specify files as sink files and the output bit width for each sink file

Performance analysis
Option Description

--enable-prof bool Enable/disable generation of processing core profile files

--enable-stat bool Enable/disable generation of statistics files

--enable-var-access bool Enable/disable writing the access number for each global variable to
var_access.dat

--prof file If --enable-prof is true, write profile to specified file

--stat file If --enable-stat is true, write statistics to specified file

Debugging Option Description

--cout_mode mode Set the mode of execution information output, accepted values of mode:
0: brief; 1: verbose

--dump file If --enable-dump is true, write memory dump to file

--enable-dump bool Enable/disable generation of memory dump files

--parser-debug bool Enable/disable debugging output from the trace file parser

--scanner-debug bool Enable/disable debugging output from the trace file scanner

--start-display start-time Specify the time starting to display execution information, unit is ns

Other Options Description

--end-time end-time Specify the time the simulation stops, unit is ns

--mdf file Specify file as the input MDF

--execute num Specify how many times programs shall be executed

--per-step mode Set the mode of the trace file parser, accepted values of mode:
0: parse the entire trace file once; 1: parse step by step

--trace-format format
Set the format of the trace file, accepted values of format:
0: each trace file stores the instruction trace of one task; 1: all task
instruction traces stored in one trace file

Multiple Reconfigurable Processors Simulator

 81

5.7 Mpsockit - a subsidiary tool

Written in Perl, a subsidiary tool called Mpsockit is developed to preprocess the input files

of MRPSIM simulator and facilitate the multi-core simulation. One of the most important

features of this tool is compressing execution trace files. Usually, an execution trace is huge

– sized hundreds of MB for a complex program. This tool can compress trace files by

removing instructions which will not be executed by MRPSIM. After compression, the size

of traces can be cut down to less than 1/3, on average. As a result of this, the time for

parsing trace files by MRPSIM is dramatically reduced. Hence the simulation speed is

improved, since parsing the traces constituted a significant part of the entire simulation time.

The formats of both original and compressed traces are shown in Table 5.3 for one single

Table 5.3 Formats for original and compressed traces

Original Step Format
Step N: // step index

MULTIPTBK_REG_FILE[0] {.conf = `MPREGFILE_RDNLY; .read_address = 2; .write_address =

OPEN; .write_data = OPEN; .out = 10;}

MULT[0] {.conf = `MUL_SIG_SI; .in1 = 5; .in2 = REG[0].out = 10; .out = 50;}

RMEM[0] {.conf = `RMEM_SI, .in_addr = 100; .out = 5;}

RMEM[1] {.conf = `RMEM_SI, .in_addr = 104; .out = 10;}

ADD[0] {.conf = `ADD_ADD_SI; .in1 = RMEM[0].out = 5; .in2 = MULT[0].out = 50; .out = 55;}

ADD[1] {.conf = `ADD_ADD_SI; .in1 = RMEM[1].out = 10; .in2 = MULT[0].out = 50; .out = 60;}

WMEM[0] {.conf = `WMEM_SI; .in_addr = 108; .in = ADD[0].out = 55;}

COMP[0] {.conf = `C_COMP_EQ; .in1 = ADD[0].out= 55; .in2 = ADD[1].out = 60; .out = 0;}

JUMP[0] {.conf = `JUMP_IF_EQZ; .addr_in = 2; .cond = COMP[0].out = 0;}

RRC {.conf = 3;} // cycle count for static timing

Compressed Step Format
Step N: // step index

MULTIPTBK_REG_FILE[0] {.conf = `MPREGFILE_RDNLY; .read_address = 2;

.write_address = OPEN; .write_data = OPEN; .out = 10;}

RMEM[0] {.conf = `RMEM_SI, .in_addr = 100; .out = 5;}

RMEM[1] {.conf = `RMEM_SI, .in_addr = 104; .out = 10;}

WMEM[0] {.conf = `WMEM_SI; .in_addr = 108; .in = ADD[0].out = 55;}

RRC {.conf = 3;} // cycle count for static timing

Cell {.in = 9;} // the number of instruction cells used in current step

Multiple Reconfigurable Processors Simulator

 82

step. After compression, a new entry called Cell is generated, which records the number of

instruction cells in the original step, and is utilised for calculating the configuration latency

for this step. This tool can also be used to set parameters in MDF, such as how many bytes

global variables take, through extracting the information from source files. Other important

features of this tool include preprocessing trace files according to different task mapping

methods, such as merging multiple traces into one trace for task replication method.

Furthermore, as mentioned in Chapter 4, this tool can modify the configuration bits of those

temporary instructions for LL/SC which can be interpreted and executed by MRPSIM. The

options of Mpsockit and their individual description are given in Table 5.4.

5.8 Results

For evaluating the performance of MRPSIM, several applications were used as test benches,

including an Advanced Encryption Standard (AES) application, a 64-tap Finite Impulse

Response (FIR) filter, a 64-point 6-stage radix-2 FFT, an image smoothing and edge

enhancement application and WiMAX BPSK based transmitter and receiver applications.

An Intel Core 2 2.4GHz PC was used as the host machine for MRPSIM simulator. All

Table 5.4 Mpsockit options

Options Description

--ci/--cs Calculate the number of instructions/steps in each input trace files

--merge files Merge multiple trace files into one trace for task replication method

--move files Move some instructions from one trace to others for loop partitioning
method

--shmem source mdf Get information from source to indicate the size of global variables in mdf

--split file Split one trace file into multiple traces for loop partitioning method

--stack source mdf Get information from source to set the stack top for each core in mdf for
the mapping without local memory

-t files
Compress trace files
Calculate the number of used instruction cells for each step
Modify the configuration bits for atomic operations

Multiple Reconfigurable Processors Simulator

 83

applications were developed for dual-core architectures with 2ns RRC period. Figures

5.5-5.7 show the simulation performance in terms of three different metrics including Steps

Per Second (SPS), Instructions Per Second (IPS) and Cycles Per Second (CPS). The metric

of CPS is used to estimate how fast the cycle-accurate model can achieve, from the hardware

system point of view. While IPS is a measure of how fast the application can be executed on

the simulator, and is a software developers’ concern. As for SPS, it is particularly defined

for RICA and represents how fast the simulator can execute configuration contexts for this

DR processor.

-

5,000

10,000

15,000

20,000

25,000

30,000

AES FIR FFT Image WiMAX TX WiMAX RX

s
i
m
u
l
a
t
i
o
n

s
p
e
e
d

(
s
t
e
p
s
/
s
e
c
)

basic

advanced

Figure 5.5 The simulation speed (steps/sec)

-

50,000

100,000

150,000

200,000

250,000

300,000

350,000

AES FIR FFT Image WiMAX TX WiMAX RX

S
i
m
u
a
l
a
t
i
o
n

s
p
e
e
d

(
i
n
s
t
r
u
c
t
i
o
n
s
/
s
e
c
)

basic

advanced

Figure 5.6 The simulation speed (instructions/sec)

Multiple Reconfigurable Processors Simulator

 84

Each application owns two sub-test cases, one of which enables MRPSIM to generate

detailed statistics and processor profiles, while the other only produces the basic

performance information. As shown in Figures 5.5-5.7, MRPSIM simulator can achieve

simulation speeds up to 25 KSPS, 300 KIPS and 300 KCPS, respectively, depending on the

application. It proves that TLM based MRPSIM simulator can provide much higher

simulation speeds, compared to RTL approaches which usually run at several hundred CPS.

For the image application, the simulator demonstrates the highest CPS and lowest IPS. It is

because the image application involves much more memory access operations which take

more waiting cycles due to competition. The simulation of WiMAX applications is

significantly lower in terms of IPS and CPS, compared to other applications. It is because

WiMAX applications contain many conditional statements which cause frequent context

switches and relatively less instructions within each step. Figures 5.5-5.7 also indicates that

the collection of detailed statistics and profiles causes about 30% drop in the simulation

speed. Figure 5.8 shows the simulation time for each application. Due to the size of the

image being processed, the image application takes much longer to run compared to other

applications.

5.9 Summary

-

50,000

100,000

150,000

200,000

250,000

300,000

350,000

AES FIR FFT Image WiMAX TX WiMAX RX

S
i
m
u
l
a
t
i
o
n

s
p
e
e
d

(
c
y
c
l
e
s
/
s
e
c
)

basic

advanced

Figure 5.7 The simulation speed (cycles/sec)

Multiple Reconfigurable Processors Simulator

 85

This chapter presented a trace-driven simulator, called MRPSIM, for modeling the proposed

multi-core architecture. Implemented by SystemC transaction-level modeling, this simulator

provides a variety of architectural parameters and performance information, delivers fast

simulation speeds and maintains timing accuracy. MRPSIM can correctly and efficiently

simulate the run-time multi-core environment, allowing the throughput of the modelled

system to be measured. Meanwhile a trace preprocessing tool, Mpsockit, was introduced to

facilitate the multi-core system simulation and task mapping. In addition, several test

benches have been executed on this simulator to estimate this simulator’s performance. For

chosen applications, MRPSIM simulator demonstrated high simulation speeds, up to 300

KCPS, 300 KIPS and 25 KSPS, respectively.

23 14 5534 20 74
233

2714

1907

170
1.4 2.0

-

500.0

1,000.0

1,500.0

2,000.0

2,500.0

3,000.0

AES FIR FFT WiMAX TX WiMAX RX Image

S
i
m
u
l
a
t
i
o
n

t
i
m
e

(
s
e
c
)

basic

advanced

Figure 5.8 The simulation time (sec)

Multiple Reconfigurable Processors Simulator

 86

87

6.1 Introduction

Many successful multi-core processors in the market are homogeneous collections of

processing cores, such as UltraSPARC from Sun Microsystems and Intel Quad-Core Xeon.

One of the salient advantages of homogenous multi-core solutions is that once a core passes

the verification test, it can be easily replicated in the multi-core system. Therefore the

development time is dramatically shortened. In addition, a homogeneous multi-core system

has a simple software model which requires less programming efforts. This chapter

introduces several homogeneous multi-core solutions for a fixed WiMAX physical layer.

These solutions have different configurations in terms of the number of processing cores,

partitioning method and memory architecture. These configurations are chosen for different

resource/performance tradeoffs. These solutions originate from the basic multi-core

architecture proposed in Chapter 4. All processing cores used in these solutions are based on

the RICA architecture. The target WiMAX physical layer uses BPSK modulation and 1/2

rate convolutional coding where puncturing and RS coding are not required. Before

Chapter 6
Homogeneous Multi-core

Solutions for WiMAX

Homogeneous Multi-core Solutions for WiMAX

 88

describing these solutions, this chapter investigates how multiple tasks can be mapped onto

the multi-core architecture and synchronise with each other.

This chapter is structured as follows. Section 6.2 presents a mapping methodology used to

partition, schedule and map tasks onto the multi-core architecture. Section 6.3 addresses

three task partitioning methods: task merging, task replication and loop partitioning. Section

6.4 introduces how a multi-core project can be developed for the multi-core architecture.

Section 6.5 describes how tasks synchronise with each other by using the synchronisation

methods introduced in Section 4.3. Section 6.6 describes these homogeneous multi-core

solutions and demonstrates results.

6.2 Mapping methodology

Basically, the mapping and scheduling of tasks involved in the implementation of WiMAX

on a multi-core architecture are complex optimisation problems. These problems need to be

solved simultaneously to maximise the throughput. In addition, data transmission time

between different processing cores must also be taken into account during task mapping and

scheduling. As shown in Figure 6.1, a mapping methodology is developed to enable running

multiple tasks on MRPSIM simulator. This methodology incorporates profiling-driven task

partitioning, task transformation and memory architecture aware data mapping in order to

reduce the overall application execution time. This methodology allows the designer to

explore the different multi-core implementations on MRPSIM simulation platform. During

the process of task partitioning and task mapping, execution-time estimation for the different

tasks, as well as the time estimation for data transfer between processing cores, are required.

It is also necessary to schedule the execution order of pipelined tasks, such as those shown

in Figure 2.1, to improve the system performance. The execution time of a task performed

by a single RICA processor can be obtained from profiling information generated by the

single RICA simulator. The mapping flow starts from the description of an application in

standard sequential C code which is optimised for a single RICA implementation. Then a

Homogeneous Multi-core Solutions for WiMAX

 89

proper task partition and mapping is chosen after executing the application using the single

RICA tool flow.

As shown in Figure 6.1, the task partition and mapping selection is based on the control data

flow graph and static profiling generated by the single RICA tool flow. The control data

flow graph provides instruction level parallelism information for loop level partitioning. The

static profiling information contains the timing characteristics for each task and the access

frequency for the various data items. This information is used for mapping tasks to available

processing cores as well as mapping various data items to proper memory locations. After

the task partition and mapping method is decided, the application is modified to run on a

multi-core system. A task-level interface, including the macros for synchronisation, is

developed to facilitate the multiprocessing programming. In addition, this mapping

methodology supports both homogeneous and heterogeneous architectures. Therefore the

resource mix for each processing core in the system is allowed to differ, and may be tailored

to the particular tasks that it is intended to execute. Through this method, the multi-core

processor model can support both homogeneous and heterogeneous multi-core architectures

Figure 6.1 Mapping methodology

Homogeneous Multi-core Solutions for WiMAX

 90

based on dynamically reconfigurable processor, or even conventional DSPs (or any mixture

thereof).

The data mapping stage performs mapping of data items to the memory architecture and

explores different memory architectures for minimising memory access latencies. As

described in Section 4.2.2, in the proposed multi-core architecture, each processing core can

access four types of memory components, shared multi-bank register file, stream buffer,

shared data memory and local data memory. A local data memory is private to a processing

core and cannot be accessed by other cores. Thus, shared data items, accessed by tasks

running on different cores, should not be mapped to these memory blocks. Instead, they can

be mapped to shared register file, or shared memory, which can be accessed by the different

cores. As shown in Figure 6.1, through each single processor tool flow, trace files and

memory files are generated and fed into MRPSIM simulator. Eventually, after one

exploration iteration, the architecture model and the application can be modified to pursue

higher throughput according to the performance report.

6.3 Task partitioning methods

As shown in Figure 2.1, both WiMAX transmitter and receiver consist of five main

functional blocks. For BPSK based WiMAX, convolutional coding is used as FEC encoding.

Correspondingly Viterbi encoding is used as FEC decoding. For one OFDM symbol,

randomising, convolutional coding, interleaving and modulation jointly have an execution

time of 32 sμ , while the OFDM downlink processing function takes 200 sμ . In the receiver

side, there are six functions. Among them, the decoding function (including both Viterbi

decoding and de-randomising) takes 1567 sμ where Viterbi decoding is the most time

consuming function, while other functions (i.e. synchronisation, OFDM uplink processing,

demodulation and de-interleaving) totally run 180 sμ . The design challenge is to map the

application onto an architecture optimised in terms of system performance and cost. This

includes not only the mapping strategy but also architectural design choices such as the

Homogeneous Multi-core Solutions for WiMAX

 91

number of processing cores as well as the number and types of instruction cells in each core.

At present, the optimisation involves a lot of manual work. A tool which can make

automatic optimisation would be a research target in future.

6.3.1 Task merging and task replication

A simple mapping would assign each function as a task to one processing core for both

transmitter and receiver. This mapping generates a multi-core architecture with totally

eleven processing cores (i.e. five cores for transmitter and six cores for receiver). Each core

acts as one stage of either transmitter or receiver processing chain, as shown in Figure 2.1.

However, this partitioning method would lead to highly unbalanced workloads among cores.

