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Broadband Wireless Access technologies have significant market potential, especially the 

WiMAX protocol which can deliver data rates of tens of Mbps. Strong demand for high 

performance WiMAX solutions is forcing designers to seek help from multi-core processors 

that offer competitive advantages in terms of all performance metrics, such as speed, power 

and area. Through the provision of a degree of flexibility similar to that of a DSP and 

performance and power consumption advantages approaching that of an ASIC, 

coarse-grained dynamically reconfigurable processors are proving to be strong candidates 

for processing cores used in future high performance multi-core processor systems.  

This thesis investigates multi-core architectures with a newly emerging dynamically 

reconfigurable processor – RICA, targeting WiMAX physical layer applications. A novel 

master-slave multi-core architecture is proposed, using RICA processing cores. A SystemC 

based simulator, called MRPSIM, is devised to model this multi-core architecture. This 

simulator provides fast simulation speed and timing accuracy, offers flexible architectural 

options to configure the multi-core architecture, and enables the analysis and investigation 

of multi-core architectures. Meanwhile a profiling-driven mapping methodology is 

developed to partition the WiMAX application into multiple tasks as well as schedule and 

map these tasks onto the multi-core architecture, aiming to reduce the overall system 

execution time. Both the MRPSIM simulator and the mapping methodology are seamlessly 

integrated with the existing RICA tool flow. 

Based on the proposed master-slave multi-core architecture, a series of diverse 

homogeneous and heterogeneous multi-core solutions are designed for different fixed 

WiMAX physical layer profiles. Implemented in ANSI C and executed on the MRPSIM 

simulator, these multi-core solutions contain different numbers of cores, combine various 
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memory architectures and task partitioning schemes, and deliver high throughputs at 

relatively low area costs. Meanwhile a design space exploration methodology is developed 

to search the design space for multi-core systems to find suitable solutions under certain 

system constraints. Finally, laying a foundation for future multithreading exploration on the 

proposed multi-core architecture, this thesis investigates the porting of a real-time operating 

system – Micro C/OS-II to a single RICA processor. A multitasking version of WiMAX is 

implemented on a single RICA processor with the operating system support. 



 III

I hereby declare that the research recorded in this thesis and the thesis itself was composed 

by myself in the School of Engineering at The University of Edinburgh, except where 

explicitly stated otherwise in the text. 

 
 
 
 
 
 
 
 
 
 
 

Wei Han

Declaration of originality 



 

 IV

This thesis would not have been what you are seeing now, without the help of my 

supervisors and colleagues. Foremost, I would like to thank my PhD supervisors Prof. 

Tughrul Arslan and Dr. Ahmet T. Erdogan for their support and guidance during my study. I 

would also like to thank my colleagues, Dr. Ying Yi who made great contributions to our 

multi-core project and did a lot of work which I was too lazy to do, Mr. Mark I.R. Muir for 

his valuable guidance and parser libraries, Dr. Ioannis Nousias for his help on MRPSIM 

simulator design, Mr. Xin Zhao and Dr. Cheng Zhan for their contributions on WiMAX 

implementations. Meanwhile, I would like to thank all RICA team members: Dr. Sami 

Khawam, Dr. Mark Milward, Dr. Ioannis Nousias, Dr. Ying Yi and Mr. Mark I.R. Muir for 

their brilliant invention – the RICA architecture and its tool flow. In addition, many thanks to 

all members in SLI group for their help throughout my PhD study.  

A very special thank to my wife Xinyu Chen who encourages me with her love, stays with 

me getting through all tough times and cooks delicious food for me. Finally, I would like to 

express my deepest appreciation to my parents for their love, guide and support to me 

throughout my life.  

 

Acknowledgements 



 V

 

3G  Third Generation 

ADSL   Asymmetric Digital Subscriber Line 

AES  Advanced Encryption Standard 

ALM  Adaptive Logic Module 

ALU  Arithmetic Logic Unit 

API  Application Programming Interface 

ASIC   Application-Specific Integrated Circuit 

ASIP  Application-Specific Instruction Set Processor  

ASSP  Application Specific Standard Product 

BPSK   Binary Phase-Shift Keying 

BS  Base Station 

BWA  Broadband Wireless Access 

CDMA  Code Division Multiple Access 

CLB  Configurable Logic Block 

CMP  Chip-Level Multiprocessing 

CP  Cyclic Prefix 

CPS  Cycles Per Second 

DC  Direct Current 

DL  Downlink 

DSL  Digital Subscriber Line 

DSP  Digital Signal Processor 

DR  Dynamically Reconfigurable 

EV-DO  Evolution-Data Optimized 

Acronyms and abbreviations 



 

 VI

FEC   Forward Error Correction 

FFT   Fast Fourier Transform 

FIR  Finite Impulse Response  

FPGA   Field Program Gate Array 

GF  Galois Field 

GFLOPS  Giga Floating-Point Operations Per Second 

GPP   General Purpose Processor 

GSM  Global System for Mobile communications 

GPU  Graphics Processing Unit 

HDL  Hardware Description Language 

HPT  Highest Priority Task 

HSPA  High Speed Packet Access 

HSDPA  High Speed Downlink Packet Access 

HSUPA  High Speed Uplink Packet Access 

IFFT   Inverse Fast Fourier Transform 

ILP  Instruction Level Parallelism 

IP  Intellectual Property  

IPI  Inter-Processor Interrupt  

IPS  Instructions Per Second 

ISA  Instruction Set Architecture  

ISDN   Integrated Services Digital Network 

ISI  Intersymbol Interference 

LL  Load-Link 

LUT  Look-Up Table 

MAC  Media Access Control  

Mbps  Megabits per second 

MIMO  Multi-Input Multi-Output 

ML  Maximum Likelihood 



 VII

MDF  Machine Description File 

MRPSIM Multiple Reconfigurable Processor Simulator 

OFDM  Orthogonal Frequency-Division Multiplexing 

OS  Operating System 

PHY  Physical Layer 

PLD  Programming Logic Device 

PPE  Power Processing Element 

PRBS  Pseudo-Random Binary Sequence 

PSE  Processing and Storage Element 

QAM  Quadrature Amplitude Modulation 

QPSK  Quadrature Phase-Shift Keying 

RA  Reconfigurable Architecture 

RAM  Random Access Memory 

RICA   Reconfigurable Instruction Cell Array 

RISC   Reduced Instruction Set Computer 

RRC  Reconfigurable Rate Controller 

RPU  Reconfigurable Processing Unit 

RS   Reed-Solomon 

RTL   Register Transfer Level 

RTOS  Real-Time Operating System 

SC  Store-Conditional 

SDL  System Description Level 

SIMD  Single Instruction Multiple Data 

SoC   System on Chip 

SOFDMA Scalable Orthogonal Frequency Division Multiple Access  

SMP  Symmetric Multiprocessing 

SPE  Synergistic Processing Element  

SPMD  Single Program Multiple Data 



 

 VIII

SPS  Steps Per Second 

SRAM  Static Random Access Memory 

SS  Subscriber Station 

TDD  Time Division Duplex 

TLM  Transaction-Level modeling 

TTA  Transport Triggered Architecture 

UL  Uplink 

UMTS  Universal Mobile Telecommunications System 

VLIW   Very Long Instruction Word 

WiMAX  Worldwide Interoperability for Microwave Access 

WLAN  Wireless Local Area Network



 IX

Publication from this work 

Journals  

1. W. Han, Y. Yi, M. Muir, I. Nousias, T. Arslan, and A. T. Erdogan, “Multi-core 
Architectures with Dynamically Reconfigurable Array Processors for Wireless Broadband 
Technologies,” IEEE Transaction on Computer Aided Design of Integrated Circuits and 
Systems (TCAD), Vol. 28, Issue 12, pp. 1830-1843, December 2009.  

2. W. Han, Y. Yi, M. Muir, I. Nousias, T. Arslan, and A. T. Erdogan, “Efficient 
Implementation of WiMAX Physical Layer on Multi-core Architecture with Dynamically 
Reconfigurable Processors,” Scalable Computing: Practice and Experience Scientific 
international journal for parallel and distributed computing, Vol. 9, pp.185-196, ISSN 
1097-2803, 2008.  

 

Conference and Workshops 

1. W. Han, Y. Yi, Xin Zhao, M. Muir, T. Arslan, and A. T. Erdogan, “Heterogeneous 
Multi-core Architectures with Dynamically Reconfigurable Processors for WiMAX 
transmitter”, the 22nd Annual IEEE International SOC Conference (SOCC’09), pp. 97 - 100, 
Belfast, UK, 9 – 11 September, 2009. 

2. W. Han, Y. Yi, Xin Zhao, M. Muir, T. Arslan, and A. T. Erdogan, “Heterogeneous 
Multi-core Architectures with Dynamically Reconfigurable Processors for Wireless 
Communication”, the 7th IEEE Symposium on Application Specific Processors in 
conjunction with Design Automation Conference 2008 (SASP’09), pp. 1 - 6, San Francisco, 
California, 27 - 28 July, 2009. 

3. Y. Yi, W. Han, X. Zhao, A. T. Erdogan and T. Arslan, “An ILP Formulation for Task 
Mapping and Scheduling on Multi-core Architectures,” the Conference on Design, 
Automation and Test in Europe (DATE’09), pp. 33-38, Nice, France, 20 – 24 April, 2009. 

4. W. Han, Y. Yi, M. Muir, I. Nousias, T. Arslan, and A. T. Erdogan, “MRPSIM: a TLM 
based Simulation Tool for MPSoCs targeting Dynamically Reconfigurable Processors,” the 
21st Annual IEEE International SOC Conference (SOCC’08), pp. 41-44, Newport Beach, 
California, 17 - 20 September, 2008. 

5. Y. Yi, W. Han, A. Major, A. T. Erdogan, and T. Arslan, “Exploiting Loop-Level 
Parallelism on Multi-Core Architectures for the WiMAX Physical Layer,” the 21st Annual 
IEEE International SOC Conference (SOCC’08), pp. 31-34, Newport Beach, California, 17 
– 20 September, 2008. 

6. W. Han, Y. Yi, M. Muir, I. Nousias, T. Arslan, and A. T. Erdogan, “Multi-core 
Architectures with Dynamically Reconfigurable Array Processors for the WIMAX Physical 



 

 X

Layer,” the 6th IEEE Symposium on Application Specific Processors conjunction with 
Design Automation Conference 2008 (SASP’08), pp.115-120, Anaheim, California, 8 – 9 
June, 2008.  

7. W. Han, Y. Yi, M. Muir, I. Nousias, T. Arslan, and A. T. Erdogan, “Efficient 
Implementation of Wireless Applications on Multi-core Platforms based on Dynamically 
Reconfigurable Processors,” 2008 International Workshop on Multi-Core Computing 
Systems, pp. 837-842, Barcelona, Spain, March 2008. 

8. W. Han, I. Nousias, M. Muir, T. Arslan, A.T. Erdogan, “The Design of Multitasking 
Based Applications on Reconfigurable Instruction Cell Based Architectures,” the 17th 
International Conference on Field Programmable Logic and Applications (FPL’07), pp. 
447-452, Amsterdam, Netherlands, 27 – 29 August, 2007. 

9. W. Han, M. Muir, I. Nousias, T. Arslan, A.T. Erdogan, “Mapping Real Time Operating 
System on Reconfigurable Instruction Cell based Architectures,” 2007 IEEE Symposium on 
Field-Programmable Custom Computing Machines (FCCM’07), pp.301-304, Napa, 
California, 23 – 25 April, 2007.



 XI

1 Introduction ……………………………………………………………………………..…1 
1.1 Motivation ....................................................................................................................... 1 
1.2 Objective ......................................................................................................................... 3 
1.3 Contribution .................................................................................................................... 4 
1.4 Thesis structure................................................................................................................ 5 
 

2 Broadband Access Technologies and WiMAX…...……………………………….………7 
2.1 Introduction ..................................................................................................................... 7 
2.2 Wired broadband access technologies ............................................................................. 8 

2.2.1 DSL...................................................................................................................... 8 
2.2.2 Cable .................................................................................................................... 9 
2.2.3 Optical fibre ......................................................................................................... 9 
2.2.4 Others................................................................................................................... 9 

2.3 Broadband wireless access technologies ....................................................................... 10 
2.3.1 HSPA ................................................................................................................. 10 
2.3.2 EV-DO ............................................................................................................... 11 
2.3.3 Satellite .............................................................................................................. 11 
2.3.4 Wi-Fi .................................................................................................................. 12 
2.3.5 WiMAX ............................................................................................................. 12 

2.4 WiMAX PHY processing chain .................................................................................... 14 
2.4.1 Randomising ...................................................................................................... 15 
2.4.2 FEC encoding .................................................................................................... 15 

2.4.2.1 Reed-Solomon encoding ............................................................................. 16 
2.4.2.2 Convolutional encoding .............................................................................. 17 
2.4.2.3 Puncturing ................................................................................................... 18 

2.4.3 Interleaving ........................................................................................................ 19 
2.4.4 Data modulation................................................................................................. 20 
2.4.5 OFDM processing.............................................................................................. 21 

2.4.5.1 Pilot modulation and insertion .................................................................... 22 
2.4.5.2 DC and guard band insertion....................................................................... 23 
2.4.5.3 FFT/IFFT .................................................................................................... 23 
2.4.5.4 Cyclic prefix extension ............................................................................... 24 

2.4.6 Synchronisation ................................................................................................. 25 
2.4.7 Data demodulation............................................................................................. 26 

Contents 



 

 XII

2.4.8 FEC decoding.....................................................................................................26 
2.4.8.1 Viterbi decoding ..........................................................................................26 
2.4.8.2 Reed-Solomon decoding .............................................................................27 

2.5 Summary .......................................................................................................................28 
 

3 Multi-core Processors and Reconfigurable Architectures…….……………………..….29 
3.1 Introduction ...................................................................................................................29 
3.2 Multi-core processors ....................................................................................................30 

3.2.1 The advantages of multi-core processors...........................................................31 
3.2.2 Taxonomies of multi-core processors ................................................................32 

3.2.2.1 Computing markets .....................................................................................32 
3.2.2.2 Heterogeneity and Homogeneity.................................................................33 
3.2.2.3 Core types ...................................................................................................35 

3.3 Reconfigurable architectures .........................................................................................36 
3.3.1 Execution structures...........................................................................................36 
3.3.2 Granularity .........................................................................................................37 

3.3.2.1 Fine-grained reconfigurable architectures...................................................37 
3.3.2.2 Coarse-grained reconfigurable architectures...............................................38 
3.3.2.3 Medium-grained and very coarse-grained reconfigurable architectures .....40 
3.3.2.4 Mixed-grained reconfigurable architectures ...............................................40 

3.3.3 Reconfiguration schemes ...................................................................................41 
3.4 Reconfigurable instruction cell array ............................................................................41 

3.4.1 Architecture........................................................................................................42 
3.4.2 Standard tool flow..............................................................................................44 

3.5 Traditional WiMAX silicon implementations ...............................................................45 
3.5.1 Custom chip implementations............................................................................45 
3.5.2 GPP/DSP based SoC implementations ..............................................................46 
3.5.3 FPGA/PLD implementations .............................................................................47 

3.6 Multi-core implementations of WiMAX .......................................................................47 
3.6.1 PicoArray ...........................................................................................................48 
3.6.2 Freescale MSC8126 ...........................................................................................49 
3.6.3 Cell Broadband Engine ......................................................................................49 
3.6.4 Intel IXP 2350 network processor......................................................................50 
3.6.5 Sandbridge SB3010 ...........................................................................................50 

3.7 RICA based multi-core architecture ..............................................................................51 
3.8 Summary .......................................................................................................................51 
 

4 A RICA Processor based Multi-core Architecture…………………………….………...53 
4.1 Introduction ...................................................................................................................53 
4.2 The proposed multi-core architecture............................................................................54 

4.2.1 Processing cores.................................................................................................56 
4.2.2 Memory architecture..........................................................................................57 

4.2.2.1 Shared memory/local memory ....................................................................57 



 XIII

4.2.2.2 Shared register file ...................................................................................... 58 
4.2.2.3 Stream buffer............................................................................................... 60 

4.2.3 Arbiter................................................................................................................ 62 
4.2.4 Crossbar switch.................................................................................................. 62 
4.2.5 Interrupt controller ............................................................................................. 63 
4.2.6 Router ................................................................................................................ 63 

4.3 Synchronisation methods and atomic operation support ............................................... 64 
4.4 Custom instruction integration ...................................................................................... 66 
4.5 Summary ....................................................................................................................... 67 
 

5 Multiple Reconfigurable Processors Simulator…………………………….….………...69 
5.1 Introduction ................................................................................................................... 69 
5.2 Related work on multiprocessor simulators .................................................................. 70 
5.3 Trace-driven simulation................................................................................................. 71 
5.4 SystemC and transaction-level modeling ...................................................................... 74 
5.5 TLM model ................................................................................................................... 76 
5.6 MRPSIM command line options ................................................................................... 79 
5.7 Mpsockit - a subsidiary tool .......................................................................................... 81 
5.8 Results ........................................................................................................................... 82 
5.9 Summary ....................................................................................................................... 84 
 

6 Homogeneous Multi-core Solutions for WiMAX……………………………….………..87 
6.1 Introduction ................................................................................................................... 87 
6.2 Mapping methodology .................................................................................................. 88 
6.3 Task partitioning methods ............................................................................................. 90 

6.3.1 Task merging and task replication...................................................................... 91 
6.3.2 Loop-level partitioning ...................................................................................... 93 

6.4 Development of multi-core projects .............................................................................. 96 
6.5 Synchronisation between tasks...................................................................................... 97 
6.6 Results ........................................................................................................................... 98 
6.7 Summary ..................................................................................................................... 104 
 

7 Heterogeneous Multi-core Solutions for WiMAX…...……………………….…….…...105 
7.1 Introduction ................................................................................................................. 105 
7.2 Design space exploration............................................................................................. 106 
7.3 Timing optimisation .................................................................................................... 111 

7.3.1 Code optimisation ............................................................................................ 111 
7.3.2 Architectural optimisation ............................................................................... 113 

7.4 Area optimisation ........................................................................................................ 114 
7.5 Results ......................................................................................................................... 115 
7.6 Summary ..................................................................................................................... 123 
 

8 Multitasking WiMAX on an RTOS…...………………………………...…….…….…...125 



 

 XIV

8.1 Introduction .................................................................................................................125 
8.2 The selection of RTOSes .............................................................................................127 
8.3 Porting Micro C/OS-II to RICA ..................................................................................130 

8.3.1 Hardware requirements ....................................................................................130 
8.3.2 Software requirements .....................................................................................131 

8.4 The multitasking implementation of WiMAX on Micro C/OS-II ...............................132 
8.5 Results .........................................................................................................................136 
8.6 Summary .....................................................................................................................138 
 

9 Conclusions…………………………...…………………………………..…….……..…..141 
9.1 Introduction .................................................................................................................141 
9.2 Review of thesis contents ............................................................................................141 
9.3 Specific findings..........................................................................................................144 
9.4 Directions for future work ...........................................................................................146 

 

Reference ………………………...…………………………………………………………….149 

 



 XV

Figure 2.1 Fixed WiMAX physical layer processing chain .......................................................... 15 
Figure 2.2 PRBS for the data randomisation................................................................................. 15 
Figure 2.3 Reed-Solomon encoder................................................................................................ 17 
Figure 2.4 Binary convolutional encoder with a constraint length of 7 and a code rate of 1/2..... 17 
Figure 2.5 Trellis diagram representation of a simple convolutional encoder .............................. 18 
Figure 2.6 BPSK, QPSK, 16QAM and 64QAM modulation schemes in WiMAX ...................... 20 
Figure 2.7 Frequency domain representation of an OFDM symbol in fixed WiMAX.................. 22 
Figure 2.8 OFDM downlink processing in the transmitter side of fixed WiMAX........................ 22 
Figure 2.9 PRBS for pilot modulation .......................................................................................... 23 
Figure 2.10 Data flow graph of an 8-point radix-2 FFT................................................................ 24 
Figure 2.11 Signal flow representation of a radix-2 butterfly ....................................................... 24 
Figure 2.12 Timing synchronisation.............................................................................................. 25 
Figure 2.13 16QAM soft decision data demodulation .................................................................. 26 
Figure 2.14 Viterbi decoding process for a convolutional code with a 1/2 code rate.................... 27 
Figure 2.15 Reed-Solomon decoding process............................................................................... 28 
Figure 3.1 The RICA architecture ................................................................................................. 43 
Figure 3.2 Standard RICA tool flow .............................................................................................45 
Figure 3.3 PicoArray interconnection and the inter-processor communication ............................ 48 
Figure 4.1 Proposed master-slave multi-core architecture ............................................................ 55 
Figure 4.2 Custom instruction cell MULTIPTBK_REG_FILE .................................................... 59 
Figure 4.3 A 4-bank shared register file in the proposed multi-core architecture ......................... 60 
Figure 4.4 Stream buffers in the proposed multi-core architecture ............................................... 61 
Figure 4.5 RICA custom cell generation environment and custom tool flow ............................... 67 
Figure 5.1 The interface and internal structure of MRPSIM simulator......................................... 72 
Figure 5.2 Traditional SoC design flow without SystemC............................................................ 74 
Figure 5.3 SoC design flow with SystemC ................................................................................... 75 
Figure 5.4 An example demonstrating the TLM model of a multi-core architecture.................... 77 
Figure 5.5 The simulation speed (steps/sec) ................................................................................. 83 
Figure 5.6 The simulation speed (instructions/sec)....................................................................... 83 
Figure 5.7 The simulation speed (cycles/sec)................................................................................ 84 
Figure 5.8 The simulation time (sec)............................................................................................. 85 
Figure 6.1 Mapping methodology................................................................................................. 89 
Figure 6.2 Task merging and task replication methods ................................................................. 92 
Figure 6.3 Decoding loop partitioning .......................................................................................... 95 

List of Figures 



 

 XVI

Figure 6.4 Integration of MRPSIM in Eclipse ..............................................................................96 
Figure 6.5 Speedup and parallel efficiency of transmitter scenarios...........................................101 
Figure 6.6 Speedup and parallel efficiency of receiver scenarios ...............................................102 
Figure 7.1 The main blocks in 16QAM based WiMAX transmitter and receiver....................... 110 
Figure 7.2 Task partitioning, mapping and scheduling in receiver Design 4 ..............................121 
Figure 8.1 The Micro C/OS-II based system...............................................................................130 
Figure 8.2 Hardware requirements for porting Micro C/OS-II to RICA.....................................131 
Figure 8.3 Multitasking WiMAX function blocks ......................................................................132 
Figure 8.4 Program flow chart of WiMAX running on Micro C/OS-II ......................................133 
Figure 8.5 Detailed program flow diagram for the execution of channel coding and OFDM 
downlink tasks.............................................................................................................................134 
 
 



 XVII

 
Table 2.1 Pros and cons of wired and wireless broadband access technologies.............................. 7 
Table 2.2 Comparison of 802.11 standards ................................................................................... 12 
Table 2.3 Comparison of broadband Internet access technologies................................................ 13 
Table 2.4 Comparison between Fixed and Mobile WiMAX......................................................... 14 
Table 2.5 Puncturing patterns in WiMAX..................................................................................... 19 
Table 3.1 Comparison of multi-core processors............................................................................ 35 
Table 3.2 Comparison of coarse-grained reconfigurable architectures ......................................... 39 
Table 3.3 RICA Instruction Cells .................................................................................................. 42 
Table 3.4 MSC8126 loading and task allocation........................................................................... 49 
Table 4.1 Access modes and configuration bits for RMEM and WMEM cells............................. 57 
Table 4.2 Pin descriptions of MULTIPTBK_REG_FILE cells ..................................................... 59 
Table 4.3 Access modes and configuration bits of MULTIPTBK_REG_FILE cells .................... 59 
Table 4.4 Pin description of SBUF instruction cells ..................................................................... 61 
Table 4.5 Access modes and configuration bits of SBUF cells ..................................................... 61 
Table 4.6 Access modes and configuration bits for LL/SC instructions........................................ 66 
Table 5.1 Functionality of main SystemC processes and functions in MRPSIM modules ........... 78 
Table 5.2 Command line options of MRPSIM.............................................................................. 80 
Table 5.3 Formats for original and compressed traces .................................................................. 81 
Table 5.4 Mpsockit options ........................................................................................................... 82 
Table 6.1 IFFT Loop Partitioning.................................................................................................. 94 
Table 6.2 Synchronisation between tasks...................................................................................... 97 
Table 6.3 Homogeneous multi-core scenarios for WiMAX transmitter........................................ 98 
Table 6.4 Homogeneous multi-core scenarios for WiMAX receiver ............................................ 98 
Table 6.5 Configurations of both a standard core and a custom core............................................ 99 
Table 6.6 Performance comparison for transmitter scenarios ..................................................... 102 
Table 6.7 Performance comparison for receiver scenarios.......................................................... 103 
Table 7.1 Pseudo code of the design space exploration methodology ........................................ 108 
Table 7.2 A code example of replacing jumps with multiplexers................................................ 111 
Table 7.3 Storing constants in registers for 16QAM modulation................................................ 112 
Table 7.4 Comparison of transmitter design configurations........................................................ 116 
Table 7.5 Comparison of receiver design configurations............................................................ 116 
Table 7.6 Comparison between standard and custom RICA cores used in transmitter designs .. 117 
Table 7.7 Comparison between standard and custom RICA cores used in receiver designs....... 118 
Table 7.8 Results from the exploration methodology for transmitter designs............................. 119 

List of Tables 



 

 XVIII

Table 7.9 Results from the exploration methodology for receiver designs ................................. 119 
Table 7.10 Comparison of multi-core solutions ..........................................................................122 
Table 8.1 Survey of RTOSes .......................................................................................................127 
Table 8.2 Comparison in term of memory size and multiprocessing support .............................129 
Table 8.3 Comparison in term of ported devices and specific features .......................................129 
Table 8.4 Micro C/OS-II machine dependent files for RICA......................................................131 
Table 8.5 Results of WiMAX with/without RTOS support .........................................................136 
Table 8.6 Comparison of multitasking WiMAX on RICA and ARM7TDMI .............................137 
 



 

1 

1.1 Motivation 

Growing from an academic tool to owning almost one and half billion users nowadays, the 

Internet stands as a pivotal success. People have come to depend on the Internet more and 

more in their daily lives. Now users not only need traditional applications like Web surfing 

and emails, but also demand to experience multimedia services like interactive gaming, 

real-time audio and video streaming, and even high-definition TV. These applications are 

becoming an integral part of business as well as recreation, leading to the increased push for 

broadband access technologies with higher data rates, better reliability and enhanced user 

experience. Meanwhile currently the desire to access the Internet at any time from anywhere 

is dramatically rising. By combining the convenience through wireless access and the 

outstanding broadband performance, Broadband Wireless Access (BWA) technologies 

demonstrate great interests to end users and a remarkable potential success in commerce. 

Among various BWA solutions, Worldwide Interoperability for Microwave Access 

(WiMAX) defined in IEEE 802.16 standard family [1, 2] becomes more and more popular 
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and may help make the vision of pervasive connectivity a reality. According to the 

announcement from the WiMAX forum, more than 133 million WiMAX users are 

anticipated by 2012 [3]. Meanwhile, the WiMAX market is forecasted to reach $3.5 billion 

and 4% market share of the overall broadband market by 2010 [3]. 

As an embedded application, WiMAX demands high throughput, strict low power, and 

in-field reprogrammability in order to follow evolving standards. Single-core processors fall 

short of meeting all these requirements. Historically, processor manufacturers answered the 

requirement for more processing power primarily by delivering faster processor speeds. The 

technology advances, such as Instruction Level Parallelism (ILP) and increased frequency 

due to advanced process technology, have delivered exponential performance gains for 

microprocessors over the last three decades. However things have changed and these 

traditional approaches will not provide the same gains in the future. It is mainly because 

high performance single-core microprocessors have reached three walls. Firstly, the memory 

wall results from the fact that the memory performance has a much slower growth rate than 

the processor performance. Therefore the gap between memory and processor speeds keeps 

increasing. In spite of the use of larger caches, this trend has not been curbed [4]. As a result, 

high frequency processors have to spend a significant amount of time waiting for the 

response from memory. The second wall comes from the limitation of ILP, called ILP wall. 

Even with various ambitious hardware and software techniques, only very low average 

parallelism can be found in the instruction streams and is far from enough to keep high 

performance processors busy [5]. The final wall is the power wall which is the main 

challenge incurred by high clock rates and deep submicron processes. In fact, in traditional 

single-core architectures, power consumption has increased at a greater rate than the clock 

speed. Meanwhile high processor density in sub-90 nm processes results in high power 

density which has already reached the level of 100W/cm2 found in a nuclear reactor and 

probably soon will rise to the level of 1,000W/cm2 found in space rocket nozzles [6].  

These three walls drive people to look for alternative solutions, instead of continuing to 
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build complicated single-core processors. One of such scale-out solutions is to put two or 

more simpler and smaller processing cores on a chip. It is called Chip-Level Multiprocessing 

(CMP) or a multi-core processor. In multi-core solutions, multiple simple processing cores 

with lower operating frequency can deliver excellent overall performance while reducing the 

thermal output. Another drive for the adoption of multi-core processors is that parallelism 

exists in most real world applications such as multimedia processing and Fast Fourier 

Transform (FFT). As a parallel architecture, a multi-core architecture can effectively bring 

the parallel nature of applications into full play.  

However one question arising from multi-core architectures is that what kind of processing 

core would be the best candidate for multi-core architectures targeting embedded 

applications like WiMAX? Obviously, General Purpose Processors (GPPs) are not well 

suited to this task, due to their generic features and proportion of the silicon for computation. 

On the other hand, Very Long Instruction Word (VLIW) Digital Signal Processor (DSP) 

architectures face the problem due to the limited amount of ILP found in programs [7]. 

Filling the gap between the high flexibility of DSPs and the high performance of 

Application-Specific Integrated Circuits (ASICs), Dynamically Reconfigurable (DR) 

processors offer an attractive solution for developing multi-core architectures. This thesis 

investigates multi-core processor architectures building upon coarse-grained dynamically 

reconfigurable processing cores to meet the rigorous requirements from BWA applications, 

such as WiMAX.  

1.2 Objective 

The objective of this thesis is to explore a multi-core architecture by using coarse-grained 

dynamically reconfigurable processing cores, and develop tools and a mapping methodology 

which allow sequential ANSI C programs to be executed on the multi-core architecture. 

Afterward, based on this multi-core architecture, this thesis aims to design efficient 

multi-core solutions for broadband wireless access technologies, particularly WiMAX 
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applications. 

1.3 Contribution 

The major contributions of the thesis are split into seven key aspects: 

1. A novel master-slave multi-core architecture using a newly emerging 

coarse-grained DR processor, Reconfigurable Instruction Cell Array (RICA), has been 

proposed. This architecture provides a variety of memory architectural options for different 

application requirements and system constraints, as well as supporting inter-processor 

synchronisation through providing atomic operations. 

2. A SystemC Transaction-Level modeling (TLM) based trace-driven simulator has 

been designed for modeling this multi-core architecture. This simulator delivers high-speed 

simulation and maintains timing accuracy. By providing flexible architectural options to 

configure the multi-core architecture, this simulator enables fast analysis and exploration of 

multi-core architectures as well as rapid application verification. 

3. A profiling-driven mapping methodology has been developed to partition a target 

application into multiple tasks as well as schedule and map these tasks onto multi-core 

architectures, aiming to reduce the overall system execution time. This mapping 

methodology supports both homogeneous and heterogeneous multi-core solutions. 

4. Several homogenous multi-core solutions have been developed for the Binary 

Phase-Shift Keying (BPSK) based fixed WiMAX physical layer application. These 

multi-core solutions combine different memory architectures and task partitioning schemes, 

and deliver high speedups compared to single-core implementations. 

5. A design space exploration methodology has been presented to find suitable 

single-core and multi-core solutions under certain system constraints. Furthermore, several 
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timing and area optimisation techniques have been addressed for WiMAX applications, 

targeting the proposed multi-core architecture.  

6. Several heterogeneous multi-core solutions have been developed for the 

16-Quadrature Amplitude Modulation (QAM) based fixed WiMAX physical layer 

application. These solutions deliver high throughputs at relatively low area costs.  

7. A Real-Time Operating System (RTOS) – Micro C/OS-II has been ported to a 

single-core RICA processor. A multitasking design of a fixed WiMAX physical layer 

program has been implemented on RICA processor with this operating system support. 

1.4 Thesis structure 

This thesis is structured as follows. 

Chapters 2 and 3 contain descriptions of the background and existing literature. Chapter 2 

provides an overview of mainstream broadband Internet access technologies and detailed 

descriptions for a fixed WiMAX physical layer. Chapter 3 introduces multi-core processors 

and reconfigurable computing technologies, and emphasises a dynamically reconfigurable 

processor – RICA, which is used in the proposed multi-core architecture. Meanwhile, 

Chapter 3 presents existing WiMAX implementations on various technologies.  

Chapters 4 through 8 address my PhD research achievements. Chapter 4 proposes a basic 

multi-core architecture containing RICA based processing cores, and details the main 

components of this architecture as well as the inter-processor synchronisation methods. 

Chapter 5 presents a SystemC TLM trace-driven simulator which models the multi-core 

architecture described in Chapter 4. In addition, a trace preprocessing tool – Mpsockit is 

described in Chapter 4. Chapter 6 introduces homogeneous multi-core solutions for WiMAX, 

based on the proposed multi-core architecture. A mapping methodology and several task 

partitioning methods are described in this chapter as well. Chapter 7 focuses on 
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heterogeneous multi-core implementations for WiMAX. A design space exploration 

methodology is presented to find suitable single-core or multi-core solutions under specific 

system and performance constraints. Chapter 8 investigates the porting of a real-time 

operating system to RICA processor and a multitasking based WiMAX on a single-core 

RICA processor with an operating system supported. 

Finally, the thesis is concluded with the summary in Chapter 9.
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2.1 Introduction 

As broadband services are frequently upgraded, the minimum bandwidth or data rate for 

defining broadband is gradually increased. Generally speaking, nowadays a broadband 

access technology should provide data rates beyond 1 Megabits per second (Mbps). 

Broadband access technologies can be classified into wired broadband access and broadband 

wireless access. Both the two categories have their own pros and cons shown in Table 2.1. 

In some places, they are complementary, while in other places, they compete with each other. 

Chapter 2
  Broadband Access 

Technologies and WiMAX

Table 2.1 Pros and cons of wired and wireless broadband access technologies 

 Pros Cons 

BWA 

Provide portable, nomadic, mobile service;
Serve extremely wide areas; 
Good solution for areas lacking wireline 
infrastructures 

Lower capacity than wired 
broadband; 
Less reliable and secure 

Wired 
broadband 

High capacity at high data rates 
High reliability and security 

Expensive to deploy new 
networks, especially in places 
lacking infrastructures 
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As currently the desire to access the Internet at any time from anywhere dramatically 

increased, BWA technologies demonstrate remarkable advantages over their wire based 

counterparts in many emerging markets such as the burgeoning mobile Internet market 

where wired broadband solutions are helpless. Meanwhile BWA technologies are gradually 

taking more market share from traditional markets such as the last mile delivery. Here the 

term of last mile represents the final step in the connection from Internet service providers to 

end users, and does not really mean that the actual distance is one mile. 

In this chapter, a brief overview is provided for both wired and wireless broadband access 

technologies in Sections 2.2 and 2.3, respectively. Mainstream broadband Internet access 

technologies are reviewed. In Section 2.4, an introduction is given for WiMAX physical 

layer with the details of each functional block. The aim of Section 2.4 is to present the 

background and context necessary for understanding the WiMAX physical layer.  

2.2 Wired broadband access technologies 

By delivering Internet services through physical wires (e.g. twisted pair and television cable), 

wired broadband access technologies have inherent advantages over their wireless 

counterparts in reliability and security. Nowadays, there exist various wired technologies, 

some of which such as Digital Subscriber Line (DSL) and cable are predominant 

technologies in the market. The following subsections describe mainstream wired 

technologies available in the commercial market.  

2.2.1 DSL 

DSL is the most popular technology for the last mile delivery. According to the world 

broadband statistics report [8], almost 65 percent of wired broadband subscribers are using 

DSL by Q2 2008. Actually, DSL is a family of technologies transmitting data over the high 

frequency band of telephone lines, while keeping voice delivered over the low frequency 

band. Among DSL technologies, Asymmetric Digital Subscriber Line (ADSL) is the most 
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common type used for home users and offers a much faster speed in the download direction 

than the upload direction. The latest ADSL standard provides data rates up to 24 Mbps and 

3.5 Mbps for download and upload, respectively [9]. One of main drawbacks of DSL 

technologies is that data rates deteriorate with the distance from customers to providers’ 

facilities increasing.  