The overall throughput of the WiMAX application is limited by the most time-consuming

tasks, which are the OFDM downlink processing task in the transmitter side, and the Viterbi

decoding task in the receiver side. The processing cores with a light workload would spend a

considerable time idle waiting for synchronisation. To improve the load balance, merging

and replicating tasks can be employed in the mapping strategy. The task merging method

incorporates several tasks into one single task which keeps the original execution order of

these tasks. This method can reduce the number of processing cores, but requires larger local

program and data memory for each core running the merged task. In the transmitter side, the

randomising, convolutional coding, interleaving and modulation tasks are merged into one

single task called channel coding that sequentially performs these original tasks. The merged

channel coding task and the OFDM downlink processing task are assigned to different

processing cores, as shown in Figure 6.2 (a). Similarly, for the receiver, the synchronisation,

OFDM uplink processing, de-interleaving and demodulation tasks are merged and assign to

one core. The Viterbi decoding and de-randomising tasks are merged into one task called

Task decoding and assigned to another core, as shown in Figure 6.2 (b). This mapping

strategy involves four processing cores, as both transmitter and receiver occupying two

cores. Obviously, workloads are unbalanced and throughputs are still determined by the

most time consuming tasks (OFDM downlink processing in the transmitter and decoding in

Homogeneous Multi-core Solutions for WiMAX

 92

the receiver).

To further improve throughputs, task replication can be applied to the tasks on critical paths.

Task replication assigns the same task to several processing cores such that all instances of

the task perform different OFDM symbols in parallel. As a result, task replication needs

more processing cores to carry out the parallelism as well as larger shared data memory for

storing the shared data within multiple OFDM symbols. As shown in Figure 6.2 (a), in the

transmitter, the OFDM downlink processing task is replicated to seven processing cores, as

its execution time is about seven times that of the merged channel coding task. Ideally, the

OFDM downlink processing task will complete seven parallel instances every 200 sμ ,

resulting in a 700% performance improvement. As for the receiver, similarly the decoding

task is replicated to nine processing cores. Clearly, the combination of task merging and task

replication can lead to higher performance solutions. However, task merging requires more

(a) Transmitter

(b) Receiver

Figure 6.2 Task merging and task replication methods

Homogeneous Multi-core Solutions for WiMAX

 93

local memory and task replication requires more shared data memory as well as more

processing cores. Obviously, for a multi-core system which has limited computing and

storage resources, task replication can not be applied.

6.3.2 Loop-level partitioning

As discussed before, for both transmitter and receiver, the task merging with two cores

results in an unbalanced workload, leaving the first core idle for a significant fraction of the

time. In order to balance the workload among the two processing cores, another partitioning

method has been proposed, called loop partitioning which includes both loop splitting and

instruction level partitioning. This method divides the tasks at the instruction level instead of

the function level in order to explore the instruction level parallelism within a task. In the

transmitter side, the overall execution time of all the other tasks is much less than the

execution time of the OFDM downlink processing task where the main function is 256-point

IFFT. In this thesis, the 256-point IFFT is based on radix-2 FFT algorithm which has eight

pipeline stages, each stage involving 128 butterfly operations. The most time-consuming

part of the FFT algorithm is the 2-level loop body shown in Table 6.1 where the left hand

code is the original code running on a single processor. Originally as a compiler

optimisation technique, in this thesis, loop splitting is used to break a loop into multiple

loops which then are assigned to different processing cores. The generated loops keep the

same original loop body but iterate over different portions of the original index range.

Shown as the right hand code of Table 6.1, the outer loop is split into two parts. The first

part executes the first four stages, while the second part executes the remaining four stages.

The two parts are assigned to two different processing cores.

Homogeneous Multi-core Solutions for WiMAX

 94

In the receiver side, the decoding task is the most time-consuming. Here, the loop

partitioning method uses both loop splitting and instruction level partitioning in order to

parallelise the resulting code across different processing cores. The decoding task contains

the most time-consuming loop body with a loop-carried dependence, which means each

iteration of a loop depends on values computed in an earlier iteration. This prevents further

efficient partitioning at the task level. As shown in Figure 6.3 (a), the body of the main loop

in the decoding task iterates 870 times and includes 16 butterfly operations which are the

main operations in Viterbi decoding. A butterfly operation consists of independent and

Table 6.1 IFFT Loop Partitioning

Original Code Split Code

// the number of stages
#define STAGE 8;
// the size of FFT
#define SIZE 256;

int half_size = SIZE/2;

for (i =0; i < STAGE; i++) {
 counter = 0;
 do {
 butterfly(real, image);
 counter++;
 } while (counter <
half_size)
}

#define STAGE 8; // the number of stages
#define SIZE 256; // the size of FFT
/* assigned to Processing core 0*/
/* load data from shared memory to Core0 local memory*/
Load(real, image, core0_real, core0_imag);
for (i =0; i < STAGE/2; i++) {
 counter = 0;
 do {
 butterfly(core0_real, core0_image);
 counter++;
 } while (counter < half_size)
}
/*store back results from Core0 local memory to shared memory*/
Load(core0_real, core0_imag, real, image);

/* assigned to Processing core 1*/
/* load data from shared memory to Core1 local memory*/
Load(real, image, core1_real, core1_imag);
for (i =0; i < STAGE/2; i++) {
 counter = 0;
 do {
 butterfly(core1_real, core1_image);
 counter++;
 } while (counter < half_size)
}
/*store back results from Core1 local memory to shared memory*/
Load(core1_real, core1_imag, real, image);

Homogeneous Multi-core Solutions for WiMAX

 95

dependent data paths. The independent data paths can be run on different processing cores to

increase the instruction level parallelism. To make use of the idle time of the first core, loop

splitting can be used to effectively move some work of the decoding task from the second

core to the first core running the merged task. To achieve this, the decoding loop body is

written in two ways: one with all the work being done on a single processing core, and the

other where some of the butterflies are moved to the other processing core, such that they

can be performed in parallel, but need to be synchronised to allow for the dependencies to be

met. The second core then runs the first (single core) version when the first core is busy

executing the merged tasks, then switches to the second version (dual-core), allowing the

now idle first processing core to share in the decoding task.

Based on the execution time of the merged task, the loop is split into two parts: the first 840

iterations and the last 30 iterations as shown in Figure 6.3 (b). The execution time of the last

30 iterations is nearly equal to the merged task. The body of the loop in the first 840

iterations is partitioned across two processing cores, as shown in Figure 6.3 (b). After loop

partitioning, the merged task and part of the first 840 iterations are assigned to one

processing core, the remaining part of the first 840 iterations and the whole of the last 30

Figure 6.3 Decoding loop partitioning

Homogeneous Multi-core Solutions for WiMAX

 96

iterations are assigned to the second processing core. The first core's idle time can be best

absorbed in this way by executing the dual-core version of the decoding task for 840

iterations. The loop partitioning results in a balanced workload, however it may introduce a

large number of data exchange between the cooperating processing cores and increase

communication overheads. If the data exchange happens in the shared data memory, the

shared data memory could become a performance bottleneck of the loop partitioning method

due to the frequent additional data communication between the processing cores. Therefore,

a feasible optimisation method is mapping the frequently read and written shared data in the

dual-core version to the shared register file for reducing memory access time and memory

access conflicts.

6.4 Development of multi-core projects

For easily developing a multi-core project based on the proposed mapping methodology,

MRPSIM simulator has been integrated into an open source integrated development

environment, Eclipse. After creating a multi-core project, the parameters for MRPSIM can

Figure 6.4 Integration of MRPSIM in Eclipse

Homogeneous Multi-core Solutions for WiMAX

 97

be set through the project properties, as shown in Figure 6.4. Meanwhile, Makefiles have

been written to automatically compile programs and execute them on simulators. This

automation process includes compiling and executing each task on a single RICA tool flow,

Mpsockit preprocessing and the execution of multiple tasks on MRPSIM simulator. Once

the task partitioning method has been decided, the automation process can carry out,

following the predefined settings of the tool flow in Makefiles.

6.5 Synchronisation between tasks

As mentioned in Section 4.3, two synchronisation methods, spinlock and binary semaphore,

have been developed. In this thesis, there are two sync variables used for protecting a shared

data item between tasks in the pipeline. One is for writing and the other is for reading. These

sync variables are implemented by either spinlocks or binary semaphores. Table 6.2 shows a

pseudo code for how two tasks running on two cores synchronise with each other. The

writing sync variable is initialised to one, while the reading one is initialised to zero. Every

time before Task 1 writes values to the shared data, it will require the writing sync variable.

If this variable is one, Task 1 will set it to zero and write values to the shared data, otherwise

Task 1 either continuously checks the availability of this variable or sleeps, depending on

synchronisation methods. On the other side, as a concurrent task on another processing core,

Table 6.2 Synchronisation between tasks

header.h

 SYNC wlock = 1; // writing sync variable
SYNC rlock = 0; // reading sync variable
/*1: sync variable available; 0: sync variable unavailable*/
INT shared_data; // shared data item

Task 1 Task 2

#include “header.h”
task1_function();// the main job of Task 1
require(wlock);//require writing sync variable
write(shared_data);//write values to shared data
release(rlock)//release reading sync variable

#include “header.h”
require(rlock);//require reading sync variable
read(shared_data);//read values from shared data
release(wlock);//release writing sync variable
task2_function();// the main job of Task 2

Homogeneous Multi-core Solutions for WiMAX

 98

Task 2 falls into sleep or a busy waiting state at the beginning, when it finds the reading

sync variable is zero. After writing the shared data, Task 1 releases the reading sync variable

by setting it to one. Meanwhile, Task 2 is aware of the availability of the reading sync

variable and is able to read the shared data. After finishing reading, Task 2 releases the

writing sync variable, so that Task 1 is enabled to write new values to the shared data.

6.6 Results

Following on from the discussion in Section 6.4, several homogeneous multi-core scenarios

for both transmitter and receiver have been proposed. These scenarios are based on different

task partitioning methods and memory architectures, as described in Tables 6.3 and 6.4.

These scenarios are design examples not aiming to find a global optimum homogeneous

Table 6.3 Homogeneous multi-core scenarios for WiMAX transmitter

Scenario No. of cores Partitioning method Data memory mapping

Scenario 1 2 std. cores Task merging Shared memory

Scenario 2 2 std. cores Task merging Shared & local memory

Scenario 3 2 std. cores Loop partitioning Shared memory

Scenario 4 2 custom cores Loop partitioning Shared memory & shared register file

Scenario 5 2 custom cores Loop partitioning Shared & local memory & shared register file

Scenario 6 8 std. cores Task replication Shared memory

Scenario 7 8 std. cores Task replication Shared & local memory

Table 6.4 Homogeneous multi-core scenarios for WiMAX receiver

Scenario No. of cores Partitioning method Data memory mapping

Scenario 1 2 std. cores Task merging Shared memory

Scenario 2 2 std. cores Task merging Shared & local memory

Scenario 3 2 std. cores Loop partitioning Shared memory

Scenario 4 2 custom cores Loop partitioning Shared memory & shared register file

Scenario 5 2 custom cores Loop partitioning Shared & local memory & shared register file

Scenario 6 10 std. cores Task replication Shared memory

Scenario 7 10 std. cores Task replication Shared & local memory

Homogeneous Multi-core Solutions for WiMAX

 99

multi-core solution for WiMAX but explore the resource/performance tradeoffs in the

multi-core architecture for different system requirements. For both task merging and task

replication methods, two scenarios have been designed with and without support for local

data memory, respectively. These scenarios use standard cores which have the same

instruction array as used for the RICA test chip. As for loop partitioning based scenarios,

three scenarios have been designed with different memory architectures. For both transmitter

and receiver, Scenario 3 only has shared memory used to exchange data between two

processing cores, while Scenario 4 is equipped with shared register files for data exchange.

Scenario 5 is an improved version of Scenario 4, with local data memory support.

Due to the use of shared register files, the cores utilised for Scenarios 4 and 5 have

MULTIPBK_REG_FILE custom cells integrated. The instruction cell array configurations

of both a standard core and a custom core are provided in Table 6.5. All scenarios use a

Table 6.5 Configurations of both a standard core and a custom core

Instruction Cell Instances in Standard core Instances in Custom core

ADD 5 5

MUL 4 4

REG 30 30

CONST 9 9

SHIFT 3 3

LOGIC 3 3

COMP 2 2

MUX 2 2

I/O REG 1 1

MEM 8 8

DMA_interface 1 1

I/O port 1 1

RRC 1 1

JUMP 1 1

MULTIPBK_REG_FILE nil 8

Total cell number 71 79

Homogeneous Multi-core Solutions for WiMAX

 100

semaphore synchronisation method, since a spinlock method would cause more memory

access conflicts as discussed in Section 4.3. For all scenarios, the shared data memory size is

128KB, with the access delay being 6ns. According to the memory requirement from tasks,

each local memory size is 64KB and each local program memory size is 32KB. The local

data memory access delay was set to 4ns. The load time from program memory differs

depending on the size of each step. Only used in loop partitioning based scenarios, the

shared multi-bank register file has eight banks, each of which is 32x32 bits, with the access

delay being 2ns. All memory blocks have been synthesised by Faraday memory compiler

Memaker using UMC 0.18µm process technology which the test RICA chip is based on.

The above memory access latencies are based on generated timing results. The RRC period

for each processing core was set to 2ns. Meanwhile, the transmitter and receiver were

separately executed on a single RICA processor containing 128KB data memory and 128KB

program memory, with 2ns RRC period and 5ns data memory access delay.

For the sake of verification, the input of the receiver is the output of the transmitter. The

WiMAX PHY is based on BPSK modulation and 1/2 rate convolutional coding. To make

fair performance comparisons, all scenarios are executed with 126 OFDM symbols for

satisfying the replication on both transmitter and receiver. All scenarios have been

implemented in ANSI C and simulated on MRPSIM simulator. Different transmitter and

receiver scenarios can be combined to build various multi-core WiMAX physical layer

solutions. For both transmitter and receiver, there are seven scenarios. It means that totally

there could be 49 multi-core solutions based on different combinations. Figures 6.5 and 6.6

show the speedup and parallel efficiency of each scenario for WiMAX transmitter and

receiver, respectively. The speedup is defined as the execution time of an application on a

single-core processor divided by the execution time of the parallel version of this application

on a multi-core processor. While the parallel efficiency (defined as the speedup divided by

the number of processing cores) is used to estimate how efficiently processing cores are

utilised in solving the problem [108].

Homogeneous Multi-core Solutions for WiMAX

 101

Tables 6.6 and 6.7 provide the throughput, the average idle ratio and area of different

scenarios for transmitter and receiver, respectively. The idle ratio refers to the ratio of the

period when a processing core is idle to the overall simulation time. The average idle ratio is

calculated by dividing the sum of the idle ratios by the number of cores. An overall

multi-core processor area is estimated by accumulating the area of the instruction arrays and

all memory blocks. The area figures are gained from the logic synthesis of individual RICA

(a) Speedup

(b) Parallel efficiency

Figure 6.5 Speedup and parallel efficiency of transmitter scenarios

(a) Speedup

Homogeneous Multi-core Solutions for WiMAX

 102

cores and memory blocks based on UMC 0.18 mμ process technology.

As shown in these figures and tables, in the example scenarios, task replication achieves the

highest speedup compared to other task partition methods. This is mainly because task

replication employs more processing cores and dispatches more balanced workload to cores.

Obviously, the scenarios utilising the local data memory have better profiling in most

performance metrics compared to their counterparts which have shared data memory only.

This improvement is due to the data locality which reduces the accesses to the slower shared

data memory. With the local data memory, several scenarios, such as Scenario 5 for

transmitter and Scenario 7 for receiver, gain a super linear speedup [108] where the speedup

is greater than the number of processing cores. However, the use of local data memory

Table 6.6 Performance comparison for transmitter scenarios

Scenario Throughput (Kbps) Average idle ratio Area (mm2)

Single std. core 445 - 13

Scenario 1 514 37.6% 9.96

Scenario 2 720 38.6% 15.93

Scenario 3 620 4.2% 10.03

Scenario 4 715 0.3% 10.14

Scenario 5 942 7.5% 16.11

Scenario 6 1,967 3.7% 18.91

Scenario 7 3,241 3.8% 42.78

(b) Parallel efficiency

Figure 6.6 Speedup and parallel efficiency of receiver scenarios

Homogeneous Multi-core Solutions for WiMAX

 103

introduces a significant area overhead.