2.2.2 Cable  

Cable Internet is a technology to enable Internet access over the existing cable television 

network, especially popular in North America. According to the world broadband statistics 

report [8], cable Internet has up to 82 million users, more than 55 percent of them from 

North America. Unlike DSL which is distance sensitive, cable can maintain the same data 

rate over 100 kilometres. As defined in an international standard DOCSIS 2.0 [10], cable 

Internet can provide maximum data rates of 50 Mbps and 27 Mbps for download and upload, 

respectively. 

2.2.3 Optical fibre 

Currently, many Internet service providers especially the ones in U.S. are using the optical 

fibre to deliver last mile communication, by directly connecting fibre to subscribers’ 

premises. This fibre to the premises service includes the forms of fibre to the home and fibre 

to the building [11]. Depending on areas and communication protocols, the fibre to the 

premises offers data rates ranging from several Mbps to over one hundred Mbps. One 

disadvantage of this technology is the much more expensive connection charge and annual 

rental compared to other Internet access methods.  

2.2.4 Others 

Other wired broadband technologies include Integrated Services Digital Network (ISDN), 

power line, T1/E1 and so on. Like DSL, ISDN is based on the telephone network. It was 
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popular prior to the emergence of DSL and cable. Now ISDN is gradually being superseded 

by DSL. Broadband over power line is a technology aiming to provide a broadband Internet 

at a data rate of over 100 Mbps via electric power lines. IEEE P1901 [12] is a draft standard 

for specifying this technology. During the thesis writing, this standard is still waiting for the 

approval. As for T1/E1, it can provide up to 2 Mbps bandwidth and is used for leased lines 

which directly connect customers such as companies to remote exchanges. 

2.3 Broadband wireless access technologies 

Although currently wired broadband access technologies can offer better reliability and 

security, BWA technologies have very close performance in these fields. More importantly, 

BWA systems enable mobility and ubiquitous Internet access, especially in areas where their 

wired counterparts are not available. Since the first generation BWA systems (e.g. local 

multipoint distribution systems and multichannel multipoint distribution services) were 

deployed in the late 1990s, many BWA technologies have emerged with higher data rates, 

longer ranges and better reliability. They include Code Division Multiple Access (CDMA) 

based High Speed Packet Access (HSPA) [13] and Evolution-Data Optimized (EV-DO) [14] 

as well as Orthogonal Frequency-Division Multiplexing (OFDM) based Wi-Fi [15] and 

WiMAX. In the following subsections, mainstream BWA technologies are introduced.  

2.3.1 HSPA 

HSPA is a family of protocols to improve the data transfer speeds in Universal Mobile 

Telecommunications System (UMTS). UMTS is one of Third Generation (3G) technologies, 

and combines wideband CDMA air interface and popular Global System for Mobile 

communications (GSM) infrastructures. HSPA delivers data through the UMTS network, 

and hence enables mobile broadband by using UMTS handheld devices. HSPA mainly 

consists of two standards, High Speed Downlink Packet Access (HSDPA) and High Speed 

Uplink Packet Access (HSUPA). Using approaches such as fast scheduling and link 
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adaptation, HSDPA offers a maximum data rate of 14.4 Mbps for the user downloading, 

while its uploading complement HSUPA provides an uploading speed up to 5.76 Mbps 

through the help of methods like an enhanced dedicated physical channel [16].  

2.3.2 EV-DO 

EV-DO was designed to improve the data rates of another 3G technology, CDMA2000. 

Defined in [14], a combination of up to fifteen 1.25 MHz channels can boost the theoretical 

maximum rate of EV-DO to 73 Mbps. However, a typical deployment would involve just 3 

channels to provide a download data rate of 14.7 Mbps. By using many of the same 

optimisation technologies as HSPA, EV-DO can achieve a similar spectral efficiency as 

HSPA. While one disadvantage of EV-DO is that EV-DO can not satisfy both voice and 

high-speed data communication concurrently, since it uses just one separate narrower 

channel for data service, compared to the efficient resource allocation for voice and data in a 

5MHz channel used in HSPA. Moreover EV-DO has much less users than HSPA, as the 

UMTS network which HSPA is based on has more than nine times the subscribers of 

CDMA2000 [16]. 

2.3.3 Satellite 

Satellite broadband is a wireless broadband access method which transmits and receives data 

via satellites in the geostationary orbit. There are two types of this method, one is one-way 

communication where the uploading and the downloading are through telephone lines and 

satellites, respectively. The other is two-way communication which enables both uploading 

and downloading via satellites. Satellite broadband is suitable for locations where other 

Internet access methods are not available, such as the remote rural areas and vessels at sea. 

The main drawback of this method compared to others is the much higher latency due to the 

very long signal trip. In one-way communication, the signal travel path is 70,000 km, while 

two-way communication has a path of 140,000 km. Meanwhile, satellite broadband is more 
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likely affected by the weather and obstacles. Furthermore, the devices for satellite broadband 

are highly expensive [17]. 

2.3.4 Wi-Fi 

Recently, Wireless Local Area Network (WLAN) technologies, especially Wi-Fi, have 

become popular. Nowadays, almost every desktop or laptop computer is shipped with Wi-Fi 

functions, and varied handheld devices such as smart phones have built-in Wi-Fi chips. 

Moreover many cities have developed or are developing a municipal Wi-Fi project to enable 

a whole city or at least the city centre Internet accessible through setting up hundreds of 

Wi-Fi access points. Wi-Fi technologies are specified in IEEE 802.11 standards [15], four 

main versions of which are compared in Table 2.2. Even though the popularity of Wi-Fi, 

compared to other BWA technologies, Wi-Fi has some intrinsic drawbacks such as too short 

range, not supporting mobility and inefficient collision avoidance protocols [18].  

2.3.5 WiMAX 

Being the commercial name of IEEE 802.16 family of standards, WiMAX can provide up to 

tens of Mbps symmetric bandwidth over many kilometres. This gives WiMAX a significant 

advantage over other alternative last mile technologies like Wi-Fi and DSL. Based on 

OFDM, WiMAX can offer higher peak and average data rates, greater flexibility and system 

capacity, compared to CDMA based technologies, such as HSPA and EV-DO [18]. Table 

2.3 provides a comparison between WiMAX and other broadband access technologies 

Table 2.2 Comparison of 802.11 standards 

Standard Release year Operating 
frequency 

Data rates 
(Typical/Max)

Range 
(Indoor/Outdoor) 

802.11a 1999 5 GHz 23/54 Mbps ~35/120 m 

802.11b 1999 2.4 GHz 4.5/11 Mbps ~38/140 m 

802.11g 2003 2.4 GHz 19/54 Mbps ~38/140 m 

802.11n Nov 2009 2.4/5 GHz 74/600 Mbps ~70/250 m 
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described in previous sections, in terms of Downlink/Uplink (DL/UL) data rates and the 

coverage. In this context, the downlink represents the transmission path from a Base Station 

(BS) to a Subscriber Station (SS), and the uplink represents the converse transmission path. 

In Table 2.3, for wired broadband access technologies, the range represents the typical 

distance between the subscribers’ devices to a DSL access multiplexer, a cable model 

termination system or a fibre local central office. Among these technologies, WiMAX offers 

the highest symmetric data rates on downlink and uplink, as well as very good coverage.  

Usually, WiMAX standards offer a wide variety of options, such as a selectable channel 

bandwidth and spectrum profiles, which allow the industry to set up very flexible 

deployments to satisfy requirements from different markets. Due to this flexibility, the 

WiMAX Forum was formed to certify and promote interoperable industry solutions based 

on the IEEE 802.16 standards. Currently there are more than 400 certified WiMAX trial or 

commercial networks developed around the world. One such example is WiBro developed 

in South Korea. The IEEE 802.16 standard family includes two major standards, 

802.16-2004 (i.e. 802.16d) [2] and 802.16-2005 (i.e. 802.16e) [1] which define fixed 

WiMAX and mobile WiMAX, respectively. Table 2.4 provides a comparison between the 

two standards in some basic characteristics. It can be seen that both fixed WiMAX and 

mobile WiMAX have their own advantages and target applications.  

This thesis focuses on the fixed WiMAX technology defined in IEEE 802.16-2004 standard. 

Table 2.3 Comparison of broadband Internet access technologies 

Technology Access method Max DL/UL (Mbps) Range 

DSL wired 24/4.6 3 km 

Cable wired 50/27 160 km 

Fibre wired 50/20 20 km 

HSPA wireless 14.4/5.8 40 km 

EV-DO wireless 14.7/5.4 50-70 km 

Satellite wireless 16/2 35,000 km 

Wi-Fi wireless 54/54 250 m 

WiMAX wireless 70/70 50 km 
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Fixed WiMAX is much likely to succeed in three Internet service markets: residential area 

and small or medium enterprises, leased lines for business as well as the backhaul for Wi-Fi 

hotspots [18]. The first category of market demands services like high-speed file 

downloading, voice over Intellectual Property (IP) and multimedia applications. For this 

market, fixed WiMAX based broadband services can be provided by either installing an 

outdoor antenna or an indoor cable-like modem. Therefore, fixed WiMAX is superior to 

wired based cable and DSL in terms of faster and easier installation, lower deployment and 

operational costs. The second potential market is the leased line connecting large companies 

directly to remote exchanges. In this field, fixed WiMAX is good enough to compete with 

the dominant technology - T1/E1 by providing higher speed services for enterprise 

customers which are not able to access fibre. Another major opportunity for fixed WiMAX 

is to serve as a faster and more cost-efficient alternative to the wired backhaul technology 

for Wi-Fi hotspots. Meanwhile fixed WiMAX is technically and commercially viable for the 

area lack of good wired infrastructures, such as developing countries and rural areas in 

developed countries. 

2.4 WiMAX PHY processing chain 

In this thesis, the target application is the fixed WiMAX Physical Layer (PHY) including 

both transmitter and receiver. Figure 2.1 provides an overview of the digital domain blocks 

in a typical fixed WiMAX PHY.  

Table 2.4 Comparison between Fixed and Mobile WiMAX 

Feature Fixed WiMAX (802.16-2004) Mobile WiMAX (802.16-2005) 

Status Completed June 2004 Completed December 2005 

Spectrum 2-11 GHz 2-6 GHz 

Application Wireless DSL and Backhaul Mobile Internet 

Transmission 
Scheme 256-sub-carriers OFDM Scalable Orthogonal Frequency-division 

Multiple Access (SOFDMA) 

Service Fixed and portable Nomadic, portable and mobile 

Typical Cell Radius  4-6 miles 1-3 miles 
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2.4.1 Randomising 

In WiMAX, randomisation is used to provide a simple encryption and prevent vicious 

receivers from decoding the data [2]. Each burst of information data is randomised in the 

transmitter side and de-randomised in the receiver side. Randomisation and 

de-randomisation are functionally equal by using a Pseudo-Random Binary Sequence 

(PRBS) with a generator polynomial of 11415 ++ XX . The PRBS initialisation sequence is 

either a sequence of 100101010000000 or dependent on some parameters, such as OFDM 

symbol number and BS identification. The PRBS generator structure is shown in Figure 2.2. 

2.4.2 FEC encoding 

Forward Error Correction (FEC) coding is a channel coding, broadly used in wireless 

communication. FEC can detect and correct errors without the need to retransmit the data 

through the channel which may have a large propagation delay. It is achieved by 

Figure 2.1 Fixed WiMAX physical layer processing chain 

 
Figure 2.2 PRBS for the data randomisation 
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incorporating redundant bits into the transmitted data and recovering the data in the receiver 

side. However, the consequence of this approach is a lower net bit rate caused by the 

introduced redundant bits [19]. In a WiMAX PHY, an FEC encoding is built by 

concatenating a Reed-Solomon (RS) block code and a punctured convolutional code [2]. 

The RS code is used as the outer code, and the convolutional code is used as the inner code. 

It means that the information data are firstly passed through the RS encoder in a block 

format and then encoded by a convolutional encoder followed by a data puncturing. A 

zero-tailing byte is appended to the end of each data package generated by RS encoding to 

reset the convolutional encoder state. In WiMAX, the RS encoding is applied with all 

modulation schemes except BPSK. Other FEC modes such as block and convolutional turbo 

codes are optional in the fixed WiMAX standard, and not addressed in this thesis. 

2.4.2.1 Reed-Solomon encoding 

Due to its outstanding performance for error correction especially for burst errors, 

Reed-Solomon encoding [20] is widely used in communication and storage systems. An RS 

(n, k) code can correct up to t  errors, where n  represents the data block size after 

encoding, k  represents the data block size before encoding and t  is equal to 2/)( kn − . 

In WiMAX specifications, an RS (255, 239) code is used to correct up to 8 errors, each sized 

one byte. The code generator polynomial is shown as Equation 2.1 [2] 

               ∑=++++=
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where 020x=λ . Both multiplication and addition operations in Equation 2.1 are performed 

in Galois Field (GF). Figure 2.3 shows the diagram of an RS encoder in WiMAX. Usually, 

the input block size 'k  is less than 239 bytes. Hence the first '239 k−  bytes need to be 

padded with zeros. As the RS (255, 239) code is systemic, the output block directly contains 

the input block. The information bytes are appended by 2T’ bytes generated redundancy, 

where the value of T’ depends on the modulation scheme and puncturing pattern. 
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2.4.2.2 Convolutional encoding 

A convolutional encoder is based on a linear finite-state shift register which consists of K  

m -bit registers and n  modulo-2 adders, where K  is called constraint length [21]. A 

convolutional code has n  generator polynomials, each of which represents the connections 

of all registers to one modulo-2 adder. By passing each m -bit information through the 

encoder, n  output bits are generated through n  modulo-2 adders. The code rate is 

defined as nmR /= . Shown in Figure 2.4, WiMAX uses a binary convolutional encoder 

with a constraint length of 7 and a code rate of 1/2 [2]. For 1=m , only 1−K  one-bit 

registers are needed, since the input bit can be directly fed into the modulo-2 adders. The 

Figure 2.3 Reed-Solomon encoder 

 

Figure 2.4 Binary convolutional encoder with a constraint length of 7 and a code rate of 1/2 
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two generator polynomials are G1(1,1,1,1,0,0,1) and G2(1,0,1,1,0,1,1), respectively.  

In addition, theoretically the convolutional encoding operation can be graphically 

represented in three different ways: state diagram, tree diagram and trellis diagram. Among 

these diagrams, the trellis diagram is broadly used, due to its presentation of the passage of 

time. Here a brief introduction is given for the trellis diagram which is used in convolutional 

decoding as well. Figure 2.5 shows the trellis diagram for a simple convolutional encoder 

with a code rate of 1/2 and generator polynomials as G1(1,1,0) and G2(1,1,1). The 

horizontal axis represents time, while the vertical axis shows the encoder states which are 

the value of registers. Each new input bit causes a state transition which is represented by 

one connection from the current state to the next state through either a solid line for a 0 input 

or a dashed line for a 1 input. The corresponding output bits are shown in parentheses. The 

encoding operation starts from state 00. Figure 2.5 also highlights the encoding path for an 

input sequence of 1100 in red, where the most significant bit is fed into the encoder firstly. 

The generated output for this sequence is 11001001. 

2.4.2.3 Puncturing 

The convolutional code in WiMAX has a native code rate of 1/2 which means for every 

input bit, the convolutional encoder will introduce one redundant bit. If a higher code rate is 

demanded, a different encoder is needed. However, data puncturing can be used after a 

convolutional code to achieve higher code rates and also improve the flexibility of the 

 
Figure 2.5 Trellis diagram representation of a simple convolutional encoder 
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encoder without involving different encoders. During data puncturing, some bits in the 

encoder output are selectively deleted. Table 2.5 shows the puncturing patterns supported in 

WiMAX, which give different final convolutional code rates from 1/2 (no puncturing) up to 

5/6 (minimal redundancy) [2]. In this table, “1” means corresponding bit is kept, otherwise 

removed.  

2.4.3 Interleaving 

The data transmitted in channels with multipath fading may suffer burst errors which can not 

be easily corrected by FEC codes. An effective method is interleaving the coded bits before 

the modulation, so that the burst errors can be distributed to different modulated data 

symbols and then corrected by FEC decoding [21]. In WiMAX, the interleaver involves two 

permutations given in Equations 2.2 and 2.3 [2], respectively.  

1,,1,0)12/()12/( 12mod −=+×= cbpscbpsk NkkfloorkNm K         (2.2) 

1,,1,0))/12(()/( )mod( −=×−++×= cbpsscbpskcbpskkk Nk    NmfloorNmsmfloorsj K  (2.3) 

where k , km  and kj  are the indices before and after the first and second permutations, 

respectively, and )2/( cpcNceils = . cpcN  represents the number of coded bits per 

subcarrier and depends on the modulation scheme. While cbpsN  represents the interleaver 

block size or coded bits per OFDM symbol, decided by both the modulation scheme and the 

Table 2.5 Puncturing patterns in WiMAX 

Code rate 1/2 2/3 3/4 5/6 

X 1 10 101 10101 

Y 1 11 110 11010 

Output X1Y1 X1Y1Y2 X1Y1Y2X3 X1Y1Y2X3Y4X5 
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number of subchannels. In the receiver side, de-interleaving is performed in two 

permutations as well, but in an inverse direction, given in Equations 2.4 and 2.5.  

( ) 1,,1,0))/12(()/( mod −=×++×= cbpsscbpsj Nj    Njfloorjsjfloorsm K    (2.4) 

1,,1,0)/12()1(12 −=××−−×= cbpscbpsjcbpsjj NjNmfloorNmk K    (2.5) 

where j , jm  and jk  are the indices before and after the first and second permutations, 

respectively.  

2.4.4 Data modulation 

After interleaving, the data bits are mapped to constellation points, which are complex 

valued symbols, by data modulation or symbol mapping. Each symbol can represent one-bit 

or several bit data according to the modulation scheme. In WiMAX, various modulation 

schemes are supported, including BPSK, Quadrature Phase-Shift Keying (QPSK), 16QAM 

 

Figure 2.6 BPSK, QPSK, 16QAM and 64QAM modulation schemes in WiMAX  
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and 64QAM [2]. Among these schemes, BPSK is most robust and 64QAM offers the highest 

data rate. Figure 2.6 shows the constellations for each modulation scheme. For normalisation, 

the absolute value of each constellation point is multiplied with a factor c  shown in Figure 

2.6.  

2.4.5 OFDM processing 

One of the major challenges for high-data-rate wireless broadband systems is the 

Intersymbol Interference (ISI) due to the multipath propagation. ISI becomes very severe 

when the symbol time sT  is much less than the channel delay spread τ. It is especially true 

for WiMAX which has a long range and a high data rate [18]. In WiMAX, OFDM is used to 

overcome the ISI. OFDM is a popular multicarrier modulation technology widely used in 

many high-data-rate systems such as Wi-Fi and DSL. In a WiMAX physical layer, OFDM 

processing is one of key computation functions, composed of pilot insertion, DC and guard 

band insertion, inverse FFT (IFFT) and Cyclic Prefix (CP) extension in downlink processing 

together with CP removal, FFT, pilot removal, DC and guard band removal in uplink 

processing. In WiMAX, after data modulation, OFDM splits a high-rate single carrier into 

N  low-rate subcarriers, each of which is orthogonal to each other and does not affect the 

encoded data on other subcarriers. Then OFDM uses IFFT to create a composite OFDM 

symbol stream by taking the encoded data of each subcarrier [22]. Therefore, the OFDM 

symbol time becomes NTs *  which can be significantly larger than τ. Additionally through 

the use of CP, the channel can be made entirely ISI-free. Usually, for fixed WiMAX OFDM, 

there are 256 subcarriers consisting of 192 information subcarriers, 8 pilots, one Direct 

Current (DC) subcarrier and 55 guard subcarriers [2]. Figure 2.7 shows the frequency 

domain representation of an OFDM symbol for fixed WiMAX. While Figure 2.8 illustrates 

the OFDM downlink processing in the transmitter side for fixed WiMAX. In the receiver 

side, the OFDM uplink processing restores the high-rate single carrier by using FFT and 

removing CP, DC, guard band as well as pilots. In the following subsections, each sub-block 



Broadband Access Technologies and WiMAX 

 22

of OFDM is described.  

2.4.5.1 Pilot modulation and insertion 

In fixed WiMAX OFDM, eight subcarriers carry pilot signals which are used for 

synchronisation in the receiver side. The values of DL and UL pilots for OFDM symbol k  

are obtained from Equations 2.6 and 2.7, respectively [2], where kw  is generated by a 

PRBS with a generator polynomial of 1911 ++ XX , as shown in Figure 2.9. The PRBS 

initialisation sequences for downlink and uplink are given in Figure 2.9 as well. Each pilot is 

BPSK modulated and inserted into the corresponding position of an OFDM symbol as 

illustrated in Figure 2.7. 

DL: kwcccc 2188633888 −==== −−  and kwcccc 2138131363 −==== −−   (2.6) 

UL: kwcccccc 21886338133888 −====== −−  and kwcc 211363 −== −−   (2.7) 

 

Figure 2.7 Frequency domain representation of an OFDM symbol in fixed WiMAX 

 
Figure 2.8 OFDM downlink processing in the transmitter side of fixed WiMAX 
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2.4.5.2 DC and guard band insertion 

In fixed WiMAX OFDM, there are 56 null subcarriers which are not allocated any transmit 

power [2]. These subcarriers include one DC subcarrier and 55 guard subcarriers whose 

positions in OFDM frequency domain are shown in Figure 2.7. The DC subcarrier, whose 

frequency is equal to the centre frequency of radio frequency, is used to prevent any 

saturation effect or DC offset suffered by the receiver side. Guard subcarriers are located at 

the edge of the spectrum to reduce the interference between a WiMAX channel and its 

neighbour channels. Another reason to insert the guard band is that the size of FFT is always 

equal to n2 , some dummy subcarriers should be padded to both edges [18].  

2.4.5.3 FFT/IFFT 

In OFDM processing, IFFT and FFT are used in the transmitter and receiver, respectively. 

An N -point IFFT transforms N  frequency domain data into N  time domain data, while 

FFT performs the opposite operation. IFFT and FFT have very similar structures. There are 

various algorithms to implement FFT/IFFT including radix-2 [23], radix-4 [24], split-radix 

[25] and so on. In this thesis, a simple and popular radix-2 algorithm, which is suitable for 

n2  point FFTs, is used. Figure 2.10 shows the data flow graph of an 8-point radix-2 FFT, 

where the horizontal axes signify the computation stages. There are in total 3 stages for an 

8-point radix-2 FFT, and each stage has four butterfly operations. A signal flow 

 
Figure 2.9 PRBS for pilot modulation 
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representation of a radix-2 butterfly is given in Figure 2.11 where W , called twiddle factor, 

is a trigonometric constant coefficient. After the transformation, the order of output data 

should be reversed into the numerical order. 

2.4.5.4 Cyclic prefix extension 

After the IFFT operation, the interference between symbols is eliminated. However each 

OFDM symbol still suffers Inter-Carrier Interference (ICI) or ISI within one OFDM symbol. 

It is because of the feature of the multicarrier modulation where many subcarriers are tightly 

packed into one channel, so that even small frequency shifts will cause ICI [22]. To 

overcome ICI, a guard time is inserted in front of each OFDM symbol. In OFDM, the guard 

time is implemented by duplicating a tail portion of an OFDM symbol at the beginning of 

this symbol. This method is termed as cyclic prefix extension. In the receiver side, the CP 

 
Figure 2.10 Data flow graph of an 8-point radix-2 FFT 

 
Figure 2.11 Signal flow representation of a radix-2 butterfly 
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will be removed before FFT performs. The ratio of CP length to useful symbol length is 

called guard fraction G . As shown in Figure 2.8, after the cyclic prefix extension, the 

symbol time becomes sTG ')1( ×+ . Obviously, a long guard time or large G  will reduce 

the net bit rate, while a too short guard time or small G  would not protect symbols from 

ICI. In WiMAX, G  can have a value of {1/4, 1/8, 1/16, 1/32}. Many multi-core WiMAX 

solutions (e.g. Freescale WiMAX solution [26]) use 1/16 as the value of G . For the sake of 

comparison, a fraction of 1/16 is used in this thesis. 

2.4.6 Synchronisation 

The synchronisation block performs the symbol timing synchronisation to determine the 

symbol arrival time offset and the optimal timing instant by using the maximum likelihood 

(ML) estimation algorithm [27]. As shown in Figure 2.12, assume that we observe 2N+L 

consecutive samples represented in a 1-D vector r )]2()1([ LNrr +L  and these samples 

contain one complete CP extended OFDM symbol consisting of N+L samples, In Figure 

2.12, N is the length of an OFDM symbol, L  is the length of CP, and θ  is the unknown 

time offset. The ML estimation of θ  can be obtained by Equation 2.8 [28]. 
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Figure 2.12 Timing synchronisation 
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2.4.7 Data demodulation 

In the receiver side, the soft decision based data demodulation restores the original bits from 

the complex valued symbols by comparing the values of real and imaginary parts with some 

threshold values [2]. Figure 2.13 shows the soft decision demodulations for 16QAM where d 

is the threshold. 64QAM has more threshold values but maintains the similar idea of 

16QAM demodulation. As for BPSK and QPSK, the original bits can be easily recovered 

according to the sign of the real and imaginary parts, as shown in Figure 2.6.  

2.4.8 FEC decoding 

In the receiver side, FEC decoding performs the inverse order of FEC encoding, and consists 

of de-puncturing, Viterbi decoding used to decode convolutional codes and Reed-Solomon 

decoding. The de-puncturing is simply performed by inserting 0 at the punctured positions. 

Viterbi and RS decoding are described in the following subsections. 

2.4.8.1 Viterbi decoding 

The basic idea behind the decoding of convolutional codes is to compare the received 

sequence with all possible valid sequences, by using the trellis diagram. In WiMAX PHY, 

 
Figure 2.13 16QAM soft decision data demodulation 
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the Viterbi algorithm [29] is applied to decode convolutional codes. The Viterbi algorithm 

allows multiple possible paths calculated concurrently and is much faster than other 

decoding algorithms like Fano algorithm which deals with only one path at a time. However, 

the Viterbi algorithm costs more resources if implemented in hardware. The Viterbi 

algorithm calculates branch metrics between the incoming bits and each possible branch of a 

state in the trellis diagram, and then accumulates the metric values along each path to 

generate a path metric. When two possible paths converge on one state node, the path with 

the lower path metric is kept as a survivor, with the other one discarded. Eventually, only the 

path with the lowest path metric is the ultimate survivor. Usually the Hamming distance is 

used as the metric. Figure 2.14 shows the decoding process for the convolutional code in 

Figure 2.5 by using the Viterbi algorithm. Assuming the received sequence is 10011001, it 

has two bit errors compared to the output sequence 11001001 of the convolutional encoder. 

In Figure 2.14, the Hamming distance for each path is shown in parentheses at each state 

point which the path reaches. The discarded paths have a red cross on them. Finally, the path 

with lowest Hamming distance of 2 is the survivor, highlighted in blue. The corresponding 

decoded sequence is 11001001, matching the output sequence of the encoder shown Figure 

2.5. 

2.4.8.2 Reed-Solomon decoding 

In RS decoding, up to t  errors (in WiMAX, t=8) can be detected and corrected following 

 
Figure 2.14 Viterbi decoding process for a convolutional code with a 1/2 code rate 
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the process shown in Figure 2.15 [30]. Firstly the received data is fed into the syndrome 

computation block for detecting whether the data contains any errors. Then the generated 

syndromes are used for retrieving the locations and values of errors. The Berlekamp-Massey 

algorithm [30] is chosen to generate an error-location polynomial. If the degree of the 

location polynomial is greater than t  which is the maximum number of correctable errors, 

the decoder is only able to detect the presence of errors and will stop without any further 

correction. Otherwise the roots of this polynomial are obtained by an exhaustive search 

performed in Chien search block. Once the errors have been located, the error evaluation 

polynomial and Forney algorithm blocks will calculate the error values. Then error values 

together with error locations and received data are sent to the error correction block for 

recovering the original data. Each of blocks shown in Figure 2.15 involves plenty of GF 

calculations, the detail of which can be found in [30]. 

2.5 Summary  

This chapter has reviewed current mainstream broadband access solutions including both 

wired and wireless technologies. Some comparisons were given to exhibit the advantages of 

WiMAX over its counterparts. Due to its merits, WiMAX was demonstrated to be a 

promising solution to promote ubiquitous Internet access. As the main target of this thesis is 

fixed WiMAX, Section 2.4 introduced the structure of fixed WiMAX physical layer and 

described the function and algorithm for each main block of both transmitter and receiver. 

 
Figure 2.15 Reed-Solomon decoding process 
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3.1 Introduction 

Applications such as WiMAX demand high performance, strict low power, and in-field 

reprogrammability in order to follow evolving standards. Traditional single-core 

architectures could not satisfy all these requirements, since in the past few years, people 

have not seen great gains, but instead diminishing returns in single-core processor 

performance through increasing operating frequency. It is well known that the development 

of single-core processors hits three walls: memory wall, ILP wall and power wall. Now both 

industry and academia are all agreed that the continuing increases in the transistor count and 

operating frequency can no longer make a microprocessor faster, instead multiple or many 

simpler processing cores should be put on a chip. As a result, the processing load of 

complicated applications can be distributed across multiple processing cores. This approach 

can deliver more overall performance through parallelism, as well as consume less power.  

On the other hand, in recent years, several new coarse-grained dynamically reconfigurable 

Chapter 3
        Multi-core Processors 

and Reconfigurable Architectures
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architectures have emerged, such as Transport Triggered Architecture (TTA) [31], Pleiades 

[32], DAPDNA-2 [33] and Reconfigurable Instruction Cell Array [7]. Incorporating a 

DSP-like flexibility as well as a close performance and power efficiency of ASICs [7], 

coarse-grained DR processors (e.g. RICA) are promising to be candidates for processing 

cores in high performance embedded multi-core processors.  

Through gradually introducing the background knowledge of multi-core processors, 

reconfigurable architectures and RICA technology, this chapter indicates the reasons why 

RICA reconfigurable technology based multi-core architecture is explored in this thesis. 

This chapter is structured as follows. Section 3.2 investigates the advantages of multi-core 

processors over single-core processors and the taxonomies of multi-core processors. Section 

3.3 introduces reconfigurable architectures in terms of different classifications. Section 3.4 

focuses on a detailed introduction of a course-grained DR architecture – RICA, which is the 

target processing core used to build the proposed multi-core architecture in this thesis. 

Section 3.5 reviews the traditional WiMAX implementations on ASICs, GPPs and Field 

Program Gate Arrays (FPGAs). Section 3.6 addresses some existing work on multi-core 

WiMAX implementations. Section 3.7 summarises the reason why the RICA technology is 

chosen for the proposed multi-core architectures in this thesis.  

3.2 Multi-core processors 

As a kind of parallel architecture, a multi-core processor architecture combines two or more 

independent cores (e.g. GPP and DSP cores) into a single integrated circuit die. Actually 

parallel computing is not a new concept. Ever since the first effort to design a parallel 

machine (called SOLOMON) was made in 1958 [34], the parallel computing paradigm has 

been improving dramatically. Within the past half century, many advanced technologies 

have been created and become popular, such as Single Instruction Multiple Data (SIMD), 

Symmetric Multiprocessing (SMP) and multithreading. Now multi-core processors adopt 

many of these technologies which were originally developed for mainframes and 
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supercomputers.  

Currently many multi-core processors have been fabricated for different markets such as 

servers, personal computers and embedded systems. These multi-core processors include 

Intel Quad-Core Xeon [35], Nvidia GeForce GTX260 [36], ARM11 MPCore [37], Ambric 

Am2000 family [38] and so on. With the release of more and more multi-core processor 

products from top semiconductor companies, multi-core architectures are believed by many 

people as the trend of the development of processors and highly anticipated to exceed the 

common interpretation of Moore’s Law [39]. 

3.2.1 The advantages of multi-core processors  

Multi-core processors have many advantages. First of all, the salient characteristics of a 

multi-core processor enable it to avoid or move the three walls that single-core processors 

face further away. The placement of multiple processing cores on a single chip allows 

high-speed shared caches or stream buffers incorporated into the chip. The integrated shared 

memory blocks can operate at a much higher clock rates and have lower access latencies 

than on-board shared memory blocks which signals have to travel off-chip to access. Hence, 

the speed gap between processing cores and memory can be efficiently alleviated. 

Meanwhile thread level parallelism or multithreading has become more popular and can take 

better advantage of computing resources than ILP. In a multi-core environment, 

multithreading can bring potential into full play, since every core can support multithreading. 

Additionally, as multi-core processors can do more tasks or threads in parallel, multi-core 

processors can be designed to operate at lower frequencies than single-core processors. 

Theoretically, power consumption increases proportionally with the frequency, especially 

dynamic power consumption which is responsible for 80% of the overall power 

consumption [40]. Therefore multi-core processors can have a relaxed power budget, and 

mitigate the pressure in the cooling system. Moreover, if a processing core is not used, it can 

be switched off, so that the overall static power consumption can be reduced as well. 
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Secondly from the software point of view, multi-core processors can dramatically slash the 

response time for computation-intensive tasks like antivirus scan and video playback. It is 

achieved by assigning each such application to one core, so that the tasks will not compete 

for the computing resources on the same core as super-threading does on single-core 

processors. This design reuse has far less design risk than developing a new processor 

starting from scratch. In addition, multi-core processors can be fault-tolerant. If one core 

fails, the faulty core can be switched off. The rest of the system can still correctly function, 

even though delivering a reduced performance. Furthermore, a multi-core processor has 

advantages over a multi-chip module, which incorporates multiple die in one package, 

across all performance metrics. The advantages are mainly due to the shorter distances, 

which the signals between processing cores have to travel, as well as the reduced space 

multi-core processors require.  

3.2.2 Taxonomies of multi-core processors 

Multi-core processors can be categorised in term of different taxonomies such as the target 

markets, heterogeneity or homogeneity as well as the types of cores used to build the 

multi-core architectures.  

3.2.2.1 Computing markets 

Recording computing markets, multi-core processors are broadly used in three different 

markets, servers, desktop and laptop computing as well as embedded systems. These 

markets are distinct from each other in applications and requirements [41]. For servers, it is 

crucial to reliably and efficiently provide services such as Internet searching and online 

transactions. Commercial multi-core processors targeting servers include Intel Xeon [35], 

AMD multi-core Opteron [42], IBM dual-core POWER6 [43], Sun Microsystems eight-core 

UltraSPARCT1/T2 [44] and so on. The desktop and laptop computing market is 

continuously driven to improve price/performance ratio. This field is dominated by Intel and 

AMD x86 architecture based products. One exception is IBM dual-core PowerPC 970MP 
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[45] for Apple Power Mac G5 computer. Currently desktop and laptop multi-core processors 

contain up to four processing cores. Such processors include Intel Core 2 Quad [46] and 

AMD quad-core Phenom [47].  

Recently with more and more computation-intensive applications, such as wireless 

communication and multimedia, incorporated into embedded systems, there is an increasing 

trend to use multi-core processors in embedded devices such as game consoles and WiMAX 

base stations. Many embedded systems demand real-time performance meaning that a 

service or an application must be completed before a deadline. Meanwhile portable 

embedded devices need to be highly energy efficient for extending battery life. Usually 

multi-core processors in this field are especially designed for some dedicated applications or 

application domains. Examples include the Cell processor [48] initially designed for 

PlayStation 3, Ambric Am2000 family [38] targeting video processing and picoChip 

multi-core DSPs [49] looking at wireless communication. Considering the issue of power 

consumption, a number of embedded multi-core processors are composed of many simpler 

processing cores with lower frequency, compared to their counterparts in the other two 

markets. For example, Am2045 [38] consists of 360 32-bit processors with a 333 MHz clock, 

while picoChip PC101 [50] contains 430 16-bit processors and runs at 160MHz.  

3.2.2.2 Heterogeneity and Homogeneity 

Depending on whether processing cores are identical, multi-core processors can be 

categorised into homogeneous multi-core and heterogeneous multi-core. As its name implies, 

all processing cores in a homogeneous multi-core architecture are same. A heterogeneous 

multi-core architecture consists of different cores, each of which could be optimised for 

certain applications running on it. It allows heterogeneous multi-core architectures offer 

better performance for domain specific applications. However, heterogeneous multi-core 

architectures may face more challenges than its homogeneous twin in terms of Application 

Programming Interface (API) support, task partitioning and mapping, as well as compiler 



Multi-core Processors and Reconfigurable Architectures 

 34

and language development [51]. Now it is still debated that homogeneity or heterogeneity 

will be the future of multi-core processors [52]. Recently most multi-core processors used in 

servers as well as desktop and laptop computing are homogeneous. As to embedded systems, 

both homogeneity and heterogeneity architectures are widely used. The rest of this section 

describes more details about heterogeneous multi-core processors, since homogeneous ones 

are built by replicating processing cores.  