Due to the deeply unbalanced workload, task merging based scenarios suffer from about

30% - 40% average idle ratios and thus achieve lower throughputs. With the same number of

processing cores as task merging, both transmitter and receiver Scenario 3, which use loop

partitioning, have much lower average idle ratios compared to task merging based scenarios,

however their performance is slightly worse. This is due to a large amount of data exchange

between the two cores through the shared memory. The execution time is dramatically

increased, since the loop partitioning introduces additional memory access instructions (read

and write memory) and synchronised waiting time caused by memory access conflicts.

However, this problem is resolved by providing a shared register file between cores, as

demonstrated by Scenarios 4 and 5 which have better performance than their task merging

counterparts, with a very small area overhead introduced by the shared register file. Even

though the scenarios employing task replication provide the best performance, for multi-core

systems which contain a limited number of processing cores, task merging and loop

partitioning based solutions could be feasible alternatives.

Currently, most of certified fixed WiMAX products are working on 3.5GHz frequency band

with 3.5MHz channel bandwidth, using Time Division Duplex (TDD) and 256-subcarrier

Table 6.7 Performance comparison for receiver scenarios

Scenario Throughput (Kbps) Average idle ratio Area (mm2)

Single std. core 55 - 13

Scenario 1 54 44.1% 9.96

Scenario 2 74 43.3% 15.93

Scenario 3 60 15.2% 10.03

Scenario 4 64 14.8% 10.14

Scenario 5 78 14.3% 16.11

Scenario 6 428 2.7% 21.90

Scenario 7 659 1.4% 51.74

Homogeneous Multi-core Solutions for WiMAX

 104

OFDM. According to Table 2.5 in [18], the fixed WiMAX profile, based on 3.5 MHz

channel bandwidth and TDD 3:1 downlink-to-uplink ratio, requests data rates at 946Kbps

and 326Kbps for BSPK based downlink (transmitter) and uplink (receiver), respectively.

Obviously, the scenarios using task replication satisfy this requirement. It is reasonable that

multi-core solutions achieve this performance with several small size RICA processing cores,

each of which has less than 80 cells.

6.7 Summary

In this chapter, several homogeneous multi-core solutions, which combine different task

partitioning strategies and memory architectures, have been presented for the WiMAX

physical layer applications. A mapping methodology was proposed. Three different task

partitioning methods have been applied and their impact on the system performance has

been discussed. Simulation results have demonstrated the effectiveness of the proposed

solutions in terms of speedup, parallel efficiency and throughput. Up to 7.3 and 12 speedups

can be achieved by employing eight and ten dynamically reconfigurable processing cores for

the WiMAX transmitter and receiver sections respectively. Meanwhile the throughputs

provided by task replication based solutions satisfy the standard requirements.

However homogeneous based multi-core solutions suffer from many restrictions and

deficiencies which result in throughput and area inefficiency. These deficiencies include

restrictions in the memory architectural choices available and the fixed nature of the cores

used in multi-core architectures. For example, in this chapter, the best solutions achieving

highest throughput have significant area costs, as eight and ten processing cores used for

transmitter and receiver, respectively. In the next chapter, a framework for the design of

multi-core systems with heterogeneous dynamically reconfigurable processing cores will be

introduced. By means of a design space exploration methodology, heterogeneous multi-core

architectures can be tailored for a range of applications and provide better performance

parameters.

105

7.1 Introduction

Currently, the bulk of commercial and research efforts in multi-core field focus on

homogeneous multi-core processors. However on-chip homogeneity may work well for

desktops and servers where this general architecture can offer a reasonable average power to

a full range of applications. In embedded systems which target some special application

domains like multi-media processing and wireless communication, homogeneity may not be

an efficient solution. Allowing each processing core to better match its computation

resources to dedicated application’s needs, heterogeneous multi-core processors can provide

higher power and area efficiency for certain performance requirements or significant

performance advantage in an equivalent silicon area, compared to their homogeneous

counterparts and high-complexity single-core processors. In Section 3.2.2.2, a detailed

discussion about heterogeneous multi-core architectures has been given.

This chapter targets heterogeneous multi-core solutions for WiMAX, using RICA cores. The

cellular configuration and memory size of each core can differ, depending on the choice of

applications. In addition, an exploration methodology is proposed to search the design space

Chapter 7
Heterogeneous Multi-core

Solutions for WiMAX

Heterogeneous Multi-core Solutions for WiMAX

 106

for multi-core systems to find suitable solutions under certain system constraints, such as the

number of processing cores. This design space exploration methodology aims to maximise

the overall throughput while keeping the area cost at a low level. Meanwhile this algorithm

involves various timing and area optimisation techniques targeting WiMAX applications. In

this chapter, the target WiMAX physical layer uses 16QAM modulation and 1/2 overall

code rate which requires an RS (255, 239) code, 1/2 rate convolutional coding and 2/3

puncturing pattern. Both transmitter and receiver are partitioned and mapped onto

heterogeneous multi-core architectures.

This chapter is organised as follows: Section 7.2 introduces the design space exploration

methodology. Sections 7.3 and 7.4 describe how WiMAX is optimised in terms of timing

and area, respectively. Section 7.5 presents heterogeneous multi-core solutions and provides

the results and comparisons.

7.2 Design space exploration

Existing work on design space exploration methodologies for heterogeneous multi-core

processors include [55, 121, 122]. Both [121] and [55] focus on design space exploration

methodologies for heterogeneous multiprocessor SoCs based on a commercial ASIP -

Xtensa from Tensilica. In [121], the authors proposed an iterative exploration algorithm to

select custom instructions, assign and schedule tasks on ASIPs. The work in [55] presented a

heuristic to efficiently explore the design space for a pipeline based heterogeneous

multiprocessor system. However, the work in [121] only considered the heterogeneity of

processing elements in terms of custom instructions. This chapter investigates the

customisation of both processing elements and memory architectures to best fit the target

tasks. The heuristic presented in [55] only targeted a system configured in a pipelined

manner with relatively simple task partitioning and mapping, while the exploration

methodology introduced in this chapter involves a profiling-driven mapping methodology

which can lead to complex partitioning such as loop level portioning.

Heterogeneous Multi-core Solutions for WiMAX

 107

Based on SUIF parallel compiler and MOVE processor tool flow, the work in [122]

investigated a design space exploration methodology to find the best parallelisation of a

given embedded application. The work did not consider the effect caused by changed

workload balance, only a fixed context graph was presented. Also it is not a clear design

trade off description that the work used only the number of adders to represent area costs.

The proposed algorithm in this chapter checks the workload balance iteratively to keep each

customised processing core has as an equivalent workload as possible.

The implementation of WiMAX on a heterogeneous multi-core architecture mainly involves

task partitioning, task scheduling, task mapping, optimisation for each core and balancing

the workloads among different cores. Since each core may differ, some performance metrics

used in Chapter 6 (e.g. parallel efficiency) are not suitable for estimating how efficiently a

heterogeneous multi-core system is utilised in solving the problem. Instead, this chapter uses

the ratio of throughput to area to evaluate the efficiency of a multi-core architecture. This

ratio represents a ratio of a multiprocessor performance to its hardware cost and is widely

used in many research work such as [123]. In this thesis, this ratio is defined as

Area TotalThroughput /=Δ (7.1)

For WiMAX, the ratio is separately computed for transmitter and receiver. The throughput

can be obtained by dividing the bit number of one symbol input or output by the execution

time for completing one symbol transmission or reception. The total area of a transmitter or

a receiver indicates the area sum of shared memory blocks plus RICA cores. Each RICA

core area is calculated via the function Ii pA ij)1()(≤≤ where I is the number of cores

supported by design space j , while ip represents i th RICA core. This function works by

accumulating the area of all instruction cells, interconnection and local data and program

memory in each RICA core.

Heterogeneous Multi-core Solutions for WiMAX

 108

Given a characterised application (e.g. WiMAX) and constraints such as the number of cores

and whether the cores support custom instruction extensions (i.e. domain-specific instruction

cells), the design space exploration objective is to maximise the throughput and the

throughput to area ratio (Δ) if the throughput can not be further improved. An algorithm is

proposed for this optimisation problem. The pseudo code of this algorithm is shown in Table

7.1. This algorithm supports both single-core processor designs and multi-core processor

Table 7.1 Pseudo code of the design space exploration methodology

For Design j with I processing cores

Timing optimisation on a single RICA core;
If the instruction cell array tailorable
 Customise the instruction cell array;
If custom instructions enabled

 Add custom instructions (e.g. Galois Field multiplier);
Do {

If multi-core design
Task partitioning, scheduling and mapping;
For each RICA core ip

Timing optimisation;
If local data memory enabled

 Add local data memory;
 End for

} while (multi-core design && workloads can be further balanced)

Do {
 For each RICA core ip

 Area optimisation;
If the instruction array tailorable

 Tailor the instruction cell array;
If local data memory enabled

 Customise local data memory size;
 End for

} while (multi-core design && workloads can be further balanced)

Calculate the total area;

 Total Area = ∑
=

I

i
ij pA

1
)(+ the area of shared memory blocks;

 Calculate the overall throughput achieved for Design j

Δ j = Throughput/Total Area;

Heterogeneous Multi-core Solutions for WiMAX

 109

designs of either homogeneity or heterogeneity. In addition, this algorithm allows both

standard RICA and custom RICA based designs.

For example, for a design space with I cores, firstly an optimisation of the application

performance is carried out on a single RICA processor. This optimisation may be twofold.

One is optimising the application code to maximally get benefits from the RICA architecture,

while the other is architectural, including customised cellular configuration of the RICA

core and custom instruction extensions to best fit the application. The second type of timing

optimisation techniques only can be applied when the RICA instruction cell array is

tailorable and extensible. The timing optimisation is detailed in Section 7.3. Then the

algorithm checks whether the design is a multi-core based implementation. If so, the

application (WiMAX in this thesis) will be partitioned and mapped onto multiple cores by

means of the profiling-driven mapping methodology introduced in Section 6.2. This

methodology may generate a partitioning and mapping result based on task merging, task

replication, loop partitioning or their combination. After that, tasks are separately optimised

for reducing the execution time on the processing cores which they are assigned to. This

optimisation is similar as that performed on a single RICA processor, except that a local data

memory can be added for each core during this optimisation. Then if the design is multi-core

based, the workload balance will be checked in terms of the execution time of tasks on each

core and the idle ratio of each cores. For example, if one core has 10% idle ratio and the

other has 40% idle ratio, the workload is not balanced. If the workloads of the cores are not

balanced, the procedure will return to the step of task partitioning and mapping to generate a

more balanced solution and restart the timing optimisation. If a better workload balance can

not be achieved due to the limitation of the code itself, the procedure will switch to do the

area optimisation for each core, which is discussed in Section 7.4. Since the area

optimisation may break the workload balance, there is another workload balance check

performed after it. Then the procedure either starts a new iteration for the area optimisation

or breaks the loop. Finally, the total area, throughput, and thus Δ are calculated. Through

the efficient task partitioning and mapping, timing and area optimisation as well as workload

Heterogeneous Multi-core Solutions for WiMAX

 110

balance check, this algorithm tries to maximise throughput and/or Δ for each given design

space which may have a variety of implementations due to different configurations of RICA

cores.

In this chapter, both WiMAX transmitter and receiver are implemented on heterogeneous

multi-core architectures by using this design space exploration methodology. Figures 7.1 (a)

and (b) show the main components of 16QAM based WiMAX transmitter and receiver,

respectively. The arrows indicate the data flow through the various function components. As

mentioned in Section 6.3.1, the transmitter can be functionally split into two main parts,

channel coding and OFDM downlink processing. The next two sections discuss the timing

and area optimisation techniques employed by this design space exploration methodology.

Some of these optimisation techniques are application specific, but many of them are general

enough and work for different range of applications. Currently, this exploration

methodology is performed manually. An automatic design space exploration would be a

main focus in the future work.

Figure 7.1 The main blocks in 16QAM based WiMAX transmitter and receiver

Heterogeneous Multi-core Solutions for WiMAX

 111

7.3 Timing optimisation

7.3.1 Code optimisation

As mentioned in the last section, timing optimisation involves two categories of optimisation

techniques. The first one targets optimisation of the code to fit the characteristics of the

RICA architecture better. The RICA architecture is designed to support only one jump

operation per step. Shown in the left-hand side of Table 7.2, the original code generates two

jumps and involves three steps. Therefore, it is more efficient to implement these small

branches by multiplexers instead of conditional statements. Table 7.2 also gives the

optimised code which can fit into a single step and make better use of the available resources.

Moreover, with the optimised code, the instruction cell array does not need to be

reconfigured at all and hence is free of reconfiguration overhead. More benefits can be

gained from this technique, if such a piece of code is a self-loop. For WiMAX physical layer,

this replacement technique is mainly used in functions such as demodulation and pilot

insertion which include many branches.

Duo to the long memory access latency and the limited memory access interface cells, it is

very expensive to access memory. Another code optimisation technique is reducing memory

access count by storing constants in registers. For example, 16QAM modulation has 16

constellation points. As shown in Figure 2.6, the value of the real part or imaginary part of

Table 7.2 A code example of replacing jumps with multiplexers

Original Code Optimised Code

ctrl = input_1 * input_2;
if (ctrl > t){
 output = (input_1 + input_2) * (input_1 –
input_2);
}
else{
 output = input_1 – input_2;
}

ctrl = input_1 * input_2;
result_0 = (input_1 + input_2) *
(input_1 – input_2);
result_1 = input_1 – input_2;

output = (ctrl > t) ? result_0 : result_1;

Heterogeneous Multi-core Solutions for WiMAX

 112

each constellation point is one of four figures (i.e. 10/3 , 10/1 , 10/1− and

10/3−). Therefore it is feasible to store these constants into registers instead of memory.

Table 7.3 shows the original and optimised codes for 16QAM modulation. In the left-hand

side, the fix point representations of these values are stored in memory. The loop body

requires two write memory and six read memory operations, four of the read accesses from

the function of addressCalculation. RICA processor supports no more than four write and

read memory accesses within one single step, therefore this loop body can not be placed in

one step. In the right-hand side code, a bit little complex calculation is carried out by using

logic operations and multiplexers. The number of read accesses is reduced to four, so that

this loop body can be executed within one step. This optimisation results in 48.3% execution

time saving for 16QAM modulation.

If a self-loop iterates many times and the loop body can fit into one single step, it is worth

using software pipelining to reorganise the loop by inserting registers in long data-path

chains. As a result, the original critical paths can be divided into several portions executing

in parallel within one single step. In RICA implementations, software pipelining is

Table 7.3 Storing constants in registers for 16QAM modulation

Original code Optimised code

//store fix point representations in memory
const int real[16] ={ 324, 324, 324, 324, 971, 971, 971,
971, -324, -324, -324, -324, -971, -971, -971, -971};

const int imaginary[16] ={324, 971, -324, -971, 324, 971,
-324, -971, 324, 971, -324, -971, 324, 971, -324, -971};

for (i = 0, j=0; i< Ncbps; i+=4, j++)
//Ncbps: coded bits per symbol
{
 addr = addressCalculation();
 real_out[j] = real[addr];
 imag_out[j] = imaginary[addr];
}

for (i = 0, j=0; i< Ncbps; i+=4, j++)
{
 addr = addressCalculation();
 pos = (addr < 4) ? 324:971;
 neg = (addr < 12) ? -324:-971;

real_out[j] = (addr < 8) ? pos : neg;
ctrl1 = addr & 1;
pos = (ctrl1 == 0) ? 324:971;
neg = (ctrl1 == 0) ? -324:-971;
ctrl2 = addr & 2;
imag_aout[j] = (ctrl2 == 0) ? pos :

neg;
}

Heterogeneous Multi-core Solutions for WiMAX

 113

supported by means of inserting a compiler detective into the loop body. However software

pipelining involves additional registers and corresponding routing resources. Meanwhile, a

software pipelined step is split into several logical pipeline stages which require extra steps

for the prologue and epilogue. Hence software pipelining is not suitable for a loop without a

large number of iterations. For WiMAX applications, software pipelining is used in

functions like pilot insertion and convolutional coding. For example, by using software

pipelining, the convolutional coding function can have 28.6% throughput improvement,

while the optimised 16QAM modulation code in Table 7.3 can have 53.6% further reduction

in execution time.