Each core of a heterogeneous multi-core architecture may differ in size, functionality, 

performance and complexity or even come from totally different processor families. 

Heterogeneous multi-core architectures can be further divided into single Instruction Set 

Architecture (ISA) heterogeneity and multi-ISA heterogeneity. Multi-ISA heterogeneity 

architectures contain processing cores based on different ISAs and hence may involve 

multiple tool flows. The hybrid feature makes this type of architecture more difficult to 

design and program for. In contrast, all cores in a single-ISA heterogeneous multi-core 

architecture share a same ISA. It allows any core to execute any application used to run on 

other cores, with little effort on system reconfiguration and program modification. 

Previously mentioned commercial products, such as the Cell processor and picoChip 

multi-core DSPs, are heterogeneous.  

A variety of heterogeneous multi-core systems have been proposed in academia as well, 

based on either single-ISA [53-55] or multi-ISA [56]. The authors in [53] proposed a 

single-ISA heterogeneous multiprocessor consisting of two processor types EV5 and EV6. It 

demonstrated that heterogeneous architectures could provide significantly higher 

performance than their equivalent-area homogeneous counterparts. In [54], a heterogeneous 

multiprocessor architecture was proposed for high definition video. Using Silicon Hive 

technology, this architecture employed five processors based on three different hardware 

templates. In [55], the authors presented a heuristic to efficiently explore the design space 

for a pipeline based heterogeneous multiprocessor system. This system uses a commercial 

Application-Specific Instruction-Set Processor (ASIP) – Xtensa LX from Tensilica [57]. 
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JPEG and MP3 applications were taken as case studies. Shikano et al. [56] presented a 

heterogeneous CMP consisting of three SuperH processors and two FE-GA processors for a 

MP3 encoder. 

3.2.2.3 Core types  

Multi-core processors can be structured with varied types of processing cores such as GPP 

cores, DSP cores, Graphics Processing Unit (GPU) cores, ASIP cores, dynamically 

reconfigurable cores or a mix of these. Most multi-core processors used in servers as well as 

the desktop and laptop computing are based on GPP cores, except those used for special 

purposes such as Nvidia GeForce GTX200 GPUs. Due to the variety of embedded systems, 

there are many more choices in building embedded multi-core processors. For instance, 

Table 3.1 Comparison of multi-core processors 

Multi-core No. of Cores Target market Homo/Heterogeneity Core type

Opteron [42] 2/4/6 Server Homogeneous GPP 

POWER6 [43] 2 Server Homogeneous GPP 

Processor in [53] 8 Server Heterogeneous GPP 

UltraSPARC T1/T2 [44] 8 Server Homogeneous GPP 

Xeon [35] 2/4/6 Server Homogeneous GPP 

Core 2 Duo/Quad [46, 58] 2/4 Desktop/laptop Homogeneous GPP 

GeForce GTX200 [36] 10 Server/desktop/laptop Homogeneous GPU 

Phenom [47] 3/4 Desktop Homogeneous GPP 

PowerPC 970MP [45] 2 Desktop Homogeneous GPP 

Am2045 [38] 336 Embedded Homogeneous DSP 

ARM11 MPCore [37] 2/3/4 Embedded Homogeneous GPP 

Cell [48] 9 Embedded Heterogeneous Mix 

DAPDNA-2 [33] 2 Embedded Heterogeneous Mix 

IXP 2350 [59] 5 Embedded Heterogeneous Mix 

MSC8126 [26] 4 Embedded Homogeneous DSP 

PC101/102 [49, 50] 430/308 Embedded Heterogeneous DSP 

MRC6011 [60] 6 Embedded Homogeneous DR 

Processor in [55] 4/5/6/9 Embedded Heterogeneous ASIP 

Processor in [56] 5 Embedded Heterogeneous Mix 

SB3010 [61] 5 Embedded Heterogeneous Mix 
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Freescale MSC8126 multi-core DSP [26] is equipped with four SC140 VLIW DSP cores, 

ARM11 MPCore [37] can be configured to have up to four GPP cores, and Freescale 

MRC6011 [60] consists of six coarse-grained DR cores. Moreover, some embedded 

multi-core processors are built with a mix of different types of cores. Examples of such 

multi-core processors include Intel IXP 2350 [59] and IPFlex DNPDNA-2 [33]. IXP 2350 is 

a network processor which has an XScale GPP core and four microengine cores, designed 

for line-rate packet processing. DNPDNA-2 is comprised of a high-performance Reduced 

Instruction Set Computer (RISC) core called DAP and one coarse-grained reconfigurable 

fabric called DNA. Obviously, such kind of multi-core processor must be heterogeneous, but 

heterogeneous multi-core processors are not necessarily to be built with different types of 

cores. Table 3.1 summarises some popular commercial and academic multi-core processors 

in terms of the number and types of cores and their targets.  

3.3 Reconfigurable architectures 

Reconfiguration Architectures (RAs) refer to systems containing a Reconfigurable 

Processing Unit (RPU) which can be customised to execute different applications after 

fabrication through multiple configuration bits. Basically, an RPU is an array of 

computational elements connected through a set of programmable routing resources [62]. 

Offering a good balance between implementation efficiency and flexibility, reconfigurable 

architectures can achieve much higher performance than GPPs and DSPs, while maintaining 

software-like flexibility by post-fabrication programmability. To date, there is no unified 

taxonomy established for reconfigurable architectures. Usually several architectural 

characteristics are used to classify RAs, including execution structures, granularity and 

reconfiguration schemes [63].  

3.3.1 Execution structures 

According to the structure of executing datapaths and control paths, reconfigurable 
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architectures can be classified into two categories [63]. In the first category, a RA is a 

combination of a RPU for datapath operations and a main processor for control operations. 

Actually, the RPU acts as a hardware accelerator to execute the computation-intensive part 

of the application, while the main processor (e.g. RISC or VLIW based) is usually 

responsible for control operations, RPU configuration and the synchronisation with the RPU. 

This kind of architecture may involve plenty of manual work on separate programming for 

the RPU and the main processor as well as the synchronisation between the two different 

components. The typical examples of such architectures are Montium [64] and MorphoSys 

[65]. According to the type of coupling of the RPU to the main processor, this category can 

be further split into loose coupling, where the RPU connects to the processor through 

internal or external bus, and tight coupling where the RPU is even embedded into the 

processor and communicates with it through shared registers [66]. In the second category, 

the RPU can execute both datapath and control operations. Although a processor may exist 

in this kind of RA, there is no need for moving a large mount of data and manual 

synchronisation between the processor and the RPU. Such architectures include Pleiades [32] 

and RICA [7]. 

3.3.2 Granularity 

The granularity represents the size of smallest function units in a reconfigurable architecture. 

Recording this parameter, reconfigurable architectures can be categorised into fine-grained, 

coarse-grained, medium-grained, very coarse-grained and mixed-grained RAs [66]. 

3.3.2.1 Fine-grained reconfigurable architectures 

Fine-grained RAs contain basic function units sized down to one bit. Many early FPGAs and 

Programmable Logic Devices (PLDs) mainly consist of fine-grained basic logic blocks such 

as transistors, NAND gates, an interconnection of multiplexers and Look-Up Tables (LUTs) 

[67]. Among these fine-grained logic blocks, LUTs are broadly used in commercial 

FPGAs/PLDs such as Xilinx Virtex 5 [68] and Altera Stratix III [69]. Typically, a LUT is 
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implemented by using Static Random Access Memory (SRAM) cells and can be used to 

build any bit-level logic function with the same number of inputs [67]. Based on bit-level 

blocks, fine-grained RAs can be configured as a wide range of hardware circuitries. The 

flexibility comes at a price of significant routing overheads and a large number of 

configuration bits, since each basic function unit should be connected and configured. As a 

result, dedicated applications can not efficiently perform on fine-grained RAs, and consume 

more power, space and configuration time with fine-grained implementations [66]. For 

example, assuming an implementation of a 32-bit adder on a fine-grained FPGA, it will cost 

logic blocks and corresponding routing resources. Obviously, this implementation is 

inefficient for addition-intensive applications, compared to a reconfigurable architecture 

with an array of 32-bit adders. 

3.3.2.2 Coarse-grained reconfigurable architectures 

Usually coarse-grained RAs are based on word-level building blocks which could be 

Arithmetic Logic Units (ALUs) or some custom function units (e.g. adders and multipliers) 

connected through interconnection networks such as mesh, crossbar and linear array [70]. 

Made less generic and more specific to some application domains, coarse-grained RAs have 

several advantages over their fine-grained counterparts in terms of power consumption, 

speed and area costs. However, some possible inefficient implementation on coarse-grained 

RAs could happen when operations required by applications do not match the size of 

building blocks. For example, an application requiring 8-bit addition operations could waste 

resources of an RA built with only 32-bit blocks. Actually this kind of situation can be avoid 

by either using vector operations or tailoring the resources to meet the requirement since the 

application could be known in advance.  

In the last twenty years, many commercial and academic coarse-grained RAs have been 

proposed. In Table 3.2, a summary is given for the comparison of various coarse-grained 

RAs. As shown in Table 3.2, most listed coarse-grained RAs are based on a format of a 
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control-responsible main processor paired with a computation-responsible RPU acting as a 

coprocessor or a hardware accelerator. In Section 3.3.1, it has been pointed out that these 

architectures will involve separate programming and complicated synchronisation. It is also 

shown that many of coarse-grained RAs are programmed in low level languages (e.g. 

assembly and netlist) or C subsets and extensions which are not fully compatible with ANSI 

C. In Section 3.4, a newly emerging coarse-grained reconfigurable architecture RICA is 

described in details. This architecture supports ANSI C programming and is able to run both 

control path and datapath operations. 

Table 3.2 Comparison of coarse-grained reconfigurable architectures 

Architecture Execution structure Programmability Target application 

Adapt2400 [71] RPU for control/datapath SiliverC (ANSI C 
derivative) 

Signal/image 
processing 

ADRES [72] VLIW for control; RPU for 
datapath/limited control ANSI C Video 

DAPDNA-2 [33] RISC for control; 
RPU for datapath 

MATLAB/Simulink; 
ANSI C General purpose 

HiveFlex CSP [73] VLIW for control; 
RPU for datapath ANSI C OFDM 

Matrix [74] RISC for control; 
RPU for datapath 

Assembly level macro 
language General purpose 

Montium [64] RPU as a co-processor for 
datapath 

Montium LLL language 
( low level) 

Wireless, image/ 
signal processing 

MorphoSys [65] RISC for control; RPU for 
parallel-data operations Assembly Pixel-processing 

PACT XPP [75] RPU as a co-processor for 
datapath 

NML language  
(low level) DSP 

PADDI-2 [76] RPU as a co-processor for 
DSP datapath Assembly DSP 

PipeRench [77] RPU as an accelerator for 
pipeline applications 

DIL single-assignment 
language (C subset) Pipelining 

Pleiades [32] Main processor for control; 
RPU for datapath/control Netlist for RPU Multimedia 

RaPiD [78] RISC for control; 
RPU for datapath RaPiD-C Pipelining 

RICA [7] RPU for control/datapath ANSI C Wireless, image and 
signal processing 

TTA [31] RPU for control/datapath ANSI C DCT, Viterbi and etc.



Multi-core Processors and Reconfigurable Architectures 

 40

3.3.2.3 Medium-grained and very coarse-grained reconfigurable architectures 

Medium-grained structures have granularities sized between fine grains and course grains. 

Examples of such architectures are Garp [79] and CHESS [80]. Garp [79] has an array of 

2-bit reconfigurable ALUs, while the kernel of CHESS architecture [80] is a hexagonal array 

of 4-bit ALUs targeting multimedia applications. As for very coarse-grained architectures, 

the basic reconfigurable building blocks are based on a processor. In [81], RAW is built with 

16 tiles, each of which is a 32-bit modified MIPS R2000 microprocessor. While REMAEC 

[82] has an 8 by 8 array of 16-bit nanoprocessors. 

3.3.2.4 Mixed-grained reconfigurable architectures 

Currently many modern commercial FPGAs are built with a mixture of different logic 

function units from fine-grained blocks like LUTs to coarse-grained blocks, such as 

dedicated memory block, multipliers and adders [67]. These FPGAs are heterogeneous 

structures and called mixed-grained RAs. Basically such a FPGA (e.g. a Xilinx or Altera 

FPGA) contains an array of Configurable Logic Blocks (CLBs) [68] or Adaptive Logic 

Modules (ALMs) [69] and routing resources. CLBs or ALMs are connected through a 

reconfigurable interconnection network. Usually a CLB or an ALM contains several 4-input 

or 6-input LUTs, flip-flops, multiplexers and even some arithmetic units. Meanwhile this 

kind of FPGA feature an amount of block RAMs for meeting different memory 

configurations and word-level arithmetic blocks like multipliers for accelerating 

computation-intensive applications. These coarse-grained blocks have grown to take 

dominant space on mixed-grained FPGAs. For example, the latest Xilinx Virtex 6 FPGAs 

contain up to 864 DSP48E1 slices and 1064 dual-port RAM blocks. Each DSP48E1 slice 

consists of a 25 x 18 multiplier, an adder, and an accumulator. Each block RAM can store 36 

Kbits [83]. Some dedicated functions (e.g. DSP functions) can be effectively implemented 

on these coarse-grained blocks and thus have significant advantages in terms of area, speed 

and energy, compared to their implementations on CLBs or ALMs. However, if these 
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functions are not present in the target applications, those special blocks will become 

redundant and thus reduce the area efficiency of mixed-grained FPGAs [67]. 

3.3.3 Reconfiguration schemes 

In terms of the reconfiguration scheme, RAs can be classified into static, dynamic and 

partially dynamic reconfiguration [66]. In the static reconfiguration, the hardware is 

configured at system power up. Once the operation starts, the hardware will remain the same 

configuration through the whole life of the application. One example of such statically 

reconfigurable devices is Altera Stratix II FPGAs [84]. In contrast of the static 

reconfiguration, dynamically reconfigurable architectures can be run-time configured to 

execute different configuration contexts (the configurations for applications are partitioned 

into multiple contexts) by swapping or switching these contexts. Most coarse-grained 

architectures are dynamically reconfigurable. Both static and dynamic reconfigurations need 

the devices to be fully reconfigured. Rather than this full reconfiguration, some devices such 

as Xilinx Virtex 5 FPGAs [68] allow to selectively reconfigure a part of resources, in the 

meantime keeping the rest of resources operating. This partial dynamic reconfiguration can 

hide the reconfiguration time in the computation time.  

3.4 Reconfigurable instruction cell array 

In [7], a coarse-grained dynamically reconfigurable architecture is proposed, called 

reconfigurable instruction cell array. In this thesis, the proposed multi-core architecture uses 

processing cores based on this RICA architecture. The following subsections describe the 

RICA architectural characteristics and its tool flow.  
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3.4.1 Architecture 

The main part of the RICA architecture is a heterogeneous array of instruction cells 

interconnected through an island-style mesh fabric. Each instruction cell can be configured 

to do a small number of operations as listed in Table 3.3 which gives the description of both 

standard instruction cells and some existing custom instruction cells. Figure 3.1 shows the 

architecture view of RICA. One salient characteristic of RICA is that the array can be 

customised at the design stage according to application requirements in terms of the number 

of each certain cell, and even allows for new custom cells added. Another characteristic is 

that RICA supports operation chaining – the ability to execute both dependent and 

independent instructions in parallel in one configuration context (called step), which leads to 

Table 3.3 RICA Instruction Cells 

Standard Instruction Cell Associated Operations 

ADD Addition and subtraction 

MUL Multiplication 

REG Registers 

CONST Interconnection 

SHIFT Shifting 

LOGIC Logic operation (e.g. XOR and AND) 

COMP Comparison 

MUX Multiplexing 

I/O REG Register with access to external I/O ports 

RMEM Interface for reading data memory 

WMEM Interface for writing data memory 

DMA_interface Interface for DMA 

I/O port Interface for external I/O ports 

RRC Controlling reconfiguration rates 

JUMP Branches 

Custom instruction Cell Associated Operations 

SOURCE Interface for reading files 

SINK Interface for writing files 

GFMULT Galois Finite Field Multiplication 

SBUF Interface for accessing stream buffer banks 

MULTIPTBK_REG_FILE Interface for accessing shared register files 
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high degrees of parallelism. 

In contract of traditional processors which have computation units on critical paths pipelined 

to improve the throughput, the RICA architecture introduces variable clock cycles to ensure 

longer critical paths consume more clock cycles. An instruction cell termed Reconfiguration 

Rate Controller (RRC) is used to achieve that. RRC is a counter-like cell which contains the 

amount of clock periods (called RRC periods) needed for the critical path of the current step.  

Once counting down to zero, RRC generates an Enable signal for the program counter and 

registers. The RRC period can be programmable as part of the RICA’s configuration [7]. 

Secondly, the distinction from a conventional processor is RICA’s memory access patterns 

(for both data and program memory). The RICA architecture provides multiple memory 

interface cells which allow for simultaneously reading and writing multiple data memory 

locations within one single step. Meanwhile, the instruction stream fetch patterns are 

unusual in that successive iterations of certain loops can be executed following only a single 

fetch from the program memory, if the loop can be placed into one single step. This kind of 

 
Figure 3.1 The RICA architecture 
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step is called a kernel. In addition, the instruction words are also quite large compared to 

those in existing DSPs. Thirdly a multi-bank memory system is provided to meet the higher 

data memory bandwidth demanded by the operation chaining in order to keep the array fed 

with data. This is quite different to that seen in conventional processors as well.  

As a reconfigurable architecture, RICA needs to be reconfigured for each updated step. The 

time consumed by loading the next step and configuring the array is called configuration 

latency. The configuration latency is variable according to the number of instruction cells 

used and configured in each step. Basically, the execution time of a step is greater than the 

configuration latency. Therefore, the configuration latency between consecutive steps can be 

hidden through prefetching the next step when the current step is executed. The prefecthing 

can work only if the current step has no branches or has an unconditional branch. The RICA 

architecture does not need to be reconfigured when the step loops to itself, in which case 

there is no configuration latency at all [7].  

3.4.2 Standard tool flow 

RICA supports the development from high level languages such as C in a manner very 

similar to conventional microprocessors and DSPs. Figure 3.2 illustrates the standard tool 

flow of RICA. As shown in Figures 3.1 and 3.2, ANSI C programs can be compiled into a 

sequence of steps captured in a netlist, by means of a compiler and a scheduler specific to 

the RICA architecture. These steps are switched between several times during the execution 

of the complete program. Formed by a sophisticated scheduling algorithm [85], each step 

packs together as many chains of operations as possible, and takes a variable number of 

clock cycles to execute, in order for all chains to complete. The contents of each step are 

executed concurrently by RICA according to the availability of hardware resources.  
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The generated steps can be executed on a SystemC based simulator or converted into 

configuration bits by the placement and routing tool. The generated configuration bits can be 

downloaded into the program memory on a real RICA chip. As shown in Figure 3.2, a 

Machine Description File (MDF) containing the architecture and cell information is used as 

an input to both the scheduler and the simulator. A number of algorithms have been tested to 

demonstrate that RICA can achieve up to 8 times higher throughput than RISC processors 

such as OR32 [7].  

3.5 Traditional WiMAX silicon implementations 

Traditionally, there are various WiMAX implementation solutions including custom chips, 

GPP/DSP based System on Chips (SoCs), FPGAs and so on. These solutions are still 

popular to some extent, even owning some non-neglectable drawbacks. These solutions are 

described in the following subsections.  

3.5.1 Custom chip implementations 

Custom chip implementations are traditionally popular in designing wireless communication 

 
Figure 3.2 Standard RICA tool flow 
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protocols. Usually those chips are fully customised for WiMAX applications and designed 

through the standard ASIC design flow involving Register Transfer Level (RTL) coding, 

logic synthesis and layout design. One such example is Intel WiMAX Connection 2400 chip 

[86] which can deliver a maximum sustainable throughput at 20Mbps for DL and 5Mbps for 

UL. Another is Wavesat NP7256 [87] providing a throughput up to 37.5Mbps. Other 

commercial custom chip solutions include TeleCIS Wireless TCW 1620 chip, Philips 

UXF234xx series and so on. Obviously, these ASIC based implementations can offer high 

throughput, high power efficiency and small footprints for WiMAX applications. However 

as they are fully customised, this kind of solution is inherently inflexible and can not be 

upgraded and altered after fabrication. This is one of its main drawbacks, particularly when 

this approach is used for wireless communication applications like WiMAX where the 

standards always keep changing. Moreover, designing full custom chips requires more 

human effort and can not meet the short time-to-market demands.  

3.5.2 GPP/DSP based SoC implementations 

Instead of designing basic components from RTL, another popular solution for design 

companies is to use the third-party or their own GPP and DSP IPs to build SoCs for 

WiMAX. This kind of solution usually uses GPPs for Media Access Control (MAC) layer 

protocols and DSPs for PHY processing. One such example is Intel Pro/Wireless 5116 [88] 

which features dual-core ARM 946E-S engines for MAC, PHY and protocol processing as 

well as a DSP engine for OFDM processing. Some other SoC solutions, such as Fujitsu 

MB873400 and ST STW51000, have MAC protocols performed by GPPs, but PHY 

processed by their own proprietary ASICs. This kind of solution is more flexible and 

significantly reduces the product development cycle, compared to full custom chips. 

However, as Application Specific Standard Products (ASSPs), SoC solutions are still 

time-consuming and expensive. In conclusion, it is very costly to enter the WiMAX market 

with either the SoC solution or the custom chip solution. 
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3.5.3 FPGA/PLD implementations  

WiMAX protocols can be mapped on FPGAs/PLDs for fast hardware prototypes and some 

domains where the costs of power and area are not important concerns. FPGA/PLD based 

solutions can provide more flexibility and shorter time-to-market compared with the above 

two types of solutions. Announced in [89], Altera Stratix II FPGAs can be used to address 

implementation challenges of designing a WiMAX system. Based on a 90-nm SRAM 

process, Stratix II FPGA family owns up to 18k logic elements, 9 Mbit on-chip Random 

Access Memory (RAM) and 384 18-bit multipliers. The authors in [90] implemented a fixed 

WiMAX baseband on an Altera Stratix EP1S80 board containing an Altera EPM7064 PLD 

which has more resources than normal FPGAs. About 57% of logic modules were occupied 

to perform this implementation. In [91], another FPGA solution was presented to implement 

a fixed WiMAX PHY on a Lattice ECP33 device. This implementation cost around 70% of 

resources on this device which has 33k LUTs, 8 coarse-grained sysDSP blocks. Both Altera 

and Lattice provide IPs to accelerate computation-intensive functions like RS coding, 

Viterbi decoding and FFT. In addition, some other researches developed incomplete 

WiMAX implementations on Xilinx FPGAs. For example, in [92], the authors presented a 

WiMAX transmitter implementation on a Xilinx Virtex II Pro FPGA, using a pure VHDL 

mapping approach and Xilinx AccelDSP tool, respectively. However, FPGAs/PLDs are not 

power and area efficient for WiMAX implementations, as they cost much more power 

consumption and area than ASICs [93]. 

3.6 Multi-core implementations of WiMAX 

Recently, a significant demand for high performance and flexible WiMAX solutions is 

forcing designers to move to multi-core systems. Several multi-core solutions, targeting 

WiMAX applications, are introduced in the following subsections. These solutions are 

different from each other in terms of architectures and core types. For example, both 

Freescale MSC8126 DSP and picoChip PC102 are built with DSP cores, while others use 
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mixed core types.  

3.6.1 PicoArray 

PicoArray PC102 [49], from picoChip, is a heterogeneous multi-core DSP based on a tiled 

architecture. It features 308 16-bit processors in three different variants as well as various 

hardware accelerators. Based on the Harvard architecture and a common instruction set, 

each processor variant has varying amounts of separate local data and program memory, and 

extra custom instructions for facilitating dedicated functions. The inter-processor 

communication and synchronisation is achieved through signals. All processors are bonded 

to picoBus which connects many programmable bus switches to build up a deterministic 

interconnect. The inter-processor communication is time division multiplexing based, and 

determined during the compilation time, so that the communication bandwidth is guaranteed. 

Moreover each picoArray has four inter-picoArray interfaces which allow it to connect to up 

to four other picoArrays for exchanging data and extending the system. Figure 3.3 shows the 

picoArray interconnection and one example signal path for the inter-processor 

communication. In the picoChip PC7218 baseband reference design [94], two PC102 chips 

are used for WiMAX PHY processing and can achieve a data rate up to 37Mbps, with 

PC8520 fixed WiMAX software reference design [95].  

Figure 3.3 PicoArray interconnection and the inter-processor communication 
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3.6.2 Freescale MSC8126 

Freescale’s MSC8126 multi-core DSP [96] consists of four SC140 extended cores, a Viterbi 

coprocessor and a turbo coprocessor. Each extended core features an SC140 DSP core operating 

at 400 MHz or 500 MHz, 224 Kbyte level-1 data memory and 16-way 16 Kbyte instruction 

cache. The level-l memory of each core can be accessed by any other cores for fast data transfer. 

All the extended cores share an internal 475 Kbyte level-2 memory through a prioritised 

round-robin mode. In [26], an MSC8126 DSP handles a fixed WiMAX PHY processing, with 

one single core for the transmitter and the other three for the receiver. The allocated tasks and 

loading for each SC140 core are shown in Table 3.4. 

3.6.3 Cell Broadband Engine 

Cell Broadband Engine [48] is jointly developed by IBM, Sony and Toshiba, and composed 

of one Power Processor Element (PPE) and eight Synergistic Processing Elements (SPEs). 

The PPE is based on the Power architecture and acts as a controller for SPEs by running 

Linux. The SPEs are RISC processors with 128 bit SIMD acceleration, and carry out the 

most of computational workload. The PPE and eight SPEs are linked together through a 

circular ring bus which contains four channels and can deliver totally twelve transactions 

concurrently. The Cell processor can execute 256 Giga Floating-Point Operations Per 

Second (GFLOPs), running at 3.2 GHz. The initial target of the Cell processor was 

multimedia acceleration and vector processing, but latter is used for many other applications 

such as scientific computation and wireless communication. In [97], the authors 

Table 3.4 MSC8126 loading and task allocation 

 Allocated tasks Loading 

Core 1 Randomising, FEC encoding, interleaving, modulation and 
OFDM processing in the transmitter side 81% 

Core 2 Synchronisation and OFDM processing in the receiver side 77% 

Core 3 Demodulation, de-interleaving and Viterbi decoding 70% 

Core 4 RS decoding and de-randomising 52% 
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implemented WiMAX PHY on a Cell processor where two SPEs used for the transmitter 

and three used for the receiver, while the PPE handles the management and control. This 

WiMAX implementation can achieve 20Mbps for both transmitter and receiver.  

3.6.4 Intel IXP 2350 network processor  

Targeting broadband access applications such as WiMAX and DSL, Intel IXP2350 network 

processor [59] consists of four fully programmable multithreaded microengines and one 

Intel XScale core. The microengines and XScale core can run up to 900MHz and 1.2GHz, 

respectively. Announced in the product brief of Intel’s NetStructure WiMAX Baseband 

Card [98], the Intel IXP2350 processor can provide a data rate up to 36 Mbps. In this 

implementation, the microengines are programmed to perform PHY processing and the 

MAC layer is mapped on the XScale core. In IXP2350, there are various technologies to 

ensure the low latency communication between microengines targeting PHY. For example, 

next neighbour registers can speedup data and information transfer between adjacent 

microengines. Reflector mode pathways ensure the performance of unidirectional buses for 

delivering data and global event signals between microengines. In addition, ring buffers 

allow the intermediate data propagated along the pipeline built with microengines. 

3.6.5 Sandbridge SB3010 

Sandbridge’s SB3010 chip [99] contains an ARM9 RISC core and four multithreaded 

Sandblaster DSP cores connected by a deterministic ring network. Each DSP core supports 

up to 8 threads and runs at 600MHz. In [61], the authors proposed an ANSI C based 

software implementation of fixed WiMAX on an SB3010 chip. In this design, one DSP core 

is utilised to implement the transmitter, while the receiver is mapped to the other three cores. 

Among overall used 24 threads, IFFT function is replicated across three threads for 

operating three different OFDM symbols. A round-robin scheduling is used to manage the 

data communication for this replication partition. This implementation delivers a data rate of 
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2.9 Mbps based on BPSK modulation and 1/2 rate convolutional code.  

3.7 RICA based multi-core architecture 

As described in Section 3.2, varied types of processing cores or their mix can be used to 

build up multi-core architectures. As for the high performance embedded systems market 

(e.g. consumer electronics), coarse-grained reconfigurable processing cores are very 

promising candidates, due to their high flexibility, performance and power efficiency. 

Among numerous coarse-grained reconfigurable architectures, RICA has many advantages 

over others, including high level programming support (i.e. ANSI C), the ability to execute 

both control path and datapath operations, and the ability to execute both independent and 

dependent instructions in parallel in one configuration context. Therefore, the RICA 

technology is chosen to implement the basic processing core in multi-core architectures 

proposed in this thesis. 

As mentioned in Section 3.4, the key component of the RICA architecture is an instruction 

cell array which can be customised for dedicated applications before manufacture. In this 

thesis, the research is carried out to explore multi-core RICA instead of a single-core RICA 

with a very big instruction cell array. It is not only due to the advantages of multi-core 

architectures over single-core architectures described in Section 3.2, but also because the 

current RICA architecture does not support multithreading. It means a bigger single-core 

RICA can not have high area efficiency and a high resource utilisation rate for each 

configuration context.  

3.8 Summary  

This chapter described the advantages of multi-core processors and investigated the 

categories of multi-core processors in terms of different taxonomies. In this thesis, a 

coarse-grained dynamically reconfigurable processor – RICA is chosen as the target 
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processing core for the proposed multi-core architecture. Hence this chapter introduced the 

background knowledge of reconfigurable architecture and especially highlighted the 

architectural characteristics and tool flow of RICA. Meanwhile various traditional and 

multi-core WiMAX implementations were addressed. 



 

53 

4.1 Introduction 

The last chapter introduced the background knowledge of multi-core processors and 

reconfigurable architectures, especially a coarse-grained dynamically reconfigurable 

architecture - RICA. The RICA architecture can address all the desired requirements for 

high performance embedded systems [7]. Meanwhile its cell array can be tailored towards 

different application domains. This chapter presents a multi-core architecture using RICA 

processing cores. Chapters 6 and 7 will develop multi-core solutions for WiMAX, based on 

this proposed architecture.  

Currently, there are a few multi-core processors based on coarse-grained DR processors, 

including Freescale MRC6011 [60] and the work in [100]. Freescale MRC6011 consists of 

six reconfigurable compute fabric cores connected through a flexible and high-speed fabric. 

Each of the cores features one optimised 32-bit RISC engine and a coarse-grained 

reconfigurable computing array. In each core, the RISC engine supports C programming and 

Chapter 4
A RICA Processor based

Multi-core Architecture
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handles the configuration and management of the array. Therefore, it is unavoidable that this 

architecture involves significant synchronisation overheads between RISC engines and 

reconfigurable computing arrays. In [100], a scalable and modular multi-core architecture 

template is proposed based on Silicon Hive reconfigurable processing cores. Each core is 

comprised of an array of Processing and Storage Elements (PSEs) built around a control 

processor. Both the control processor and PSEs are programmed using standard C, however, 

the timing synchronisation between them has to be coded manually. Another example is the 

work on developing a multi-core processor based on Montium tile processor [64] from 

RECORE. However, currently Montium tile processor does not support development from 

high-level languages. Although Montium is application customisable, this processor is not 

efficient in terms of the hardware resource occupancy, built with five identical 16-bit ALUs. 

This chapter is structured as follows. Section 4.2 presents the overall multi-core architecture. 

In this section, subsections 4.2.1 through 4.2.6 describe processing cores, the memory 

architecture and other main components, respectively. Among these subsections, Section 

4.2.2 addresses various architectural choices of memory available in this architecture, 

including shared/local data memory, shared register file and stream buffer. The access to the 

later two options requires custom instruction cells. Section 4.3 investigates the 

synchronisation methods for inter-processor communications and atomic operations 

developed for supporting synchronisation. Section 4.4 introduces how to integrate a custom 

instruction cell into an RICA processor. 

4.2 The proposed multi-core architecture  

Typically, multiprocessors (a multi-core processor is a multiprocessor) can be classified into 

two types, master-slave multiprocessing and symmetric multiprocessing [101]. In a 

master-slave multiprocessing, there is one master processor and multiple slave processors. 

The master processor assigns and schedules tasks to slave processors, controls and manages 

interrupt system and I/O peripherals, and runs the operating system if the processor support 
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operating systems. The advantage of master-slave multiprocessing is its simplicity, since 

only the master processor can manage tasks and access all resources. The Cell processor is 

an example of mater-slave multiprocessing [48]. However, the master processor becomes a 

bottleneck, because all slave processors have to access resources through the master 

processor. On the contrary, each processor in SMP has equal power, equal access to all 

resources and can schedule tasks itself. Therefore SMP is more efficient but much complex 

than master-slave multiprocessing [101]. SMP is broadly used in multi-core processors with 

a small number of cores such as desktops, laptops and servers.  

In this thesis, a master-slave multi-core architecture is proposed as shown in Figure 4.1. 

Actually, from the hardware point of view, this architecture is SMP. All processing cores are 

based RICA technology. Each of them can access the shared memory and has its own 

interrupt controller. However, one of cores is used as the master core which takes charge of 

task management and will run operating system in future. Therefore this architecture has the 

SMP-like efficiency but maintains the software simplicity of master-slave multiprocessing. 

In the context of this thesis, this architecture is referred as a master-slave multi-core 

architecture. In addition, this architecture can be configured as Single Program Multiple 

Data (SPMD) mode where all processing cores execute a same task but with different data. 

 
Figure 4.1 Proposed master-slave multi-core architecture 
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Described in Chapter 5, the MRPSIM simulator has a command line option --arch which 

can set the simulator to work as either master-slave mode or SPMD mode.  

Consisting of one master core and multiple slave cores, this architecture is designed to be a 

basic architecture used in both homogeneous and heterogeneous multi-core WiMAX 

solutions introduced in Chapters 6 and 7. This architecture contains an interrupt system and 

a flexible memory architecture. One of the key characteristics of this architecture is that it 

provides support for DR processors (e.g. RICA) that may issue multiple concurrent memory 

access requests per cycle.  

4.2.1 Processing cores 

All processing cores including both the master and slaves in the multi-core architecture are 

based on the 32-bit RICA architecture, since the RICA architecture is suitable for executing 

both data path and control path programs. Each processing core has a set of memory 

addressed control and status registers, an RRC unit, a prefetching unit and multiple memory 

interface cells. Currently the main difference in functionality between the master and slaves 

is that the master core is used to take charge of the task management. When the system starts 

up, the master dispatches tasks to slaves by sending the task information through a router. 

The task information sent by the master is written to a few registers in a slave which then 

uses the information to choose a task to run. When a slave finishes its current task, it will 

send a request for a new task to the master through an interrupt. Then the master dispatches 

the information of a new task to that slave. Alternatively, as shown in Figure 4.1, an 

Operating System (OS) can be ported to the master core for dynamically scheduling and 

managing tasks. Except this control functionality, the master can do same computation 

workloads as slaves. In addition, the instruction cell array of each core can be tailored to 

particular tasks that the processing core is intended to execute. 
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4.2.2 Memory architecture 

This multi-core architecture has a hierarchical memory architecture including shared 

memory, local memory, shared register file and stream buffer. Among these memory blocks, 

the shared register file is designed for loop level partitioning used for Viterbi and FFT 

applications (the details will be described in Chapter 6), and stream buffers are designed for 

image processing applications such as Freeman demosaicing. In the following subsections, 

these memory blocks are described in detail.  