Another optimisation technique is common subexpression elimination which replaces the

identical subexpression in multiple equations with a variable holding the computed value.

Hence the number of operations can be reduced. This technique is employed in functions

such as convolutional coding where the two generator polynomials have a common

subexpression 6321 XXX +++ . Other optimisation techniques including loop unrolling

and loop splitting have been used in functions like RS coding. The main idea behind these

code optimisation techniques is to make maximal use of available resources and reduce the

step number, especially for self-loops.

7.3.2 Architectural optimisation

In contrast to maximally utilising resources within each step for a given number of

instruction cells, the second type of optimisation is architectural. It involves tailoring and

extending the instruction cell array to best fit the dedicated program. For example, the

optimised code in Table 7.2 could not be placed in one step, if the instruction cell array only

has one MUL cell. By carefully increasing required resources to satisfy the requirement of

such a piece of code, especially those self-looping code, the reconfiguration overhead for the

whole application can be dramatically reduced. Moreover, extending the instruction cell

array by adding user-defined custom instruction cells can speed up functions and allow

Heterogeneous Multi-core Solutions for WiMAX

 114

smaller, more cost efficient designs. In this chapter, a custom instruction cell called

GFMULT [30] is used to implement Galois Finite Field multiplication which is the most

time-consuming operation in RS encoding/decoding and costs much more silicon area and

execution time if implemented by standard instruction cells. The GFMULT cell is

implemented by the custom cell generation environment introduced in Section 4.4. In

addition, other custom instructions such as MULTIPTBK_REG_FILE introduced in Section

4.2.2.2 can be used to support more memory architectural choice. In Chapter 3, Table 3.3

lists both standard and custom instruction cells. For standard instruction cells from I/O REG

to JUMP, the instance numbers are fixed due to the architectural characteristics of RICA,

while the instance numbers of other cells are allowed to be changed through altering their

values in MDF. Another architectural optimisation is adding a local multi-bank data memory

for each processing core. By equipping local data memory, the conflict in accessing the

shared memory is alleviated, and thus the throughput is improved. The MRPSIM simulator

can provide information of the local data memory requirement for each processing core

according to allocated tasks. Thereby the local data memory sizes for individual cores are

not necessarily the same and can be customised to meet the minimum memory demands, so

that the memory access can be accelerated.

7.4 Area optimisation

This design space exploration methodology employs varied area optimisation techniques for

different situations. When the workload is balanced, the area optimisation just removes those

redundant instruction cells existing in processing cores. It will introduce insignificant

influence on the execution time and hence still keep the balance between cores. For example,

there are no multiplication operations required by those functions in channel coding using

the optimised code. Therefore it is unnecessary to keep costly MUL cells in a processing

core customised for performing channel coding only. The second type of optimisation

technique is applied to the situation where the workload is unbalanced, even after greatest

efforts have been paid to task partitioning and mapping as well as timing optimisation.

Heterogeneous Multi-core Solutions for WiMAX

 115

Basically the throughput of a system is determined by the most time-consuming task. Even

though other tasks perform much better, the overall throughput would not be improved. This

unbalance results in those processing cores with light workloads to spend a considerable

time in idle on waiting for the inter-processor synchronisation. For example, in a transmitter

solution with only two processing cores, after timing optimisation and merging all functions

of channel coding into a single task, task OFDM downlink processing still takes much more

execution time than the merged task. Therefore, task OFDM downlink processing

determines the transmitter throughput which the merged task can not make further

contributions to improve any more. In addition, partitioning methods like task replication

can not be employed to such a system due to the limited number of processing cores. For

this case, the area optimisation tries to bring a workload balance between cores through

cutting down the resources for those highly underloaded cores (e.g. the core running the

merged task) until all tasks have a close execution time or balanced workloads. Although it

will not affect the throughput of applications too much even after considering the memory

competition and inter-processor synchronisation, the ratio of throughput to area will be

improved with the area reduction. In all cases, area optimisation techniques intend to

maximise the area efficiency without breaking the workload balance or worsening the

throughput. Moreover, both local data and local program memory sizes can be tuned to meet

the minimal requirements from tasks assigned to each core, through modifying the

multi-core MDF configuration.

7.5 Results

A group of single-core or multi-core processor designs were developed for transmitter and

receiver, respectively. These designs have been configured by different constraints as

examples for the design space exploration. These constraints include the number of

processing cores, tailorability and extensibility. Each design may have a large design space

in terms of the instruction cell array configuration of each individual core, local memory

size, mapping methods and so on. A good solution can be found for each design by proper

Heterogeneous Multi-core Solutions for WiMAX

 116

partitioning and mapping as well as timing and area optimisation.

Tables 7.4 and 7.5 show the solutions found by means of the design space exploration

methodology for each transmitter and receiver design, respectively. The second columns of

the two tables show the number and types of cores used in each design. For both transmitter

and receiver, there are two single-core based designs, while others are multi-core designs, all

of which own local data memory. Design 2 of transmitter is developed as a homogeneous

multi-core solution which employs two standard RICA cores with equal local memory size.

Designs 4-6 of transmitter and Designs 3-6 of receiver are heterogeneous based solutions

where the number of processing cores gradually increases. According to the task mapping

and scheduling results, the exploration stops at the quad-core and five-core solutions for

transmitter and receiver, respectively. The third column in both of the two tables indicates

Table 7.4 Comparison of transmitter design configurations

Design No. and types of cores Tailorable&
Extensible Mapping

Local data
memory (KB)

Local program
memory (KB)

Design 1 1 standard core No 1-7 128 128

Design 2 2 standard cores No (1-2); (3-7) 48;48 128;128

Design 3 1 RICA1 Yes 1-7 128 128

Design 4 1 RICA2 & 1 RICA3 Yes (1-6); (7) 48;8 128;8

Design 5 1 RICA4 & 2 RICA3 Yes (1-6); (7) 48;8 128;8

Design 6 1 RICA5 & 3 RICA3 Yes (1-6); (7) 48;8 128;8

Table 7.5 Comparison of receiver design configurations

Design No. and types of cores Tailorable&
Extensible Mapping

Local data
memory (KB)

Local program
memory (KB)

Design 1 1 standard core No 1-8 128 128

Design 2 1 RICA6 Yes 1-8 128 128

Design 3 1 RICA7 & 1 RICA6 Yes (1-5); (6-8) 16;16 16;64

Design 4 1 RICA8 & 2 RICA9 Yes (1-5,7,8);(6) 16;16 64;8

Design 5 1 RICA10 & 3 RICA6 Yes (1-5); (6-8) 16;16 16;64

Design 6 1 RICA11 & 4 RICA6 Yes (1-5); (6-8) 16;16 16;64

Heterogeneous Multi-core Solutions for WiMAX

 117

whether the design is allowed to be tailored and extended.

The RICA cores used in transmitter Designs 3-6 and receiver Designs 2-6 are allowed to be

tailored and custom instruction extended. Including the standard RICA core and its custom

variants, totally twelve types of RICA core configurations have been obtained for these

solutions through the design space exploration. Tables 7.6 and 7.7 provide the specification

of each core type used for transmitter and receiver, respectively. The specification includes

the instance number of each instruction cell, local memory size, area cost as well as the tasks

each core is customised for. The area figures are obtained from the RICA multiple product

Table 7.6 Comparison between standard and custom RICA cores used in transmitter designs

Instruction cell Standard RICA1 RICA2 RICA3 RICA 4 RICA 5
ADD 5 9 1 5 7 7
MUL 4 2 nil 2 nil nil
REG 30 69 24 28 89 89

CONST 9 35 9 9 32 32

SHIFT 3 19 2 3 4 19

LOGIC 3 22 3 1 22 22

COMP 2 13 2 2 13 13

MUX 2 7 2 1 7 7

I/O REG 1 1 1 1 1 1

MEM 8 8 8 8 8 8

DMA_interface 1 1 1 1 1 1

I/O port 1 1 1 1 1 1

RRC 1 1 1 1 1 1

JUMP 1 1 1 1 1 1

GFMULT nil 4 4 nil 4 4

Total cell number 71 196 60 64 191 206

Local data
memory (KB) 128/48 128 48 8 48 48

Local program
memory (KB) 128 128 128 8 128 128

Core area (mm2) 12.94/9.62 13.86 9.21 2.17 10.02 10.25

Targeting tasks General Transmitter Channel
coding OFDM Channel

coding
Channel
coding

Heterogeneous Multi-core Solutions for WiMAX

 118

wafer test chip data sheet and memory logic synthesis.

The mapping solutions for each design are given in the fourth columns of Tables 7.4 and 7.5.

For instance, in transmitter Design 5, tasks 1 - 6 shown in Figure 7.1(a) are assigned to one

RICA4 core while Task 7 is replicated on two RICA3 cores. All multi-core solutions have

the same amount of shared memory resources – 128K bytes with 6ns access delay, and each

core may have different sizes of local data and program memory as shown in the last two

columns of Tables 7.4 and 7.5. For example, in transmitter Design 5, RICA4 has a local data

memory sized 48KB and 128KB program memory, while both local data memory and

Table 7.7 Comparison between standard and custom RICA cores used in receiver designs

Instruction cell Standard RICA6 RICA7 RICA8 RICA9 RICA10 RICA11
ADD 5 16 1 13 11 3 13
MUL 4 2 1 4 nil 2 4
REG 30 69 14 46 36 28 31

CONST 9 26 6 15 20 6 15

SHIFT 3 7 1 4 6 2 4

LOGIC 3 25 1 8 12 1 2

COMP 2 26 1 26 12 2 3

MUX 2 19 1 19 11 2 6

I/O REG 1 1 1 1 1 1 1

MEM 8 8 8 8 8 8 8

DMA_interface 1 8 1 1 1 1 1

I/O port 1 1 1 1 1 1 1

RRC 1 1 1 1 1 1 1

JUMP 1 1 1 1 1 1 1

GFMULT nil 1 nil 8 nil nil nil

Total cell
number 71 213 39 156 121 59 91

Local data
memory (KB) 128 128/16 16 16 16 16 16

Local program
memory (KB) 128 128/64 16 64 8 16 16

Core area (mm2) 12.94 14.07/6.69 2.87 4.56 2.93 3.11 3.53

Targeting tasks General Receiver
Synch,
OFDM,

etc.

Receiver
except
Viterbi

Viterbi
Synch,
OFDM,

etc.

Synch,
OFDM,

etc.

Heterogeneous Multi-core Solutions for WiMAX

 119

program memory for each RICA3 are 8KB. The access delays for local memory differ

depending on the size of the local memory. The RRC period for all designs was set to 2ns.

Tables 7.8 and 7.9 show the results for each design of transmitter and receiver, respectively,

including throughput, area, idle ratio and the ratio of throughput to area. The areas are

calculated by the equation described in Table 7.1. All throughput and idle ratio figures are

provided by MRPSIM simulator. For transmitter designs, it is clear that based on standard

RICA processing cores, both Design 1 and Design 2 deliver very poor performance. Even

equipped with homogeneous dual-core and faster local data memory, Design 2 exhibits only

12% improvement in performance, but introduces much more area overheads compared to

Design 1. This is mainly due to the unbalanced workload which results in a very high

Table 7.8 Results from the exploration methodology for transmitter designs

Design
Throughput

(Kbps)
Area (mm2) Average idle ratio

Throughput/Area
(Kbps per mm2)

Design 1 21.7 12.94 nil 1.68

Design 2 24.36 25.21 49.5% 0.97

Design 3 2,094.14 13.86 nil 154.43

Design 4 2,910.93 17.35 1.5% 167.82

Design 5 5,805.51 18.94 4.9% 306.46

Design 6 8,669.47 19.96 7.3% 434.29

Table 7.9 Results from the exploration methodology for receiver designs

Design
Throughput

(Kbps)
Area (mm2) Average idle ratio

Throughput/Area
(Kbps per mm2)

Design 1 3.99 12.94 nil 0.31

Design 2 476.60 14.07 nil 33.88

Design 3 810.22 15.54 13.3% 52.15

Design 4 1,313,68 18.14 26.4% 72.40

Design 5 1,868.27 29.16 1.2% 64.07

Design 6 2,430.66 36.28 3.8% 67.01

Heterogeneous Multi-core Solutions for WiMAX

 120

average idle ratio of Design 2. The reason for this unbalance is that one processing core

executes a very heavy computation for RS encoding, while the other is almost idle at all time

because the execution time consumed by the rest of WiMAX transmitter functions on it is

negligible, compared to RS encoding.

When the instruction cell array of a processing core is allowed to be tailored as well as

extended by domain-specific custom instruction cells (in this case, GF multiplier cells),

much better performance is achieved as can be seen in Design 3. Benefiting from a

heterogeneous dual-core implementation, Design 4 improves over Design 3, and has about

30% area reduction compared to its homogeneous counterpart Design 2. In both Design 5

and Design 6, Task OFDM downlink processing is replicated on multiple RICA3 cores,

while the other processing core runs all other functions. Hence the OFDM downlink

processing task can be executed in parallel for multiple consecutive OFDM symbols.

Although owning only one more RICA core, Design 6 has much better performance than

Design 5, and achieves the highest throughput and throughput to area ratio among all

transmitter designs. This is because the execution time of the optimised OFDM downlink

processing is nearly three times that of the optimised channel coding. In Designs 4 and 5, the

numbers of cores are limited to two or three. Hence both Designs 4 and 5 utilise the second

type of area optimisation technique, introduced in Section 7.4, which brings these designs

low area costs and average idle ratios without hurting throughputs. As a result, RICA2 and

RICA4 are generated as small versions of RICA5 which has more resources for the channel

coding task. Compared to RICA5, RICA2 and RICA4 have 64% and 15% area reductions in

terms of the instruction cell array including cells and interconnection, respectively. It results

in 10.2% and 2.3% savings for the overall processing core area, as can be seen in Table 7.6.

For the receiver side, same as the transmitter, the custom instruction cell GF multiplier

brings a significant improvement for both throughput and area cost for those designs

allowed to be extended. Due to the fact that the execution time of Viterbi task takes about

70% of the overall time of a receiver, in Designs 3, 5 and 6, the receiver is partitioned into

Heterogeneous Multi-core Solutions for WiMAX

 121

two batches of tasks. Tasks 1-5 are allocated to one RICA core, while tasks 6-8 are allocated

to one RICA6 core or replicated to up to four RICA6 cores. Since the execution time

proportion between tasks 1-5 and tasks 6-8 is almost one to four, Design 6 demonstrated

much better results for throughput and the ratio of throughput to area, compared to Designs

3 and 5. In Designs 3 and 5, RICA7 and RICA10 are optimised by means of the second type

of area optimisation technique. Compared to RICA11, RICA7 and RICA10 are 56% and

36% smaller in the instruction cell array area, respectively, in the meantime 19% and 12%

smaller in the overall processing core area, respectively.

Different from the previous mapping and scheduling, Design 4 uses a mapping and

scheduling method where the most time-consuming task Viterbi is replicated on two RICA9

cores and all other tasks are assigned to one RICA8 core. This mapping and scheduling is

illustrated in Figure 7.2 where the processing of four OFDM symbols is demonstrated. The

left-hand side of Figure 7.2 shows the receiver task graph, while the percentages represent

the proportion of each task batch execution time in the overall execution time. On RICA8,

first of all tasks 1-5 execute four consecutive symbols, and then tasks 7-8 perform four

consecutive symbols once task 6 finishes the corresponding symbols on two RICA9 cores.