4.2.2.1 Shared memory/local memory 

To address the parallel memory access requirement of RICA cores, this multi-core processor 

architecture is based on the Harvard architecture [41] where each core owns a program 

memory and all processing cores share a multi-bank data memory. Besides a shared data 

memory, each processing core can have its own local multi-bank data memory which cannot 

be addressed by other cores. Due to the adjacency to processing cores and small size, a local 

memory can have much lower access latency than the shared memory. By storing 

non-shared data in a local memory, the conflict in accessing the shared memory can be 

alleviated, and thus the throughput can be improved. In addition, each data memory bank 

has an arbiter which arbitrates memory accesses to the bank from different cores or different 

memory access interface cells of a same core. Table 4.1 describes the modes and 

Table 4.1 Access modes and configuration bits for RMEM and WMEM cells 

Mode Configuration bits Description 

RMEM_SI 001 Read a single word 

RMEM_SE_HI 010 Read a half word with sign extension 

RMEM_ZE_HI 011 Read a half word with zero extension 

RMEM_SE_QI 100 Read a quarter word with sign extension 

RMEM 

RMEM_ZE_QI 101 Read a quarter word with zero extension 

WMEM_SI 00 Write a single word 

WMEM_HI 01 Write a half word WMEM 

WMEM_QI 10 Write a quarter word 
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configuration bits of RICA memory access interface cells used to access both shared and 

local memory. Furthermore, for eliminating memory conflicts caused by simultaneous 

accesses to the shared data from different RICA cores, synchronisation methods (e.g. 

spinlock and semaphore) are developed to protect the shared data from multiple accesses at 

any given time. The detailed explanation is provided in Section 4.3.  

4.2.2.2 Shared register file 

Besides shared and local data memory introduced in the last subsection, this multi-core 

processor architecture also supports shared register files. Usually, a shared register file can 

operate at a much faster speed than normal memory blocks and be used to speed up data 

exchange in small scale as well as synchronisation between processing cores. Multi-port 

register files are commonly used in VLIW processors which need to access several registers 

simultaneously. It is well known that the number of ports and the size of the register file 

affect its energy consumption, access time and area [102]. Most of the previous work on the 

register file has been related to techniques of reducing the access time and power 

consumption.  

In [103] the authors used techniques to split the global micro-architecture into distributed 

clusters with subsets of the register file and functional units. Similarly, the authors of [102] 

proposed the use of distributed schemes as opposed to a central implementation. Multi-level 

register file organisations have also been introduced to reduce the size of register files [104]. 

All the works mentioned above focus on reducing the number of registers. Other techniques, 

such as the one in [105], split the register file into interleaved banks, reduce the total number 

of ports in each bank, but retain the idea of a centralised architecture. In this thesis, a shared 

register file architecture is proposed. This architecture is split into independent banks with a 

reduced number of ports per bank. Each bank has one write port, one read port and 

32x32-bit registers. 
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A custom register file interface cell, called MULTIPTBK_REG_FILE, is created and 

integrated into the RICA processor to support accessing distributed shared register files. The 

diagram of this interface cell is shown in Figure 4.2, and the pin description is given in 

Table 4.2. This cell supports various access modes controlled by configuration bits, shown 

in Table 4.3. Among these modes, MPREGFILE_LLNLY and MPREGFILE_SCNLY are 

used for atomic operations which are described in Section 4.3. The number of register file 

banks can be parameterised in the MDF. Figure 4.3 illustrates a design of a 4-bank shared 

register file where each bank has an individual arbiter. All instruction cells in RICA cores 

can be connected to shared register interface cells, and each interface cell is able to connect 

Table 4.2 Pin descriptions of MULTIPTBK_REG_FILE cells 

Name Type Bit width Description 

write_data In 32 Data written to register files 

write_address In 5 Write address 

read_address In 5 Read address 

conf In 3 Configuration bits 

out Out 32 Data read from register files 

 

Table 4.3 Access modes and configuration bits of MULTIPTBK_REG_FILE cells 

Mode Configuration bits Description 

MPREGFILE_RDNLY 000 Read only 

MPREGFILE_RDBFWRT 001 Read before write 

MPREGFILE_RDAFWRT 010 Read after write 

MPREGFILE_WRTNLY 011 Write only 

MPREGFILE_LLNLY 100 Load link only 

MPREGFILE_SCNLY 101 Store conditional only 

 

 
Figure 4.2 Custom instruction cell MULTIPTBK_REG_FILE 
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to only one register file bank. For example, register file interface cell RI0 is only connected 

to Bank0, while interface cell RI1 can only access Bank1. This scheme keeps all possible 

connections between these interface cells and the shared register banks with a reduced 

interconnection complexity. The detail of how to introduce a new custom cell for a RICA 

processor is given in Section 4.4. 

4.2.2.3 Stream buffer  

Stream buffers are widely used in many processors to facilitate data transfer for image, 

video and communication applications, such as in Storm-1 stream processor [106]. In this 

proposed multi-core architecture, stream buffers are implemented as bidirectional bridges 

between each two adjacent processing cores for a mass data exchange, dramatically reducing 

the shared memory bandwidth requirement. The stream buffers can only be accessed by 

directly connected processing cores through a custom interface cell called SBUF which is 

provided by the extended RICA processor. All other instruction cells in RICA cores can be 

connected to these SBUF cells. Each SBUF cell can be used to access any stream buffer near 

to the processing core. 

 
Figure 4.3 A 4-bank shared register file in the proposed multi-core architecture 
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Figure 4.4 illustrates an example which has three cores and a total of five stream buffers. As 

shown in Figure 4.4, the stream buffers are mainly used to store the intermediate data 

between processing cores in a pipelined processing mode where the first core (the leftmost 

one) reads input data from the memory block. The processing cores can set the initial writing 

or reading address for connected buffers at a random access mode, then push data to or pop 

data from the buffers. After each push or pop, the address will be automatically increased. 

The pin description and access modes of SBUF cells are given in Tables 4.4 and 4.5, 

 

Figure 4.4 Stream buffers in the proposed multi-core architecture 

Table 4.4 Pin description of SBUF instruction cells 

Name Type Bit width Description 

write_data In 32 Data written to stream buffers 

write_address In 12 Initial write address  

read_address In 12 Initial read address 

conf In 3 Configuration bits 

out Out 32 Data read from stream buffers 

 

Table 4.5 Access modes and configuration bits of SBUF cells 

Mode Configuration bits Description 

SBUF_SET_READ 101 Set initial read address 

SBUF_SET_WRITE 110 Set initial write address 

SBUF_SET_READ_WRITE 111 
Set initial read and write address  
simultaneously 

SBUF_STREAM_READ 001 Read stream buffer 

SBUF_STREAM_WRITE 010 Write stream buffer 

SBUF_STREAM_READ_WRITE 011 
Read and write stream buffer  
simultaneously 
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respectively. The number of SBUF cells in each core, the number of stream buffers between 

each two adjacent processors as well as the size of the stream buffers can be software 

configured.  

4.2.3 Arbiter 

Every type of memory unit has arbiters, as for multi-bank memory units, such as data 

memory and shared register file, each bank has its own arbiter. In the proposed multi-core 

architecture, an arbiter arbitrates multiple accesses to a certain memory unit from different 

cores or the same core. For example, when one processing core issues an access request to a 

shared memory bank which is dealing with other access requests, this request will be 

pending and put into a waiting queue in the arbiter. The duration of the pending period is 

difficult to be predicted during compile time. If an arbiter receives multiple requests 

simultaneously, it will use predefined priorities or configurable bits of instructions (e.g. 

MULTIPTBK_REG_FILE) to decide the execution order. Due to the unknown run-time 

memory access latency, an arbiter signals certain cores to stop or resume RRC counting if 

access requests from these cores are pending or completed. Therefore RRCs can incorporate 

the run-time delays in the total execution time. Meanwhile this signal approach does not 

allow the follow-up instructions to be executed before the access instructions they depend on 

finish. It can avoid wrong results and deadlocks. In addition, arbiters for shared data 

memory and register file support atomic operations, the details of which are explained in 

Section 4.3. 

4.2.4 Crossbar switch  

The proposed multi-core architecture supports up to 16 shared data memory banks. The 

width of each bank is 8-bit. As shown in Table 4.1, RMEM and WMEM interface cells can 

be used to access up to 32-bit data. Therefore, it is necessary to have devices like crossbar 

switches to route the access request to the proper banks. Usually, a RICA processor has four 
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RMEM and four WMEM interface cells. In the proposed multi-core architecture, each 

RMEM or WMEM interface in a processing core connect to all banks through a 4 x m 

crossbar switch, where m is the number of banks. According to the value of m, the 

referenced address and the accessing mode (e.g. single word access and half word access), 

each memory access request to the shared data memory can be routed through switches to 

the proper banks. 

4.2.5 Interrupt controller  

Each processing core has one local interrupt controller which controls interrupt requests 

from different interrupt resources. All interrupt resources connect to interrupt controllers 

through dedicated interrupt channels. Each time an interrupt controller only sends the 

interrupt request with the highest interrupt priority to its coupled processing core. In each 

interrupt controller, there are three memory addressed registers: interrupt status register, 

mask register and interrupt service register. Each core can access these registers in its local 

interrupt controller via memory addresses. Currently, the multi-core architecture supports 

two kinds of interrupts, new task request interrupt and semaphore release interrupt. Both of 

these are Inter-Processor Interrupts (IPIs) which are sent from one core to another core. The 

new task request IPI can only be sent by slave cores to the master core. When a slave 

finishes its current task, it sends this IPI to the master, requesting a new task. Then the 

master runs a corresponding interrupt handler to dispatch the information of a new task to 

that slave. The semaphore release interrupt happens when a processing core releases a 

semaphore used to protect the shared data. The details about this IPI are given in Section 

4.3. 

4.2.6 Router 

The master processing core can set registers in its interrupt controller and task related 

registers in slave cores through a router. All these registers are memory mapped. This router 
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has an address-to-port map. According to the addresses sent by the master, the router can 

deliver the information to the proper components through ports connected to them. 

4.3 Synchronisation methods and atomic operation support  

In order to avoid race conditions caused by simultaneous accesses to a shared resource from 

different processing cores, two inter-processor synchronisation methods, spinlock and binary 

semaphore, have been implemented. In the multi-core context, a process should require and 

release a spinlock or a semaphore before and after accessing the shared data, respectively. A 

spinlock is a lock where a process repeatedly checks the availability of the lock - a method 

called busy-waiting. In other words, if a spinlock required by a process is not available, the 

process will keep asking for this lock until it is released by one of the other processes that 

previously acquired it. A spinlock allows only one process to access the shared resource 

protected by the lock at any given time. Spinlocks are efficient when the waiting period is 

short, as they can avoid overheads introduced by interrupt handling and context switching. 

However, busy-waiting based spinlocks cause more power consumption and access 

competition to the shared memory units where locks are stored. If the waiting processing 

core is blocked for a long period, a binary semaphore is a more efficient approach to 

implement the synchronisation. In this thesis, similar to spinlocks, binary semaphores make 

protected shared resources available to only one process at any given time. But the 

difference is that if a semaphore required by one process is unavailable, the process will go 

to sleep and the core running this process will do nothing but wait. When the semaphore is 

released by another process, the releasing process will send a signal to all waiting processes 

through a semaphore release IPI, and inform the waiting ones that the semaphore is now 

available. Otherwise, the waiting processes would not know the availability of the 

semaphore, because they do not have a busy-waiting or regular check scheme. Then the 

waiting processes will wake up and reissue a request for the semaphore, in case that there 

are more than one processes waiting for the semaphore. This suspend-wakeup based 

semaphore synchronisation method is broadly used in many operating systems [107]. The 
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only major difference is that the waiting processes are waked up by the OS instead of the 

process releasing the semaphore. By using this semaphore approach, memory access 

competitions caused by busy-waiting based spinlocks, which may take up a reasonable ratio 

of the overall execution time, are eliminated.  

Both spinlocks and semaphores are defined as global variables stored in shared memory 

blocks. The requisition of a spinlock or a semaphore needs the support of atomic 

read-modify-write operations. During the atomic operation, the value of a synchronisation 

variable (either spinlock or semaphore) is guaranteed to be read, modified and written back 

without any intervention by operations from other processing cores. An atomic 

read-modify-write operation can be implemented by a single instruction such as test-and-set 

or compare-and-swap. However, the use of a pair of special instructions – Load-Link and 

Store-Conditional (LL/SC) - is seeing increasing popularity [108]. In this thesis, LL/SC 

instructions are used to implement atomic operations and therefore synchronisation methods. 

The idea behind LL/SC is that LL loads a synchronisation variable into a register, and is 

immediately followed by an instruction that manipulates the variable. In this thesis, this 

instruction is subtracting one. Then SC tries to write the variable back to the memory 

location if and only if the location has not been written by other processing cores after LL 

was completed. A pseudo-assembly code for a spinlock and a semaphore implemented by 

LL/SC is shown below: 

In the proposed multi-core architecture, for implementing LL/SC, each arbiter for shared 

memory blocks contains a flag and an address register for each processing core. When an LL 

instruction from one processing core reads a synchronisation variable, the corresponding 

Acquire: LL reg1, location   // LL the variable’s value to reg1 
BEQZ  reg1, Acquire/Sleep  // if unavailable, try again or sleep 
SC location, reg2   /SC the variable’s new value back 
BEQZ Acquire           //failed, try LL again 

 
Release: WRITE location,  1  //write 1 to location 
Sleep: NOP    // do nothing 
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flag is set and the variable address is stored into the corresponding address register. 

Whenever the referenced address of a write request (either normal write operation or SC) is 

matched against the value of the address register, the flag is reset. An SC instruction enables 

a check of the flag. If it has been reset, meaning that an intervening write operation occurred 

before, the SC fails, otherwise, the SC succeeds. Table 4.6 describes access models and 

configuration bits for LL/SC instructions. The original RICA processor does not support 

atomic operations. Hence LL and SC instructions are temporarily represented by normal 

RMEM and WMEM instructions in inline assembly code. It is because LL/SC instructions 

have the same interface and pins as normal memory access instructions. Later in the trace 

file, these temporary instructions will be modified to LL/SC instructions with proper 

configuration bits, as shown in Table 4.6. These atomic instructions can be interpreted and 

executed by MRPSIM simulator to be described in Chapter 5.  

4.4 Custom instruction integration 

The existing RICA tool-flow provides full support for the inclusion of both combinatorial 

and synchronous custom instruction cells through simulator libraries. As shown in the 

custom cell generation environment of Figure 4.5, the function descriptions of custom cells 

such as MULTIPTBK_REG_FILE and SBUF are written in C++ via template classes 

Table 4.6 Access modes and configuration bits for LL/SC instructions 

Mode Configuration bits Description 

LL_SI 1001 Load link a single word 

LL_SE_HI 1010 Load link a half word with sign extension 

LL_ZE_HI 1011 Load link a half word with zero extension 

LL_SE_QI 1100 Load link a quarter word with sign extension 

LL 

LL_ZE_QI 1101 Load link a quarter word with zero extension 

SC_SI 100 Store conditional a single word 

SC_HI 101 Store conditional a half word SC 

SC_QI 110 Store conditional a quarter word 
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provided by the RICA simulator. A fully automated system generator compiles standard 

RICA simulator libraries together with the custom cell C++ model and the timing & area 

information attained by synthesising the custom cell Verilog model. A custom MDF and a 

custom simulator are generated to replace the standard MDF and simulator used in the 

standard tool flow. Meanwhile the custom cell assembly interface is provided to enable 

programmers use custom instructions as inline assembly in their programs. 

4.5 Summary 

This chapter introduced a master-slave based multi-core architecture using a coarse-grained 

dynamically reconfigurable processor – RICA. This architecture provides a variety of 

memory architectural options for different application requirements. These options include 

shared/local data memory, shared register file and stream buffer. For dealing with the 

competitions for these shared storage resources, arbiters have been developed to arbitrate the 

access requests. Crossbar switches were used for routing memory access requests from 

processing cores to proper shared data memory banks. Meanwhile each processing core has 

 
Figure 4.5 RICA custom cell generation environment and custom tool flow 
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an interrupt controller managing inter-processor interrupts, while the master core owns a 

router unit which conveys information from the master core to its interrupt controller and 

slave cores. In addition, two synchronisation methods (i.e. spinlock and semaphore) have 

been developed for inter-process synchronisation. A pair of atomic options LL/SC was used 

to implement the synchronisation methods. Furthermore, a custom cell generation 

environment and a custom tool flow were introduced for integrating custom instruction cells 

into the RICA architecture.  

The next chapter will present a SystemC based simulator which models this proposed 

multi-core architecture. Based on this architecture, Chapters 6 and 7 will focus on 

homogeneous and heterogeneous multi-core solutions for WiMAX, respectively.
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5.1 Introduction  

As silicon process technologies shrink to the deep submicrometer region, more transistors 

are allowed to be integrated into a single chip. As a result, computer architects are able to 

build more sophisticated designs like multi-core processors. Intel’s Quad-Core Xeon 

processor [35] is a practical example of this, based on 45nm and containing 820 million 

transistors. Likewise, ever larger and more complicated applications are being developed, 

fuelled by the abundant resources on multi-core processors. This is also true for embedded 

systems where large and complex real-time applications like wireless communication and 

multimedia are targeted. For fast verification of such high-end applications at an early 

design stage, there is a high demand to produce rapid and accurate simulation tools for 

modelling the underlying complex multi-core systems. Meanwhile, for developing efficient 

multi-core solutions for certain applications, a simulation tool is the key for the design space 

exploration. 

Chapter 5
Multiple Reconfigurable 

Processors Simulator
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In last chapter, a RICA core based multi-core architecture has been presented. For modelling 

this architecture and verifying applications on it, this chapter introduces a fast, flexible and 

cycle-accurate simulation tool, called Multiple Reconfigurable Processors Simulator 

(MRPSIM). MRPSIM is based on SystemC transaction-level modeling [109]. As a higher 

abstraction level, TLM based simulation is much faster than RTL simulation. TLM enables 

concurrent hardware/software co-design for early software development, fast architecture 

modeling and functional verification. In MRPSIM, the functionality of the program is 

decoupled from the timing simulation. This is done by feeding MRPSIM the execution trace 

file generated from a cycle-accurate single RICA simulator shown in Figure 3.2.  

This chapter is structured as follows. Section 5.2 reviews the existing work on 

multiprocessor simulation tools. Section 5.3 explains how MRPSIM can provide fast 

simulation speed and keep accuracy, based on a trace-driven approach. Section 5.4 

introduces SystemC and transaction-level modeling, while Section 5.5 describes the details 

of the TLM model for MRPSIM. Section 5.6 addresses the command line options offered by 

MRPSIM. Section 5.7 presents a Perl based trace preprocessing tool – Mpsockit which can 

facilitate the multi-core simulation. Section 5.8 demonstrates the simulation speed of 

MRPSIM by running a range of test benches on it.  