This scheduling can achieve better workload balance than the normal task replication for the

triple-core design. Design 4 does not employ the second type of area optimisation technique,

but achieves the highest throughput to area ratio in all receiver designs. Due to the

computational complexity of the receiver, both throughputs and the ratios of throughput to

area in receiver designs are much lower than those for transmitter designs. According to

Figure 7.2 Task partitioning, mapping and scheduling in receiver Design 4

Heterogeneous Multi-core Solutions for WiMAX

 122

Table 2.5 in [18], the fixed WiMAX profile, which uses 3.5 MHz channel bandwidth and

TDD 3:1 downlink-to-uplink ratio, requests data rates at 3,763Kbps and 1,306Kbps for

downlink and uplink based on 16QAM modulation with 1/2 code rate, respectively. It is

clearly shown in Tables 7.8 and 7.9 that Designs 5 and 6 of transmitter as well as Designs

4-6 of receiver satisfy these requirements.

In Table 7.10, the design with the best throughput (i.e. the combination of Design 6 for both

transmitter and receiver) is compared with combined Scenario 7 (i.e. the combination of

Scenario 7 for both transmitter and receiver) proposed in Chapter 6 and several other

WiMAX solutions based on commercial high performance multi-core processors. In Table

7.10, for the sake of direct comparison, the throughput is the sum of transmitter and receiver

throughputs. In addition, throughputs are estimated at 90nm technology basis for those

solutions based on other process technologies. For 180 nm and 130 nm technologies, the

estimated throughputs are double and 1.5 times as the actual throughputs, respectively.

Shown in Table 7.10, Design 6 offers a much higher throughput than Scenario 7 in Chapter

Table 7.10 Comparison of multi-core solutions

Multi-core solution Structure
Process

technology
(nm)

Frequency
(MHz)

Throughput
(estimated
for 90mn)

(Mbps)

Design 6 9 RICA custom cores 180 500 22

Scenario 7 in Chapter 6 18 RICA std. cores 180 500 7.8

PC7218 [94] 2 PC102
(2 x 308 cores) 130 160 40

SB3010 [61] One ARM9 and 4
Sandblaster cores 90 600 2.9

IXP2350 [59]
one XScale core and

4 microengines
90 1,200 (XScale)/

900 (microengine) 25

MSC8126 [26]
4 SC104 cores plus
Viterbi coprocessor

90 500 33.7

CELL [97]
one 64-bit PPE
and eight SPEs

90 3,200 40

Heterogeneous Multi-core Solutions for WiMAX

 123

6 at almost half area cost. It proves that even with more workloads (e.g. RS coding),

heterogeneous multi-core designs surpass homogeneous multi-core designs in performance

with much less silicon costs. In addition, the performance of both Design 6 and Scenario 7

deliver good performance, even though the proposed solutions contain a few simple RICA

cores operating at not very high frequency and are currently based on a test chip with a

process technology which is one or two generation behind other solutions. One reason

behind this is that the RICA architecture’s salient characteristics (e.g. customisable

instruction cell array and reconfigurable rate control) bring the proposed multi-core

solutions advantages over DSP based multi-core solutions. It is also partially because all

processing cores in both Design 6 and Scenario 7 have very low average idle ratios,

compared to other solutions. For example, in [97] only five of SPEs in CELL are used for

processing WiMAX, and the SC 104 cores in Freescale MSC8126 have only an average

loading rate of 70% [16]. Moreover, combined Design 6 and Scenario 7 have area costs at

55.75 mm2 and 94.53 mm2, respectively. However, some of other multi-core solutions take

up more space, for example, the die size of a CELL processor is 221 mm2 at 90nm process

technology.

7.6 Summary

In this chapter, a design space exploration methodology has been proposed to find good

design solutions under certain system constraints. This algorithm is suitable for both

single-core based and multi-core based designs including heterogeneous and homogeneous

multi-core solutions. The ratio of throughput to area was used for estimating the efficiency

of a multi-core design. In addition, a variety of timing and area optimisation techniques were

introduced and used within this algorithm to improve the throughput as well as area

efficiency and thus the throughput to area ratio. Several designs have been developed and

good improvement and trade off have been obtained through the exploration methodology

for each design. Totally eleven types of custom RICA cores have been devised for these

designs. Results demonstrated that heterogeneous multi-core architectures can provide

Heterogeneous Multi-core Solutions for WiMAX

 124

throughputs of up to 8.7 Mbps and 2.4 Mbps for transmitter and receiver, respectively,

meanwhile achieving a ratio of throughput to area up to 200 Kbps per mm2 for the overall

WiMAX physical layer. In addition, a comparison with other WiMAX multi-core solutions

was provided to demonstrate that the best solution Design 6 delivers a very good throughput

at relatively low area cost.

125

8.1 Introduction

Nowadays, complicated embedded system designs are driven by the increasing demand for

high performance real-time applications. The approach of software applications plus bare

machines, which may work well for microwave ovens, can not work for consumer

electronics where multiple tasks even multiple processors are involved. As the RICA

architecture targets on embedded systems, it is very important to have a real-time operating

system ported to RICA for satisfying the multitasking requirement. Moreover, for embedded

systems targeting deterministic applications (e.g. WiMAX), it is worth to have an RTOS to

maintain the system reliability/stability, protect the system from a crash caused by some

faults, and diagnose the faults when a crash happens. From multi-core systems point of view,

an operating system allows for dynamic scheduling which can schedule tasks at run-time. As

shown in Figure 4.1, an OS can be ported to the master core which takes charge of task

management and scheduling, while all slave cores act as I/O processors. Meanwhile, some

OSes have a load balancer or support task stealing which can automatically balance

Chapter 8
 Multitasking

WiMAX on an RTOS

Multitasking WiMAX on an RTOS

 126

workloads among processing cores regarding run-time situations. In addition, an OS enables

multithreading which can make better advantage of computing resources. As multithreading

on multi-core systems is one of main future targets for the work originated from this thesis,

porting an RTOS on a single RICA processor is the first compulsory step for this target.

An RTOS or embedded operating system is a type of OS specially designed for real-time

applications, including those running on consumer electronics, industrial robots, industrial

control, and scientific research equipment. The major difference between an RTOS and a

normal desktop/server OS is that an RTOS must satisfy the strict deadline of real time

systems. RTOSes can be classified into hard real-time RTOSes and soft real-time RTOSes.

For the first category of RTOS, such as those used in automobiles and health care, the

deadline must be deterministically met. Otherwise applications would fail and cause serious

accidents which may even threaten users’ lives. However the effort of satisfying the deadline

is somewhat relaxed in soft real-time RTOSes, such as those used in customer electronics. In

this kind of embedded system, the operations completed after the deadline are still

meaningful, for example the delayed live video. Usually an RTOS is devised to be very

compact and efficient, due to the limited resources of embedded systems. The minimal

interrupt and thread switching latencies are often used to estimate how efficient an RTOS is.

Currently, there are many RTOSes available for various hardware platforms. As for

reconfigurable computing architectures, work so far has included mapping an RTOS on

soft-core processors, such as Altera NiosII [124] and Xilinx MicroBlaze [125], which have

been synthesised on fine-grained FPGAs. However, the overhead introduced by the

communication between the underlying logic blocks has an adverse effect on power

consumption and area.

This chapter focuses on porting an RTOS – Micro C/OS-II to the RICA architecture and the

multitasking implementation of a WiMAX physical layer program on a single RICA with

this RTOS support. For comparison’s sake, the WiMAX program has been also

implemented on the ARM7TDMI processor with Micro C/OS-II support. In Section 8.2, a

Multitasking WiMAX on an RTOS

 127

survey is given for choosing a suitable RTOS. Section 8.3 describes both hardware and

software requirements for developing this porting. Section 8.4 details how the multitasking

WiMAX program works on Micro C/OS-II. Finally, in Section 8.5, the results are given to

demonstrate the overheads introduced by this RTOS and compare the performance of

multitasking based WiMAX on RICA and ARM7TDMI.

8.2 The selection of RTOSes

To choose a suitable RTOS for exploring multitasking on RICA, thirty-three RTOSes have

been investigated from both the open source community and proprietary sources. All of

selected RTOSes can be categorised in term of the application domain, source type, kernel

type and the derivation shown in Table 8.1.

Table 8.1 Survey of RTOSes

RTOS Application Source type Kernel type Derivation

eCos [126] General Open source Microkernel N/A

Fiasco [127] General Open source Microkernel N/A

FreeRTOS [128] General Open source Microkernel N/A

NetBSD [129] General Open source Monolithic BSD

Phoenix-RTOS [130] General Open source Microkernel Unix-like

QNX [131] General Open source Microkernel Unix-like

RTEMS [132] General Open source Microkernel N/A

ThreadX [133] General Closed source Picokernel N/A

TRON [134] General Open source N/A N/A

uCLinux [135] General Open source Monolithic Linux

VxWorks [136] General Closed source N/A N/A

Xpe [137] General Closed source Hybrid kernel Windows XP

MontaVista Linux [138] Handheld devices Open source Monolithic Linux

Nucleus RTOS [139] Handheld devices Closed source N/A N/A

Palm OS [140] Handheld devices Closed source N/A N/A

Prex [141] Handheld devices Open source Microkernel N/A

Multitasking WiMAX on an RTOS

 128

Symbian OS [142] Handheld devices Closed source Microkernel N/A

Windows Mobile [143] Handheld devices Closed source N/A WinCE

WinCE [144] Handheld/ industrial
devices Shared source Monolithic N/A

Integrity [145] Hard real-time Closed source Microkernel N/A

LynxOS [146] Hard real time Closed source N/A Unix-like

Micro C/OS-II [147] Hard real time Open source Microkernel N/A

RTLinux [148] Hard real-time Open source Monolithic Linux

Agnix [149] Education Open source Monolithic Linux

Minix [107] Education Open source Microkernel Unix-like

ChorusOS [150] Network Open source Microkernel N/A

Contiki [151] Network sensors Open source N/A N/A

ETLinux [152] Industrial computers Open source Monolithic Linux

Freesco [153] Routers Open source Monolithic Linux

Inferno [154] Distributed services Open source Monolithic Unix

Nut/OS [155] Ethernet Open source N/A N/A

picoOS [156] Small systems Open source N/A N/A

ShaRK [157] Control applications Open source Microkernel Unix-like

TinyOS [158] Wireless sensor
network Open source N/A N/A

As shown in the fourth column of Table 8.1, most investigated RTOSes can be classified

into four categories in terms of kernel types. Microkernel provides only basic functionalities,

with other services delivered by user-space servers. While monolithic kernel defines a

high-level virtual interface on the top of hardware, with OS services implemented in

supervisor mode modules by system calls. Hybrid kernel is a mixed kernel structure similar

to a microkernel, but implemented as a monolithic kernel. Picokernel is very small

microkernel, also called nanokernel.

Among these RTOSes, open source ones are preferred, because their source code are fully

open to the public and there are plenty of supports from the thriving user communities. Four

open source RTOSes are chosen for a further comparison, due to the fact that each of them

Multitasking WiMAX on an RTOS

 129

has reasonable porting complexity, has been ported to a large range of processors, and has

good documents and the compatibility of GNU compilers which the RICA compiler is based

on. Tables 8.2 and 8.3 give a detailed comparison for the four RTOSes. As shown in these

tables, Micro C/OS-II has smallest memory requirements and lowest porting complexity, as

its kernel clearly and concisely written in several thousand lines. Its simplicity also makes

the interrupt and task switching latencies deterministic and debugging easier. Although

Micro C/OS-II does not support multiprocessing, the basic knowledge about RTOS (e.g.

scheduling and context switch) can be easily learned through porting this simple RTOS to

RICA and programming multitasking based WiMAX on the top of it. Also as described in

Chapter 4, the proposed multi-core architecture is master-slave based. Micro C/OS-II can be

ported to this proposed multi-core system in a way where the functions of the kernel can

only be executed on the master, with the slaves working as I/O processors. Therefore, Micro

C/OS-II is chosen as the RTOS to be ported to the RICA architecture.

Table 8.2 Comparison in term of memory size and multiprocessing support

RTOS Memory footprint Multiprocessing support

eCos tens to hundreds of KB for some given processors

FreeRTOS about 10KB for 8 bit processors no

Micro C/OS-II minimal: 3-10KB ROM; 2KB RAM no

RTEMS application dependent, <100KB homogeneous and heterogeneous
mulitprocessing

Table 8.3 Comparison in term of ported devices and specific features

RTOS Porting complexity Specific features

eCos High high configurability with a friendly configuration
tool; many APIs support

FreeRTOS Medium small memory footprint; good demo applications

Micro C/OS-II Low small memory footprint; satisfy stringent real-time
requirements

RTEMS High homogeneous and heterogeneous multiprocessing
support; satisfy stringent real-time requirements

Multitasking WiMAX on an RTOS

 130

8.3 Porting Micro C/OS-II to RICA

From the system point of view, an embedded system can be simply described as a

combination of the hardware infrastructure, an operating system and application programs.

Figure 8.1 shows a diagram for a Micro C/OS-II based system. Acting as a middle layer

between the hardware layer and the software layer, the RTOS Micro C/OS-II hides the

details of the underlying hardware infrastructure from the software. For porting this RTOS

to the RICA architecture, there are some requirements from both hardware and software

sides [147].

8.3.1 Hardware requirements

The minimum hardware requirement for running Micro C/OS-II on the RICA architecture is

shown in Figure 8.2. This hardware system is different from the standard RICA architecture

shown in Figure 3.1. The data memory address space contains an interrupt vector table

starting from address FFFFFF00, with a size of 80h. Upon the address of FFFFFF80, locates

memory mapped registers for peripherals. This external register bank includes Timer0

control/status register, the interrupt control register, the interrupt status register and the

previous program counter. The RTOS system time is provided by the system timer Timer0,

which delivers an interrupt periodically to the RICA core as a tick. The tick period can be

Figure 8.1 The Micro C/OS-II based system

Multitasking WiMAX on an RTOS

 131

programmed by writing a value in the Timer0 control/status register. The interrupt controller

is programmable through setting the interrupt control register, while its status can be read

from the interrupt status register. The previous program counter is used in the interrupt

handler for restoring the program counter of the interrupted task during task switching.

8.3.2 Software requirements

From the operating system point of view, several machine dependent files are required to

describe the profile of the underlying hardware architecture. Described in Table 8.4, these

Figure 8.2 Hardware requirements for porting Micro C/OS-II to RICA

Table 8.4 Micro C/OS-II machine dependent files for RICA

Machine dependent files Description

OS_CFG.H System configuration

OS_CPU.H Define the data types related to the processor

OS_CPU_C.C

Main functions:
OSStartHighRdy(): enable the execution of the highest priority task
OSCtxSw(): perform a context switch for the task pre-emption
OSIntCtxSw(): perform a context switch for interrupts
OSTickISR(): Timer0 tick interrupt service routine
OSTaskStkInit(): initialise the stack frame of a task and other functions
for functionality extension

Multitasking WiMAX on an RTOS

 132

files have been written according to the format defined by Micro C/OS-II. Some

architecture-specific functions, such as initialisation, interrupt handling and task switching,

are defined in these machine dependent files. Several Micro C/OS-II based programs have

been written to test the basic RTOS functionalities like task management and scheduling. As

for ARM7TDMI [159], the machine dependent files can be downloaded from the Micro

C/OS-II official website.

8.4 The multitasking implementation of WiMAX on Micro

C/OS-II

For demonstrating multitasking with Micro C/OS-II, a BPSK based WiMAX physical layer

program has been modified to use APIs provided by this RTOS. For self-test’ sake, the

multitasking WiMAX program includes the transmitter, the receiver and an additional error

checking function, as shown in Figure 8.3. The transmitter output data are fed as the input to

the receiver, and the error checking function makes sure that the received data matches the

sent data. Under the RTOS environment, the WiMAX program is partitioned into six Micro

C/OS-II tasks: channel coding, OFDM downlink, OFDM uplink, demodulation, channel

decoding and error checking, as shown in Figure 8.3. This partition is slightly different to

that seen in Chapters 6 and 7, since the task balance is not the concern for multitasking on a

single processor.

The multitasking scheme provided by this RTOS makes the tasks operate in a pipelined

Figure 8.3 Multitasking WiMAX function blocks

Multitasking WiMAX on an RTOS

 133

fashion. It gives the tasks more independence from each other. These tasks have different

priorities from high to low according to the above task order, since Micro C/OS-II’s

pre-emptive kernel does not support multiple tasks with a same priority [147]. In a

pre-emptive multitasking OS, when a task with a higher priority is ready to run, the

scheduler will interrupt the current running task and enable the pre-emptive task to perform.

For achieving this, a context switch carries out to store the state of the interrupted task (e.g.

the values of registers) into this task’s stack and restore the state of the pre-emptive task

from its stack. In Micro C/OS-II, a context switch may happen when an interrupt arrives as

well. In this situation, the corresponding Interrupt Service Routine (ISR) saves the

interrupted task’s state. After the ISR finishes, a context switch function is called to restore

the state of the ready Highest Priority Task (HPT) or the state of the interrupted task [147].

To protect the shared data between tasks and make tasks more independent from each other,

the predefined RTOS semaphores are used as the interprocess synchronisation approach.

Usually, the execution of the WiMAX program on Micro C/OS-II starts with the OS

initialisation, followed by the creation of tasks and semaphores. Then the OS chooses the

task with the highest priority to run. Tasks communicate with each other via semaphores.

The program flow for the multitasking WiMAX on Micro C/OS-II is illustrated in Figure 8.4.

Figure 8.4 Program flow chart of WiMAX running on Micro C/OS-II

Multitasking WiMAX on an RTOS

 134

As shown in Figure 8.4, an arrow starting from a semaphore and ending at a task represents

the task requesting the semaphore, while an arrow starting from a task and ending at a

semaphore represents the task posting the semaphore. For each block of the shared data,

there are two binary semaphores. One controls write access, while the other controls read

access. Initialised as either 1 or 0, a binary OS semaphore ensures that only one task can

access the shared resource at any one time [147]. The writing semaphores are initialised to 1,

and the reading semaphores are initialised to 0. When the current task intends to access the

shared data, either for writing or reading, it must first check the availability of the

corresponding semaphore. If the value of that semaphore is zero, the current task will

suspend, and the OS will place it back into the ready state until the semaphore becomes

available. Each time when the current task suspends, the OS chooses to run the HPT from

the ready list. Basically, for each OFDM symbol processing, a task can read the data shared

with a previous task only after the previous task posts the reading semaphore.

Figure 8.5 Detailed program flow diagram for the execution of channel coding and OFDM

downlink tasks

Multitasking WiMAX on an RTOS

 135

Figure 8.5 illustrates the detailed program flow diagram for the execution of the channel

coding task and the OFDM downlink task, giving an example of how the tasks run and

switch. As shown in Figure 8.5, after OS initialisation and resource creation, the OS chooses

the channel coding task to run for processing the first symbol, since it has the highest

priority. Since the writing semaphore for the shared data between the channel coding task

and the OFDM downlink task is initialised to 1, the channel coding task can write the shared

data, and post the reading semaphore right after it finishes writing. During the semaphore

post, the HPT waiting for this semaphore is made ready to run. The HPT is the OFDM

downlink task in this case. Then the scheduler is called to check whether the ready HPT has

a higher priority than the current running task. If so, a task based context switch happens and

the current task will be pre-empted by the HPT. Otherwise, the semaphore posting function

returns to the current running task. Obviously, at this time, the posting function returns to the

channel coding task.

Next the channel coding task starts to process the second symbol after it finishes the

computation of the first symbol. When the writing semaphore is reached for the second time,

the channel coding task recognises that this semaphore is not available, since the OFDM

DOWNLINK task has not start yet and read the shared data written there for the first symbol.

Therefore, the channel coding task suspends, and will be returned to the ready state until the

writing semaphore is released. After that, the OS scheduler chooses to run the OFDM

downlink task, which is the highest priority ready task at that instant. Then the OFDM

downlink task starts to run and requests the reading semaphore for the shared data between it

and the channel coding task, which was posted during the execution of the channel coding

task. After reading the shared data, the OFDM downlink task posts the writing semaphore,

and the OS makes the channel coding task ready. Having higher priority, the channel coding

task pre-empts the OFDM downlink task and continues to process the second symbol.

After processing the second symbol, the channel coding task again suspends due to the

writing semaphore being unavailable. Then the scheduler makes the OFDM downlink task

Multitasking WiMAX on an RTOS

 136

continue to finish its job for the first symbol and post the reading semaphore which makes

the OFDM uplink task ready. Again the scheduler keeps the OFDM downlink task

continuing to run. The OFDM downlink task is blocked at its processing for the second

symbol as the channel coding task was before. At this time, the scheduler chooses the

OFDM uplink task to run for the first symbol. Similar logic applies to the other tasks in the

pipeline mode. Once all six tasks finish, the scheduler activates an idle task, which is a

system task with the lowest priority.

8.5 Results

Firstly, to demonstrate the overheads introduced by porting Micro C/OS-II to the standard

RICA, both the RICA implementations of a WiMAX program with and without this RTOS

support have been developed. The detailed results are shown in Table 8.5, where WiMAX

and RTOS represent the execution of WiMAX on a standard RICA with no OS support and

with Micro C/OS II support, respectively. The RRC period of RICA was set to 2ns and the

data memory access delay was set to 4ns. The comparison is based on the execution time per

OFDM symbol, data memory and program memory requirements. The italic values

represent the overheads introduced by the OS. Clearly, the overhead for the execution time

is very small. The overhead for data memory is caused by the data structures for the OS

resources and the stack for the tasks. Obviously, it is unavoidable that the program size

significantly rises with the OS involved. As 1K configurable bits for each step, the increase

is acceptable. Because both WiMAX and Micro C/OS II are not big programs, as some other

programs (e.g. H.264) may cost thousands of steps executed on RICA.

Table 8.5 Results of WiMAX with/without RTOS support

Scheme Execution time per symbol (μs) Data memory (byte) Program memory (step)

WiMAX 1,748 63,194 204

RTOS
1,779
1.8%

90,051
42.5%

396
94.1%

Multitasking WiMAX on an RTOS

 137

For comparison’s sake, the multitasking based WiMAX application has also been ported to

ARM7TDMI which is popularly used for RTOS multitasking in embedded systems.

ARM7TDMI is a 32-bit RISC embedded processor with a three-stage instruction pipeline

[159]. For the ARM based implementation, this program was developed using the ARM

Developer Suite [160] and was simulated on the Armulator (an instruction set simulator for

ARM processors). The RRC period of the RICA processor was set as 2ns, while the

ARM7TDMI run at a clock frequency of 500MHz. The comparison results are shown in

Table 8.6, including the execution time on both simulators, as well as data memory and

program memory requirements. In order to study the effect of memory latency on the

execution time, different memory access delays were set. These delays are given as the

values in the parentheses of the second column. In addition, with proper setting up, both of

the simulations can quit when the idle task is reached.

As shown in Table 8.6, in terms of the execution time, the savings of the RICA architecture

compared with ARM7TDMI are 53.6%, 70% and 78.8% for the memory latencies of 2ns,

4ns and 8ns, respectively. This is because the RICA architecture has more hardware

resources available for use at any one time. With proper scheduling, it allows for the

execution of multiple independent and dependent instructions concurrently in a single

configuration context. Also, RICA performs much fewer memory accesses than

ARM7TDMI. This is again a result of the higher availability of computation resources. Once

an instruction is executed, instead of storing the result back to registers or to memory like a

Table 8.6 Comparison of multitasking WiMAX on RICA and ARM7TDMI

Architecture Execution time per
symbol (μs)

Data memory
(byte)

Program
memory (bit)

Area excluding
memory (mm2)

RICA
1,451 (2ns)
1,779 (4ns)
2,184 (8ns)

90,051 396 x 1 K 1.01

ARM7TDMI
3,127 (2ns)
5,945 (4ns)
10,306 (8ns)

86,338 69,280 0.59

Multitasking WiMAX on an RTOS

 138

normal processor does, the value can be directly fed into another instruction cell that

performs a dependent instruction.

Basically, at the clock frequency of 500MHz, ARM7TDMI can complete a memory access

in one clock cycle with 2ns memory latency, while having to insert one or three wait states

with 4ns or 8ns memory latency, respectively. However, the specific features of RICA allow

it to execute the memory access instructions concurrently with other instructions. No wait

states need to be inserted to wait for the response from the memory, so long as there are

sufficient other instructions that can be executed in the mean time. Therefore, the execution

time on RICA depends much less on the memory latency, compared with ARM7TDMI

which demonstrates an increase in execution time nearly proportional to any increase in

memory latency. As shown in Table 8.6, the instruction cell array of a standard RICA has a

nearly double area cost as an ARM7TDMI. It is mainly caused by switch boxes which are

used as the interconnection and occupy about 50% area of the array.

The RICA architecture has a slightly larger data memory and about 5.7 times program

memory requirement due to 1K bits being required for each step configuration. However,

with the addition of suitable code compression techniques especially designed for the RICA

architecture, this overhead can be dramatically reduced. Such techniques include the

path-encoding technique proposed in [161] which can archive around 0.2 compression ratio

and a dictionary-based lossless technique with a compression ratio in the range of 0.32 to

0.44 [162].

8.6 Summary

This chapter has covered the design of a multitasking WiMAX on the RICA architecture

with an RTOS support. Through observing the overheads introduced by Micro C/OS-II, it

has been demonstrated that the overhands were acceptable to enable an RTOS supported

multitasking of a practical application, such as the WiMAX physical layer, on a single RICA

Multitasking WiMAX on an RTOS

 139

processor. The comparison results showed that the standard RICA processor had much

better performance than ARM7TDMI, especially when used with higher latency memory

where up to a 78.8% saving in the execution time was achieved. Meanwhile this work laid a

foundation for further exploration of multithreading on the proposed multi-core architecture.

Multitasking WiMAX on an RTOS

 140

141

9.1 Introduction

This chapter concludes this thesis. In Section 9.2, the contents of individual chapters are

reviewed. Section 9.3 lists some specific conclusions that can be drawn from the research in

this thesis. Finally in Section 9.4, some possible directions for future work are addressed.

9.2 Review of thesis contents

Chapter 2 provided the background knowledge about broadband access technologies and

WiMAX. Chapter 3 introduced multi-core processors and reconfigurable computing,

described a newly emerging coarse-grained DR processor – RICA, and gave a review of the

existing literature which is relevant to this thesis.

In Chapter 4, a novel master-slave based multi-core architecture was proposed, using RICA

as the basic processing core. This architecture can support a wide range of memory

architectural options, including shared/local data memory, shared register file and stream

Chapter 9
 Conclusions

Conclusions

 142

buffer. Meanwhile a multi-bank register file architecture was presented for alleviating the

high competition for accessing the shared memory. A custom register file interface cell was

designed to access the register file. Moreover this multi-core architecture contains many

other components such as arbiters for memory blocks, interrupt controllers for processing

cores, crossbar switches and a router. In addition, this architecture provides two

synchronisation methods (i.e. spinlock and semaphore) for inter-processor communications

by supporting a pair of atomic options LL/SC. In the end, Chapter 4 introduced a custom cell

generation environment for integrating custom instruction cells into the RICA architecture.

In Chapter 5, a SystemC TLM based trace-driven simulator, called MRPSIM was presented

to model this proposed multi-core architecture. This simulator provides a variety of

architectural and performance analysis options, and can accurately simulate applications on

multi-core architectures at a fast simulation speed. In addition, Chapter 5 introduced a

preprocessing tool, Mpsockit, which can efficiently compress trace files and modify

MRPSIM input files according to the requirement from different mapping methods. Several

applications were chosen as test benches to estimate this simulator’s performance. The

results demonstrated that MRPSIM simulator could provide simulation speeds up to 300

KCPS, 300 KIPS and 25 KSPS for certain applications, respectively.

Chapter 6 focused on homogeneous multi-core solutions for WiMAX. A profiling-driven

mapping methodology was proposed. This methodology incorporates task partitioning, task

transformation and memory architecture aware data mapping. Three task partitioning

methods, including task merging, task replication and loop level partitioning, were addressed

and used for a BPSK based fixed WiMAX application. Furthermore, Chapter 6 introduced

how to develop a C based multi-core project on the proposed multi-core architecture as well

as how to synchronise tasks. At the end of Chapter 6, various homogeneous multi-core

solutions, which combine different task partitioning methods and memory architectures,

were developed for WiMAX. The impact of task partitioning methods and memory

architectures on the system performance was analysed. The simulation results demonstrated

Conclusions

 143

up to 7.3 and 12 speedups or 3,241 Kbps and 659 Kbps throughputs could be achieved by

employing eight and ten RICA cores for the WiMAX transmitter and receiver respectively.

In Chapter 7, a design space exploration methodology was proposed to efficiently search

design spaces to find good solutions under certain system constraints. This algorithm is

suitable for both single-core and multi-core designs. Instead of speedup and parallel

efficiency, the ratio of throughput to area was used to estimate the efficiency of a multi-core

design. In addition, Chapter 7 introduced various timing optimisation techniques to increase

the throughput, and investigated area optimisation techniques to improve area efficiency

without breaking the workload balance or worsening the overall throughout. Diverse designs

were developed by means of the design space exploration methodology for both WiMAX

transmitter and receiver. Totally eleven types of custom RICA cores were designed in these

designs. The results demonstrated that a heterogeneous multi-core architecture involving

totally nine RICA cores was the best solution. This solution can provide throughputs of up to

8.7 Mbps and 2.4 Mbps for WiMAX transmitter and receiver, respectively. In addition,

Chapter 7 compared this best design with other multi-core based WiMAX designs. The

comparison showed that the best design in Chapter 7 could deliver a very good throughput at

relatively low area cost and performed even better than some commercial solution.

In Chapter 8, an RTOS Micro C/OS-II was ported to the RICA architecture. The

multitasking implementation of WiMAX with this RTOS support was developed. The

results demonstrated that the overheads introduced by Micro C/OS-II were acceptable.

Furthermore, Chapter 8 compared the performance of the multitasking based WiMAX on

both a standard RICA processor and an ARM7TDMI processor. The comparison results

showed that a standard RICA processor could have up to a 78.8% saving in the execution

time compared to ARM7TDMI.

Conclusions

 144

9.3 Specific findings

This section presents a variety of conclusions, which stem from the research in this thesis.

Most academic and industry efforts on multi-core architectures have focused on using

traditional processing cores like GPP core and DSP core to build multi-core architectures.

This thesis investigated multi-core architectures building upon coarse-grained dynamically

reconfigurable processing cores - an area that as yet has been little explored. The results in

Chapters 6 and 7 showed that based on the proposed multi-core architecture, developed

multi-core WiMAX solutions can deliver high performance beyond requirements of

WiMAX standards. It proved that it was very promising to utilise DR cores in future high

performance multi-core systems designed for applications like WiMAX.

In Chapter 5, a trace-driven simulator MRPSIM was proposed. By means of splitting the

execution time into static and dynamic time as well as decoupling communication from

computation, MRPSIM owns the benefits of both trace-driven and execution-driven

simulators, in the mean time does not suffer the drawbacks of the two types of simulators.

The advantages of MRPSIM include trace reuse, fast simulation and execution-driven like

cycle accuracy. In addition, based on System TLM, MRPSIM simulator provides a platform

for hardware/software co-design and enables fast application verification and architecture

analysis.

In Chapter 6, a profiling-driven mapping methodology has been proposed to partition the

target application into multiple tasks, schedule and map tasks on the proposed multi-core

architecture. Three partitioning methods were investigated for WiMAX applications and

suitable for different hardware environments. Task merging can be applied for a multi-core

system with limited computing and storage resources, while task replication can bring into

full play if the system has enough resources. For dedicated multi-core systems and

applications, loop level partitioning can be used to explore the instruction level parallelism

Conclusions

 145

in order to improve the utilisation rates of processing cores. The results demonstrated that

even based on unoptimised standard RICA cores, the best homogeneous multi-core solution

presented in this chapter can deliver a high throughput satisfying the protocol requirement.

Chapter 7 presented a design space exploration methodology which can be used to find good

solutions for both single-core and multi-core designs. This algorithm targets the optimisation

of not only basic performance metrics like throughput and area, but also the ratio of

throughput to area, through timing and area optimisation as well as the workload balance

checking. By means of this exploration methodology, a variety of single-core and multi-core

designs have been developed. The results proved that heterogeneous multi-core solutions

with dynamically reconfigurable cores customised for dedicated tasks performed much

better than homogeneous multi-core solutions, even though heterogeneous systems take

more workloads. Meanwhile the comparison with other multi-core solutions demonstrated

that the best homogeneous and heterogeneous multi-core solutions can provide a very good

performance with a few simple DR processors, even based on a process technology one or

two generations behind other solutions. It is mainly because of the salient characteristics of

the RICA architecture and the low idle rate achieved by proper task partitioning and

mapping.

Chapter 8 investigated an RTOS porting and multitasking WiMAX on a single RICA

processor. It has been demonstrated that the overheads introduced by Micro C/OS-II were

acceptable for running an RTOS on an RICA processor. Meanwhile, even with a limited

instruction cells, a standard RICA processor delivered a much better performance for an

RTOS based multitasking than an ARM7TDMI processor broadly used in embedded

systems. Through this work in Chapter 8, valuable experience and knowledge were gained

for further investigation of multithreading and RTOS support on the proposed multi-core

architecture.

Conclusions

 146

9.4 Directions for future work

The future work from this thesis can be split into three aspects: architecture, software tool

flow and application.

From the architecture point of view, currently the proposed multi-core architecture has a

simple interconnection and is difficult to scale to many-core architectures. The future work

would improve the architecture by using more advanced interconnection techniques such as

network-on-chip. In addition, this thesis chooses the RICA processor as the basic processing

core. However, the proposed multi-core architecture is general enough to integrate other DR

processing cores or even DSP cores. Therefore a heterogeneous multi-core architecture

incorporating multiple processor families would be a research direction. In such

architectures, processing cores from different families could make a close cooperation and

meanwhile perform individual applications which they are particularly designed for. Another

future work would be the hardware implementation of the multi-core architecture. In this

thesis, the proposed multi-core architecture is modelled in TLM and performance results are

gained from the high level simulation. Although this approach is suitable for fast architecture

exploration and software verification, it is highly desired to implement this architecture in

RTL to further prove the efficiency of the architecture and demonstrate its advantages. It

could be done by either the re-design of the architecture in RTL or EDA tools which can

transform designs from TLM to RTL. After that, an RTL simulation or even FPGA prototype

could be carried out to demonstrate the hardware feasibility of the multi-core architecture.

The future work on the software tool flow would involve the improvement of MRPSIM

simulator, more automated tools and dynamic scheduling supported by RTOSes. MRPSIM

simulator could provide more architectural options (e.g. interconnection type and core type

options) to keep up with the future development of the proposed multi-core architecture.

Meanwhile the simulator could generate more detailed and user friendly performance

analysis such as dynamic graphic display of memory accesses and interconnection traffic

Conclusions

 147

during simulation.

In Chapter 6, a mapping methodology has been proposed to partition, schedule and map

tasks on multi-core architectures. In [163], we proposed an integer linear programming

based approach to automatically map and schedule tasks on homogeneous multi-core

architectures with RICA cores. A series of DSP applications have been implemented to

demonstrate the efficacy of the technique. This approach could be improved to support

RICA based heterogeneous multi-core architectures as well. A design space exploration

methodology has been presented in Chapter 7. The operations (e.g. timing and area

optimisation) in this algorithm could involve a lot of manual work. An automated tool would

be needed to implement this algorithm. This design space exploration tool could be

developed by using integer linear programming or genetic algorithm which can keep

searching the design space to gradually approach the optimal solution.

Complementary to the static task scheduling performed by mapping tools, dynamical

scheduling and RTOS support could enable the multi-core architecture to execute more

general applications, besides deterministic applications like WiMAX. In Chapter 8, an RTOS

Micro C/OS-II has been ported to RICA processor. Hence the next step on this direction

would be porting this RTOS or another RTOS on the proposed multi-core architecture.

Furthermore, how to support multithreading on the multi-core architecture could be

investigated as well.

From the application side, this thesis mainly focuses on fixed WiMAX physical layer.

However, as demonstrated in Chapter 5 and [163], many other applications have been

executed on the proposed multi-core architecture as well. More applications are planned to

be mapped to this multi-core architecture, including, but not limited to, WLAN physical

layer, H.264 video compression, freeman demosaicing algorithm and the receiver in global

positioning system. As for fixed WiMAX itself, there would be a lot of work for further

optimisation and the implementation of more fixed WiMAX profiles such as QPSK and

Conclusions

 148

64QAM based. In addition, as the mobile version of WiMAX, IEEE 802.16-2005 standard

[1] is highly valued, especially after it became one of the four 3G standards in Oct. 2007.

The upgrade from fixed WiMAX to mobile WiMAX would be investigated. For achieving it,

more components would be required to be designed, such as Multi-Input Multi-Output

(MIMO) and SOFDMA.

149

Reference

[1] "Air Interface for Fixed and Mobile Broadband Wireless Access Systems," IEEE Std.

802.16e-2005, 2005.
[2] "Air Interface for Fixed Broadband Wireless Access Systems," IEEE Std.

802.16-2004 (Revision of IEEE Std. 802.16-2001), 2004.
[3] G.S.V. Radha K. Rao and G. Radhamani, WiMAX: A Wireless Technology Revolution,

1 ed, Auerbach Publications, 2007.
[4] Wm. A. Wulf and Sally. A. McKee, "Hitting the memory wall: implications of the

obvious," SIGARCH Comput. Archit. News, vol. 23, pp. 20-24, 1995.
[5] David W. Wall, "Limits of instruction-level parallelism," the Fourth International

Conference on Architectural Support for Programming Languages and Operating
systems, pp. 176-188, 1991.

[6] Peter Claydon, "Multicore future is right now," EE Times-Asia, 2007.
[7] Sami Khawam, Ioannis Nousias, Mark Milward, Ying Yi, Mark Muir, and Tughrul

Arslan, "The Reconfigurable Instruction Cell Array," IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 16, pp. 75-85, 2008.

[8] Fiona Vanier, "World Broadband Statistics: Q2 2008," Point Topic, September 2008.
[9] "Asymmetric Digital Subscriber Line (ADSL) transceivers - Extended bandwidth

ADSL2 (ADSL2+)," ITU-T Recommendation G.992.5 Annex M Std., 2005.
[10] "DOCSIS 2.0 Specifications," Cable modem standard, CableLabs, 2002.
[11] "Broadband SoHo FTTx Tutorial," BroadbandSoHo, 2007.
[12] "Broadband over Power Line Networks: Medium Access Control and Physical

Layer Specifications," IEEE P1901 Draft Standard.
[13] "Technical Specifications and Technical Reports for a UTRAN-based 3GPP system

Release 5 and Release 6," 3rd Generation Partnership Project (3GPP) Technical
Specification, 2007.

[14] "CDMA2000 High Rate Packet Data Air Interface Specification," 3GPP2 Std.
TIA-856-B, 2006, http://www.3gpp2.org/.

[15] "Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications," IEEE Std. 802.11-2007 (Revision of IEEE Std. 802.11-1999), 2007.

[16] "EDGE, HSPA and LTE Broadband Innovation," Rysavy Research and 3G Americas,
September 2008.

[17] "Satellite Internet access," Wikipedia,
http://en.wikipedia.org/wiki/Satellite_Internet_access, 2008.

[18] Jeffrey G. Andrews, Arunabha Ghosh, and Rias Muhamed, Fundamentals of WiMAX:
Understanding Broadband Wireless Networking, Prentice Hall, 2007.

[19] Ian A. Glover and Peter M. Grant, Digital communications 2ed, Prentice Hall, 2004.
[20] I. Reed and G. Solomon, "Polynomial codes over certain Finite Fields," Journal of

the Society for Industrial and Applied Mathematics, vol. 8, pp. 300-304, June 1960.
[21] John Proakis, Digital Communications, 4th ed, McGraw-Hill, 2001.
[22] Matthew Gast, 802.11 Wireless Networks The Definitive Guide, O'Reilly, April 2005.

Reference

 150

[23] L. Rabiner and B. Gold, Theory and application of Digital Signal Processing,
Prentice Hall, 1975.

[24] B. Guoan and E. Jones, "A pipelined FFT processor for word sequential data," IEEE
Transactions on Acoustics, Speech and Signal Processing, vol. 37, pp. 1982–1985,
December 1989.

[25] Martin Vetterli and Pierre Duhamel, "Split-radix algorithms for length-p^m DFT's,"
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37, pp. 57–64,
January 1989.

[26] "Implementing WiMAX PHY Processing Using the Freescale MSC8126 Multi-Core
DSP," Freescale Semiconductor, 2004.

[27] Xin Zhao, Ahmet T. Erdogan, and Tughrul Arslan, "OFDM Symbol Timing
Synchronization System on a Reconfigurable Instruction Cell Array," Exploiting
Loop-Level Parallelism on Multi-Core Architectures for the WiMAX Physical Layer,
pp. 319-322, 2008.

[28] Jan-Jaap van de Beek, Magnus Sandell, and Per Ola Borjesson, "ML Estimation of
Time and Frequency Offset in OFDM Systems," IEEE Transactions on signal
processing, vol. 45, pp. 1800-1805, 1997.

[29] Andrew J. Viterbi, "Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm," IEEE Transactions on Information Theory, vol. 13,
pp. 260-269, 1967.

[30] Ahmed O. El-Rayis, Xin Zhao, Tughrul Arslan, and Ahmet T. Erdogan,
"Dynamically programmable Reed Solomon processor with embedded Galois Field
multiplier," 2008 International Conference on Field-Programmable Technology
(FPT '08), pp. 269-272, 2008.

[31] J. Heikkinen, J. Sertamo, T. Rautiainen, and J. Takala, "Design of transport triggered
architecture processor for discrete cosine transform," 15th Annual IEEE
International ASIC/SOC Conference, pp. 87-91, 2002.

[32] H. Zhang, V. Prabhu, V. George, M. Wan, M. Benes, A. Abnous, and J. M. Rabaey,
"A 1-V heterogeneous reconfigurable DSP IC for wireless baseband digital signal
processing," IEEE Journal of Solid-State Circuits, vol. 35, pp. 1697-1704, 2000.

[33] T. Sato, H. Watanabe, and K. Shiba, "Implementation of dynamically reconfigurable
processor DAPDNA-2," 2005 IEEE VLSI-TSA International Symposium on VLSI
Design, Automation and Test (VLSI-TSA-DAT), pp. 323-324, 2005.

[34] Gregory V. Wilson, "The History of the Development of Parallel Computing," 1994.
[35] "Quad-Core Intel® Xeon® Processor 5400 Series 45nm Reference Guide," Intel

Corporation, 2008.
[36] "NVIDIA GEFORCE GTX 200 GPU Datasheet," NVIDIA.
[37] Kazuyuki Hirata and John Goodacre, "ARM MPCore; The streamlined and scalable

ARM11 processor core," 12nd Asia and South Pacific Design Automation
Conference (ASP-DAC '07), pp. 747-748, 2007.

[38] M. Butts, A. M. Jones, and P. Wasson, "A Structural Object Programming Model,
Architecture, Chip and Tools for Reconfigurable Computing," 15th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines (FCCM), pp.

Reference

 151

55-64, 2007.
[39] Geoff Koch, "Discovering Multi-Core: Extending the Benefits of Moore's Law,"

White paper, Intel, 2005.
[40] A. P. Chandrakasan and R. W. Brodersen, Low power digital CMOS design, Kluwer,

1995.
[41] John L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative

Approach 3rd ed, Morgan Kaufmann, 2002.
[42] "Family 10h AMD Opteron™ Processor Product Data Sheet," Revision 3.02,

Advanced Micro Devices, June 2009.
[43] "IBM dual-core Power6," IBM, 2007.
[44] William Bryg and Jerome Alabado, "The UltraSPARC T1 Processor - High

Bandwidth For Throughput Computing," White paper, Sun Microsystems, Inc.,
December 2005.

[45] "IBM PowerPC 970MP RISC Microprocessor Datasheet," Version 1.2, IBM, July
2007.

[46] "Intel® Core™2 Quad-Core Processor QX6000 and Q6000 Series Datasheet," Intel
Corporation, Auguest 2007.

[47] "Family 10h AMD Phenom™ Processor Product Data Sheet," Revison 3.00,
Advanced Micro Devices, November 2007.

[48] D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee, C. Johns, J. Kahle, A.
Kameyama, J. Keaty, Y. Masubuchi, M. Riley, D. Shippy, D. Stasiak, M. Suzuoki, M.
Wang, J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki, and K. Yazawa, "The design
and implementation of a first-generation CELL processor," Digest of Technical
Papers, 2005 IEEE International Solid-State Circuits Conference (ISSCC '05) pp.
184-592 Vol. 1, 2005.

[49] Gajinder Panesar, Daniel Towner, Andrew Duller, Alan Gray, and Will Robbins,
"Deterministic parallel processing," International Journal of Parallel Programming
vol. 34, pp. 323-341, 2006.

[50] Andrew Duller, Gajinder Panesar, and Daniel Towner, "Parallel Processing — the
picoChip way!," Communicating Process Architectures 2003, pp. 125–138, 2003.

[51] B. Scott Michel, "GPGPU Computing and the Heterogeneous Multi-Core Future,"
HPCwire, December 01, 2006.

[52] Rick Merritt, "CPU designers debate multi-core future," EE times, June 2, 2008.
[53] Rakesh Kumar, M. Tullsen Dean, Ranganathan Parthasarathy, P. Jouppi Norman,

and I. Farkas Keith, "Single-ISA Heterogeneous Multi-Core Architectures for
Multithreaded Workload Performance," ACM SIGARCH Computer Architecture
News vol. 32, pp. 64, 2004.

[54] A. Beric, R. Sethuraman, C. A. Pinto, H. Peters, G. Veldman, P. van de Haar, and M.
Duranton, "Heterogeneous multiprocessor for high definition video," 2006
International Conference on Consumer Electronics (ICCE '06), pp. 401-402, 2006.

[55] Shee Seng Lin and S. Parameswaran, "Design Methodology for Pipelined
Heterogeneous Multiprocessor System," 44th ACM/IEEE Design Automation
Conference (DAC '07) pp. 811-816, 2007.

Reference

 152

[56] Hiroaki Shikano, Yuki Suzuki, Yasutaka Wada, Jun Shirako, Keiji Kimura, and
Hironori Kasahara, "Performance Evaluation of Heterogeneous Chip
Multi-Processor with MP3 Audio Encoder," IEEE Symposium on Low-Power and
High Speed Chips (COOL Chips IX), pp. 349-363, Apr. 2006.

[57] Xtensa Processor, Tensilica Inc. (htttp://www.tensilica.com).
[58] "Intel® Core™2 Duo Processor E8000 and E7000 Series Datasheet," Intel

Corporation, June 2009.
[59] "Intel® IXP2350 Network Processor Product Brief," Intel Corporation, 2005.
[60] MRC6011, Freescale, 2004,

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MRC6011&nod
eId=012795LCWs.

[61] D. Iancu, H. Ye, E. Surducan, M. Senthilvelan, J. Glossner, V. Surducan,
V. Kotlyar, A. Iancu, G. Nacer, and J. Takala, "Software Implementation of
WiMAX on the Sandbridge SandBlaster Platform," LECTURE NOTES IN
COMPUTER SCIENCE, vol. 4017, pp. 435-446 2006.

[62] Compton Katherine and Hauck Scott, "Reconfigurable computing: a survey of
systems and software," ACM Computing Surveys, vol. 34, pp. 171-210, 2002.

[63] Sami Khawam, "Domain-specific and reconfigurable instruction cells based
architectures for low-power SoC " Ph.D. thesis, University of Edinburgh, 2006.

[64] Paul M. Heysters, Gerard J.M. Smit, and Egbert Molenkamp, "Montium - Balancing
between Energy-Efficiency, Flexibility and Performance," International Conference
on Engineering of Reconfigurable Systems and Algorithms, pp. 235-241, 2003.

[65] Hartej Singh, Ming Hau Lee, Guangming Lu, F. J. Kurdahi, N. Bagherzadeh, and
E. M. Chaves Filho, "MorphoSys: an integrated reconfigurable system for
data-parallel and computation-intensive applications," IEEE Transactions on
Computers, vol. 49, pp. 465-481, 2000.

[66] Nikolaos S. Voros and Konstantinos Masselos, System Level Design of
Reconfigurable Systems-on-Chip, 1 ed, Springer, 2005.

[67] R. Tessier and J. Rose I. Kuon, "FPGA Architecture: Survey and Challenges,"
Foundations and Trends in Electronic Design Automation, vol. 2, pp. 135-253,
2008.

[68] "Virtex-5 User Guide 4.5," Xilinx, San Jose, 2009.
[69] "Stratix-III Device Handbook," Altera, San Jose, 2008.
[70] Hartenstein Reiner, "Coarse grain reconfigurable architecture (embedded tutorial),"

6th Asia and South Pacific Design Automation Conference (ASP-DAC '01), 2001.
[71] "Adapt2400 ACM Architecture Overview," QuickSilver Technologies, 2004.
[72] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins, "ADRES: An

Architecture with Tightly Coupled VLIW Processor and Coarse-Grained
Reconfigurable Matrix," Field-Programmable Logic and Applications, pp. 61-70,
2003.

[73] "HiveFlex CSP2000 Series Programmable OFDM Communication Signal
Processor," databrief, Silicon Hive, Eindhoven, 2007.

[74] E. Mirsky and A. DeHon, "MATRIX: a reconfigurable computing architecture with

Reference

 153

configurable instruction distribution and deployable resources," IEEE Symposium
on FPGAs for Custom Computing Machines, pp. 157-166, 1996.

[75] "XPP64-A1 Reconfigurable Processor," Preliminary Datasheet, PACT XPP
Technologies, Munich, 2003.

[76] A. K. W. Yeung and J. M. Rabaey, "A reconfigurable data-driven multiprocessor
architecture for rapid prototyping of high throughput DSP algorithms," the
Twenty-Sixth Hawaii International Conference on System Sciences, pp. 169-178
vol.1, 1993.

[77] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and R. Reed Taylor,
"PipeRench: A virtualized programmable datapath in 0.18 micron technology," IEEE
2002 Custom Integrated Circuits Conference, pp. 63-66, 2002.

[78] Ebeling Carl, C. Cronquist Darren, and Franklin Paul, "RaPiD - Reconfigurable
Pipelined Datapath," the 6th International Workshop on Field-Programmable Logic,
Smart Applications, New Paradigms and Compilers, 1996.

[79] J. R. Hauser and J. Wawrzynek, "Garp: a MIPS processor with a reconfigurable
coprocessor," the 5th IEEE Symposium on FPGA-Based Custom Computing
Machines, pp. 12-21, 1997.

[80] Marshall Alan, Stansfield Tony, Kostarnov Igor, Vuillemin Jean, and Hutchings Brad,
"A reconfigurable arithmetic array for multimedia applications," the 1999
ACM/SIGDA Seventh International Symposium on Field Programmable Gate
Arrays, pp. 135 - 143 1999.

[81] E. Waingold, M. Taylor, V. Sarkar, V. Lee, W. Lee, J. Kim, M. Frank, P. Finch, S.
Devabhaktumi, R. Barua, J. Babb, S. Amarsinghe, and A. Agarwal, "Baring it all to
Software: The Raw Machine," IEEE Computer, vol. 30, pp. 86-93, 1997.

[82] Miyamori Takashi and Olukotun Kunle, "REMARC: reconfigurable multimedia
array coprocessor," the 1998 ACM/SIGDA Sixth International Symposium on Field
Programmable Gate Arrays, 1998.

[83] "Virtex-6 Family Overview," Xilinx, San Jose, 2009.
[84] "Stratix II Device Handbook," Stratix, San Jose, 2007.
[85] Ying Yi, Ioannis Nousias, Mark Milward, Sami Khawam, Tughrul Arslan, and Iain

Lindsay, "System-level scheduling on instruction cell based reconfigurable
systems," The Conference on Design, Automation and Test in Europe (DATE '06),
pp. 381 - 386, 2006.

[86] "Deliver WiMAX Faster - Enabling fast design-in, small form factors, and
energy-efficient performance with an integrated WiMAX chipset solution," White
paper, Intel, 2008.

[87] "WiMAX 3.5 GHz Mini-PCI Reference Design - EvolutiveTM WiMAX NP7256
Series," Wavesat, Montreal, 2007.

[88] "Intel® PRO/Wireless 5116 Broadband Interface," Product brief, Intel, 2005.
[89] Deepak Boppana, "FPGA-Based WiMAX System Design," Altera Corporation,

2005.
[90] H. Lai and S. Boumaiza, "WiMAX baseband processor implementation and

validation on a FPGA/DSP platform," 2008 Canadian Conference on Electrical and

Reference

 154

Computer Engineering, pp. 001449-001452, 2008.
[91] "Implementation of an OFDM Wireless Transceiver using IP Cores on an FPGA,"

white paper, Lattice Semiconductor Corporation, 2005.
[92] A. Sghaier, S. Areibi, and R. Dony, "IEEE802.16-2004 OFDM functions

implementation on FPGAS with design exploration," International Conference on
Field Programmable Logic and Applications, pp. 519-522, 2008.

[93] I. Kuon and J. Rose, "Measuring the gap between FPGAs and ASICs," IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 26,
pp. 203–215, 2007.

[94] "PC7218 Baseband Reference Design Product Brief v0.3," picoChip, 2006.
[95] "Software Reference Design PC8520 802.16-2004 OFDM256, Basestation PHY,"

picoChip, 2006.
[96] "MSC8126 data sheet revision 14," Freescale, 2008.
[97] Qing Wang, Da Fan, Jianwen Chen, Yonghua Lin, Zhenbo Zhu, and Xiaoyan Dang,

"WiMAX BS Transceiver Based on Cell Broadband Engine," 4th IEEE International
Conference on Circuits and Systems for Communications (ICCSC 2008) pp.
182-186, 2008.

[98] "Intel NetStructure WiMAX Baseband Card Product Brief," Intel Corporation, 2006.
[99] John Glossner, Mayan Moudgill, Daniel Iancu, Gary Nacer, Sanjay Jintukar, Stuart

Stanley, Michael Samori, Tanuj Raja, and Michael Schulte, "The Sandbridge
Sandblaster Convergence Platform," White paper, Sandbridge Technologies, White
Plains, 2005.

[100] Geoffrey F. Burns, Marco Jacobs, Menno Lindwer, and Bertrand Vandewiele,
"Silicon Hive's Scalable and Modular Architecture Template for High-Performance
Multi-Core Systems," Silicon Hive.

[101] Irv Englander, The Architecture of Computer Hardware and Systems Software: An
Information Technology Approach 3rd ed, John Wiley and Sons, 2003.

[102] V. Zyuban and P. Kogge, "The energy complexity of register files," 1998
International Symposium on Low Power Electronics and Design, pp. 305-310, 1998.

[103] V. Zyuban and P. M. Kogge, "Inherently lower-power high-performance superscalar
architectures," IEEE Transactions on Computers, vol. 50, pp. 268-285, 2001.

[104] Jos Lorenzo Cruz, Antonio Gonzalez, Mateo Valero, and Nigel P. Topham,
"Multiple-banked register file architectures," 27th Annual International Symposium
on Computer Architecture (ISCA '00), pp. 316 - 325, 2000.

[105] I. Park, M. D. Powell, and T. N. Vijaykumar, "Reducing register ports for higher
speed and lower energy," 35th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-35), pp. 171-182, 2002.

[106] B.K. Khailany, T. Williams, J. Lin, E.P. Long, M. Rygh, D.W. Tovey, and W.J. Dally,
"A Programmable 512 GOPS Stream Processor for Signal, Image, and Video
Processing," IEEE Journal of Solid-State Circuits, vol. 43, pp. 202-213, Jan. 2008.

[107] Andrew S. Tanenbaum and Albert S. Woodhull, Operating systems : design and
implementation, 3rd ed, Pearson Prentice Hall, 2006.

[108] David E. Culler, Jaswinder Pal Singh, and Anoop Gupta, Parallel computer

Reference

 155

architecture: a hardware/software approach, Morgan Kaufmann, 1999.
[109] A. Rose, S. Swan, J. Pierce, and J. Fernandez, "Transaction level modeling in

SystemC," Open SystemC Initiative, 2005.
[110] Naraig Manjikian, "Multiprocessor enhancements of the SimpleScalar tool set,"

ACM SIGARCH Computer Architecture News vol. 29, pp. 8-15, 2001.
[111] C. J. Hughes, V. S. Pai, P. Ranganathan, and S. V. Adve, "Rsim: simulating

shared-memory multiprocessors with ILP processors," Computer, vol. 35, pp. 40-49,
2002.

[112] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty, Min
Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David A. Wood,
"Multifacet's general execution-driven multiprocessor simulator (GEMS) toolset,"
ACM SIGARCH Computer Architecture News vol. 33, pp. 92-99, 2005.

[113] John D. Davis, Cong Fu, and James Laudon, "The RASE (Rapid, Accurate
Simulation Environment) for chip multiprocessors," ACM SIGARCH Computer
Architecture News, vol. 33, pp. 14-23, 2005.

[114] P. M. Ortego and P. Sack, "SESC: SuperESCalar Simulator,"
http://iacoma.cs.uiuc.edu/~paulsack/sescdoc/, 2004.

[115] Luca Benini, Davide Bertozzi, Alessandro Bogliolo, Francesco Menichelli, and
Mauro Olivieri, "MPARM: Exploring the Multi-Processor SoC Design Space with
SystemC," Journal of VLSI Signal Processing Systems vol. 41, pp. 169-182, 2005.

[116] Doug Burger and Todd M. Austin, "The SimpleScalar tool set, version 2.0," ACM
SIGARCH Computer Architecture News vol. 25, pp. 13-25, 1997.

[117] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J.
Hogberg, F. Larsson, A. Moestedt, and B. Werner, "Simics: A full system
simulation platform," Computer, vol. 35, pp. 50-58, 2002.

[118] M. Dales, "SWARM," http://www.dcs.gla.ac.uk/~michael/phd/swarm.html.
[119] Frank Ghenassia, Transaction-level modeling with SystemC : TLM concepts and

applications for embedded systems, Springer, 2005.
[120] Jayaram Bhasker, A SystemC primer, 2nd ed, Star Galaxy Pub., 2004.
[121] Fei Sun, N. K. Jha, S. Ravi, and A. Raghunathan, "Synthesis of application-specific

heterogeneous multiprocessor architectures using extensible processors," 18th
International Conference on VLSI Design, pp. 551-556, 2005.

[122] Karkowski Ireneusz and Corporaal Henk, "Design space exploration algorithm for
heterogeneous multi-processor embedded system design," 35th IEEE/ACM Design
Automation Conference, pp. 82 - 87, 1998.

[123] E. Rockoff Todd, "An Analysis of Instruction-Cached SIMD Computer
Architecture," Technical Report: CS-93-218, Carnegie Mellon University.

[124] "Using MicroC/OS II RTOS with the Nios II Processor Tutorial," Altera, 2007.
[125] Chang Ning Sun, "Nucleus for Xilinx FPGAs - A New Platform for Embedded

System Design," Mentor Graphics, Wilsonville, 2004.
[126] Anthony J. Massa, Embedded Software Development with eCos, Prentice Hall, 2002.
[127] Michael Hohmuth and Hermann H¨artig, "Pragmatic nonblocking synchronization

for real-time systems," the 2001 USENIX Annual Technical Conference

Reference

 156

(USENIX'01), pp. 217-230, 2001.
[128] "RTEMS 4.9.1, Real-Time Executive for Multiprocessor Systems,"

http://www.rtems.com/, 2008.
[129] "NetBSD 4.0.1," http://www.netbsd.org/, 2008.
[130] Pawel Pisarczyk, "Experimental dependability evaluation of memory manager in the

real-time operating system," International journal of Computer Science and
Applications, vol. 4, pp. 33-38, 2007.

[131] "QNX Neutrino RTOS 6.4.0," QNX, Ottawa, 2008.
[132] "FreeRTOS v5.1.1," www.freertos.org/, 2008.
[133] "ThreadX 5.0," Express Logic, San Diego, 2006.
[134] "TRON 4.03.02 The Real-time Operating System Nucleus "

http://www.tron.org/index-e.html, 2008.
[135] David McCullough, "Getting started with uClinux," www.uclinux.org.
[136] "Vxworks 6.7," Wind River, Alameda, 2009.
[137] "Windows XP Embedded," Microsoft, Redmond, 2001.
[138] "MontaVista Linux," MontaVista Software, Santa Clara, 2008.
[139] "Nucleus OS " Mentor Graphics, Wilsonville, 2005.
[140] "Palm OS 5.4.9," Palm, Sunnyvale 2006.
[141] "Prex Technology Overview version 1.2," http://prex.sourceforge.net, 2008.
[142] "Symbian OS 9.5," Symbian, Southwark 2008.
[143] "Windows Mobile 6.5," Microsoft, Redmond, 2009.
[144] "Windows CE 6.0 R2," Microsoft, Redmond, 2007.
[145] "Integrity 5.0," Green Hills, Santa Barbara, 2005.
[146] "LynxOS 4.2," LynxOS, San Jose, 2006.
[147] Jean J. Labrosse, MicroC OS II: The Real Time Kernel 2nd ed, CMP Books, 2002.
[148] "RTLinux 2.6," Wind River, Alameda, 2007.
[149] "Agnix 0.0.4," http://agnix.sourceforge.net/, 2005.
[150] "ChorusOS 5.0," www.experimentalstuff.com, 1997.
[151] Dunkels Adam, Gronvall Bjorn, and Voigt Thiemo, "Contiki - A Lightweight and

Flexible Operating System for Tiny Networked Sensors," the 29th Annual IEEE
International Conference on Local Computer Networks, pp. 455 - 462, 2004.

[152] "ETLinux 1.1.3," http://www.etlinux.org/, 2006.
[153] "Freesco 0.4.0," www.freesco.org, 2008.
[154] "Inferno 4," Bell Labs, Murray Hill, 2007.
[155] "Nut/OS 4.0.3," http://www.ethernut.de, 2006.
[156] "pico]OS 1.0.1," http://picoos.sourceforge.net/, 2001.
[157] "SHaRK 1.5.4 Soft Hard Real-Time Kernel," http://shark.sssup.it/, 2007.
[158] "TinyOS 2.1," http://www.tinyos.net/, 2008.
[159] "ARM7TDMI Technical Reference Manual," ARM Limited, Cambridge, 2004.
[160] "ARM Developer Suite Developer Guide Version 1.2," ARM Limited, Cambridge,

2001.
[161] Tughrul Arslan, Ioannis Nousias, Sami Khawam, Mark Milward, M. Muir, and Y. Yi,

"Encoding and Decoding Methods," Pending Patent, PCT/GB2008/000367, 2008.

Reference

 157

[162] N. Aslam, M. J. Milward, A. T. Erdogan, and T. Arslan, "Code Compression and
Decompression for Coarse-Grain Reconfigurable Architectures," IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 16, pp. 1596-1608, 2008.

[163] Ying Yi, Wei Han, Xin Zhao, Ahmet T. Erdogan, and Tughrul Arslan, "An ILP
Formulation for Task Mapping and Scheduling on Multi-core Architectures," The
Conference on Design, Automation and Test in Europe (DATE '09), pp. 33-38, 2009.