5.2 Related work on multiprocessor simulators 

There are a number of multiprocessor simulation tools proposed in both industry and 

academia, such as those in [110-115]. In [110], a multiprocessor enhancement was proposed 

for SimpleScalar [116] which is a popular simulation tool in the research community and 

models a MIPS-like architecture. The authors of [111] presented a simulator called Rsim for 

shared memory multiprocessors with ILP processors. In [112-114], the approach of 

decoupling the functionality from timing simulation was used as well, however in a different 

manner to the approach taken in MRPSIM. Both GEMS [112] and RASE [113] simulators 

interact with Simics [117], a full system simulator, by feeding timing information to it. 



Multiple Reconfigurable Processors Simulator 

 71

Obviously, the simulation speed can not be fast, since Simics is involved during the 

multiprocessor simulation. SESC [114] uses instruction streams generated by MINT, an 

emulator for the MIPS architecture, to model chip-level multiprocessors with out-of-order 

processors. In [115], a simulation environment called MPARM was proposed based on 

SystemC RTL and SWARM (software ARM) simulator [118]. However, partially describing 

the system at a lower SystemC abstraction level, MPARM is inevitably slower than a TLM 

based simulation tool. Moreover, most of these simulation tools are designed for 

multiprocessors with conventional processors like ARM and MIPS. To the best of my 

knowledge, there has been little research done on developing TLM based simulation tools 

for chip-level multiprocessor using coarse-grained dynamically reconfigurable processors 

(e.g. RICA). 

5.3 Trace-driven simulation 

MRPSIM is a trace-driven simulator. The advantage of trace-driven simulation over 

execution-driven simulation is that once the trace has been collected, it can be reused as a 

constant input to the simulator when the multi-core architecture varies. However, different 

from other trace-driven simulators which sacrifice the accuracy for simulation speed, 

MRPSIM can maintain the timing accuracy with a rapid architecture analysis. The idea is 

that the functionality of programs and the calculation of static timing are decoupled from the 

dynamic timing simulation. In my simulation approach, the entire simulation timing is 

separated into static timing and dynamic timing. Static timing represents the time consumed 

by the combinatorial critical path in each step and is not affected by the run-time execution. 

The static timing for each step executed on each core is calculated by the scheduler through 

using the timing results generated from logic synthesis. This is because each RICA core can 

be individually synthesised, and that the behaviour of a given core is deterministic due to the 

RRC. As for dynamic timing, it refers to the time taken by communication instructions (e.g. 

read and write memory). Basically, these communication instructions are determined during 

run-time in the multi-core simulation, due to the competition such as from multiple cores, or 
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multiple memory accesses from a same core.  

To implement this decoupling approach, firstly the application is partitioned into multiple 

tasks, and each task is executed by a single RICA processor simulator. The generated 

execution trace file for each task is fed into MRPSIM simulator. Details of mapping and 

partitioning are addressed in Section 6.2. Figure 5.1 shows the interface and internal 

structure of MRPSIM simulator. Execution trace files record the detailed program execution, 

including all the relevant information necessary for accurate timing, such as static timing 

and the information for communication instructions. The format for a step in the execution 

trace file is shown in Table 5.3 in Section 5.7. In Table 5.3, the value of RRC contains static 

timing in terms of RRC cycles for the current step. The trace parser within MRPSIM 

converts these machine-specific execution trace files into a machine-independent 

intermediate representation that captures the static timing model and flattened program 

control flow structure. Then, the dynamic delays imposed by memory access, 

synchronisation and IPIs are obtained from the run-time behaviour of the TLM model. Since 

execution traces already include static timing, MRPSIM only models the behaviour of 

communication instructions, which contribute to dynamic timing. Computation and control 

 
Figure 5.1 The interface and internal structure of MRPSIM simulator 
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instructions (e.g. addition and jump) are not executed in MRPSIM. In other words, 

MRPSIM only needs to model the additional overhead incurred during run-time in 

multiprocessing environments. These overheads include issues such as arbitrating the 

memory access conflicts. This computation/communication decoupling approach has 

popularly been used in many other research studies on cycle-accurate simulators such as 

GEMS [112]. 

Other inputs of MRPSIM include ram files, multi-core MDF and command line options. 

Ram files describe the layout of data symbols (e.g. synchronisation variables, shared/local 

data) in the various data memories, and are mapped onto modelled hierarchical memory 

modules. The MDF contains architectural information such as memory size and access delay 

for both local and shared memory as well as RRC period. In addition to architectural 

parameters in MDF, the executable file of MRPSIM is highly parameterisable by command 

line options which are described in Section 5.6. All the parameters extracted from MDF and 

command line options are used to set modules of processing cores and memory modules in 

MRPSIM.  

After performing simulations with MRPSIM, generated performance results are used as 

feedback to change the design strategy such as the task partitioning method and architecture 

parameters in order to achieve better performance. Besides generating basic performance 

information such as timing, memory access count, and processing core idle ratio, MRPSIM 

can produce advanced information like statistics and processor profiles. In MRPSIM, there 

is a built-in statistics function for each fundamental module (e.g. processing cores, memory 

units, and arbiter units). These statistics functions dump out raw statistics, for instance, the 

detailed memory access information for each individual memory bank, register file bank, 

and processing cores. These statistics have proven to be vital in analysing simulation results 

and therefore the design space exploration for multi-core architectures. The processing core 

profile records the starting time and the finish time for each step, and the request time and 

finish time for each access to memory, register files and stream buffers. The profile 
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information is crucial for both performance analysis and debugging.  

5.4 SystemC and transaction-level modeling 

As more and more functions are integrated in SoCs, the current SoC design faces 

unprecedented challenges in terms of explosive design complexity, time-to-market pressure 

and increasing cost. However the classic SoC design flow is not the right answer to these 

challenges [119]. In the traditional SoC design flow shown in Figure 5.2, a system 

specification is partitioned into hardware development and software development, of which 

different teams take the responsibility, respectively. There is little cooperation between the 

two separate development paths, until either an FPGA prototype or a test chip is available. 

Therefore any hardware or software error found in the system validation stage would result 

in a new iteration of redesign which dramatically slows the time-to-market and increases the 

cost. Meanwhile in the traditional hardware development, there exists another design 

bottleneck. Due to the lack of a common environment, system designers write a conceptual 

model of the hardware system in a high level language (e.g. C or Matlab) for verifying the 

functionality, then hand over the model to RTL designers who later re-implement the 

hardware system in a Hardware Description Language (HDL) according to this model. 

Obviously, this transfer process is prone to error. Moreover, it usually happens that some 

 
Figure 5.2 Traditional SoC design flow without SystemC 
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part of the conceptual model cannot be implemented in RTL, and modifying this model is 

needed. Hence a costly redesign iteration is involved, since the different teams use two 

different languages. Due to these inherent design bottlenecks of the traditional SoC design 

flow, in recent years, a new SoC design flow has become popular [119, 120]. As shown in 

Figure 5.3, this design flow enables hardware/software co-design by raising abstraction level 

from RTL to TLM and provides a SystemC based common design environment for both 

hardware system designers and RTL designers.  

SystemC [120] is a System Description Language (SDL) as well as a hardware description 

extension of C++. By adding a library of special classes, SystemC brings hardware design 

concepts, such as hardware timing and concurrent processes, into C++. SystemC is fully 

compatible with the standard C++ programming environment, and thus a SystemC model 

can be compiled as a normal C++ program. As an open source programming language, 

SystemC is free to be used and modified. It is a great advantage over its expensive 

proprietary SDL counterparts such as SpecC. Moreover SystemC supports TLM. TLM [109] 

is a transaction-based modeling approach which separates communication from computation 

within a system following the concept of “divide and conquer”.  

In the SystemC based design flow shown Figure 5.3, a TLM platform is built right after 

 
Figure 5.3 SoC design flow with SystemC 
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HW/SW partitioning, serving as a unique reference for early software development, 

architecture analysis and functional verification. The TLM platform is presented as an 

executable file generated by the C++ compiler. TLM enables HW/SW co-design and 

co-simulation by which hardware and software teams can have a more efficient cooperation 

in the early phase of the system development. Hence the success probability of the first test 

chip is significantly increased and time-to-market is shortened [119]. Meanwhile in this 

design flow, the hardware development is fuelled by using SystemC in both system design 

and RTL design teams. Based on the same design environment, it is an easier job for RTL 

designers to refine System TLM model down to SystemC RTL compared to the traditional 

approach. Furthermore, the SystemC based test bench developed by system designers can be 

reused in RTL verification.  

5.5 TLM model  

Due to the advantages of SystemC TLM described in the last section, MRPSIM simulator is 

implemented in SystemC TLM. Usually, in TLM, system components are modelled as 

SystemC modules which contain a number of concurrent SystemC processes and/or 

functions representing their behaviours. The communication among modules is achieved by 

using transactions through abstract channels which implement TLM interfaces. As the kernel 

of TLM, TLM interfaces can be accessed by SystemC processes through module ports [119]. 

In MRPSIM simulator, those components introduced in Chapter 4.2 are modelled as three 

kinds of SystemC modules, initiators, targets and their combinations. An initiator contains 

SystemC processes initiating transactions to the target modules which respond to these 

transactions. Components modelled as initiators include arbiters and interrupt controllers, 

while memory units, crossbar switches and the router behave as targets. As for processing 

cores, they are initiators as well as targets. For example a processing core can issue a 

memory access transaction to memory units through arbiters and respond to interrupt 

transactions from its interrupt controller as well. Figure 5.4 shows a TLM example where 

two processing cores can initiate write and read transactions to a memory bank through an 
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arbiter. As shown in Figure 5.4, modules connect each other by binding sc_port of an 

initiator to an interface provided by sc_export of a target. In SystemC, binding of all ports to 

interfaces is done during the elaboration phase and cannot be changed during simulation. In 

write and read transactions, processes in processing cores put requests into their respective 

arbiter channels and wait for corresponding responses. Processes in the arbiter scan all 

access request ports, decide which request has the highest priority and forward it to the 

memory bank. When the memory bank makes a response, the arbiter puts the response to the 

relevant channel. Finally, the corresponding core collects the response and completes the 

transaction.  

Table 5.1 shows the functionality of main processes and functions in MRPSIM SystemC 

modules. All these modules are defined as C++ classes and instantiated in the MRPSIM 

program main function which incorporates various parsers as well. Meanwhile, modules of 

processing cores instantiate submodules for communication instruction cells (i.e. WMEM, 

RMEM, MULTIPTBK_REG_FILE and SBUF). The cell instance count can be read from 

the MDF. In target modules, functions like read() and write() are called by the transaction 

initiators through sc_export to implement the corresponding transactions. As shown in Table 

5.1, those processes and functions followed by module names in parentheses only appear in 

those particular modules. 

 
Figure 5.4 An example demonstrating the TLM model of a multi-core architecture  
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Table 5.1 Functionality of main SystemC processes and functions in MRPSIM modules  

Master/Slave core 

boot (master) Initialise registers in slave cores; activate the run process in slave cores 

run The main process executing every steps 

pfu Pre-fetch the next step if prefetching conditions satisfied 

rrc Reconfigurable rate controller 

pauseRRC Pause or resume RRC according to signals from arbiters 

Process 

bottomHalfJob 
(master) 

Calculate and send a new task information to slave cores which sent 
new task interrupts 

isrJob (master) Rapid response to new task interrupts from slave cores; activate the 
bottomHalfJob process 

read (slave) Read registers, called by the master core through sc_export 
Function 

write (slave) Write registers, called by the master core through sc_export 

Data/program memory/Register file/Stream buffer 

initialise 
(data/program 

memory) 

Initialise data/program memory by using data/instruction traces 
extracted from ram/trace files 

read Read memory blocks, called by processing cores through sc_export 
Function 

write Write memory blocks, called by processing cores through sc_export 

Arbiters for Data memory/Register file/Stream buffer 

scan Scan all connected access request ports and find access requests 

run After scanning, forward the highest priority request to the memory 
bank or activate read and/or write processes 

pauseRRC Send signals to relevant cores to pause or resume RRCs, if access 
requests from these cores are pending or completed 

read (reg. file) Forward read requests to the register file bank 

Process 

write (reg. file) Forward write requests to the register file bank 

Function addInterface Insert an access request port into a multimap variable  

Switch 

Function transport Forward the access request to proper shared data memory bank 

Interrupt controller 

Process run Forward the highest priority interrupt to the processing core 

Function addInterface Insert an interrupt request port into a multimap variable  

Router 

Function transport Forward the information to master’s interrupt controller or slave cores 



Multiple Reconfigurable Processors Simulator 

 79

5.6 MRPSIM command line options 

MRPSIM has a variety of command line options relative to architecture, performance 

analysis, debugging and so on. By setting architecture options, the multi-core architecture is 

highly parameterisable in terms of the number of slave cores, the number of data memory 

banks, synchronisation methods, single core or multi-core model and so on. For example, in 

single core mode, MRPSIM can model a single RICA processor and produces the same 

timing accuracy as the cycle-accurate execution-driven simulator for RICA processor. 

Performance analysis options control the output of advanced performance information. 

While debugging options generate debugging information to assist verifying the program 

functionality and debugging errors. These options are listed in Table 5.2. 
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Table 5.2 Command line options of MRPSIM 

Architectural Option Description 

--arch type Set the type of the multi-core architecture, accepted values of num: 
0: SPMD mode; 1: master-slave shared memory mode 

--bank num Specify the number of banks for the shared data memory 

--dmem type Set the type of data memory architecture, accepted values of type:  
0: share only; 1: share and local 

--slave num Specify the number of slave cores, when num set to 0, MRPSIM is in the 
single core mode 

--sync type Set the type of synchronisation, accepted values of num:  
0: lock; 1: semaphore  

--pmem type Set the type of program memory architecture, accepted values of type:  
0: share only; 1: local only 

--sbuf-args nums Specify the number of stream buffer banks and the size of each bank 

--source-args files nums Specify files as source files and the input bit width for each source file 

--sink-args files nums Specify files as sink files and the output bit width for each sink file 

Performance analysis 
Option Description 

--enable-prof bool Enable/disable generation of processing core profile files 

--enable-stat bool Enable/disable generation of statistics files 

--enable-var-access bool Enable/disable writing the access number for each global variable to 
var_access.dat 

--prof file If --enable-prof is true, write profile to specified file  

--stat file If --enable-stat is true, write statistics to specified file 

Debugging Option Description 

--cout_mode mode Set the mode of execution information output, accepted values of mode: 
0: brief; 1: verbose 

--dump file If --enable-dump is true, write memory dump to file 

--enable-dump bool Enable/disable generation of memory dump files 

--parser-debug bool Enable/disable debugging output from the trace file parser 

--scanner-debug bool Enable/disable debugging output from the trace file scanner 

--start-display start-time Specify the time starting to display execution information, unit is ns 

Other Options Description 

--end-time end-time Specify the time the simulation stops, unit is ns 

--mdf file Specify file as the input MDF 

--execute num Specify how many times programs shall be executed 

--per-step mode Set the mode of the trace file parser, accepted values of mode:  
0: parse the entire trace file once; 1: parse step by step 

--trace-format format 
Set the format of the trace file, accepted values of format: 
0: each trace file stores the instruction trace of one task; 1: all task 
instruction traces stored in one trace file 
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5.7 Mpsockit - a subsidiary tool  

Written in Perl, a subsidiary tool called Mpsockit is developed to preprocess the input files 

of MRPSIM simulator and facilitate the multi-core simulation. One of the most important 

features of this tool is compressing execution trace files. Usually, an execution trace is huge 

– sized hundreds of MB for a complex program. This tool can compress trace files by 

removing instructions which will not be executed by MRPSIM. After compression, the size 

of traces can be cut down to less than 1/3, on average. As a result of this, the time for 

parsing trace files by MRPSIM is dramatically reduced. Hence the simulation speed is 

improved, since parsing the traces constituted a significant part of the entire simulation time. 

The formats of both original and compressed traces are shown in Table 5.3 for one single 

Table 5.3 Formats for original and compressed traces 

Original Step Format 
Step N:  // step index  

MULTIPTBK_REG_FILE[0] {.conf = `MPREGFILE_RDNLY; .read_address = 2; .write_address = 

OPEN; .write_data = OPEN; .out = 10;}  

MULT[0] {.conf = `MUL_SIG_SI; .in1 = 5; .in2 = REG[0].out = 10; .out = 50;} 

RMEM[0] {.conf = `RMEM_SI, .in_addr = 100; .out = 5;} 

RMEM[1] {.conf = `RMEM_SI, .in_addr = 104; .out = 10;} 

ADD[0] {.conf = `ADD_ADD_SI; .in1 = RMEM[0].out = 5; .in2 = MULT[0].out = 50; .out = 55;}

ADD[1] {.conf = `ADD_ADD_SI; .in1 = RMEM[1].out = 10; .in2 = MULT[0].out = 50; .out = 60;}

WMEM[0] {.conf = `WMEM_SI; .in_addr = 108; .in = ADD[0].out = 55;} 

COMP[0] {.conf = `C_COMP_EQ; .in1 = ADD[0].out= 55; .in2 = ADD[1].out = 60; .out = 0;} 

JUMP[0] {.conf = `JUMP_IF_EQZ; .addr_in = 2; .cond = COMP[0].out = 0;} 

RRC {.conf = 3;} // cycle count for static timing 

Compressed Step Format 
Step N: // step index 

MULTIPTBK_REG_FILE[0] {.conf = `MPREGFILE_RDNLY; .read_address = 2;  

.write_address = OPEN; .write_data = OPEN; .out = 10;}  

RMEM[0] {.conf = `RMEM_SI, .in_addr = 100; .out = 5;} 

RMEM[1] {.conf = `RMEM_SI, .in_addr = 104; .out = 10;} 

WMEM[0] {.conf = `WMEM_SI; .in_addr = 108; .in = ADD[0].out = 55;} 

RRC {.conf = 3;} // cycle count for static timing  

Cell {.in = 9;} // the number of instruction cells used in current step 



Multiple Reconfigurable Processors Simulator 

 82

step. After compression, a new entry called Cell is generated, which records the number of 

instruction cells in the original step, and is utilised for calculating the configuration latency 

for this step. This tool can also be used to set parameters in MDF, such as how many bytes 

global variables take, through extracting the information from source files. Other important 

features of this tool include preprocessing trace files according to different task mapping 

methods, such as merging multiple traces into one trace for task replication method. 

Furthermore, as mentioned in Chapter 4, this tool can modify the configuration bits of those 

temporary instructions for LL/SC which can be interpreted and executed by MRPSIM. The 

options of Mpsockit and their individual description are given in Table 5.4.  

5.8 Results 

For evaluating the performance of MRPSIM, several applications were used as test benches, 

including an Advanced Encryption Standard (AES) application, a 64-tap Finite Impulse 

Response (FIR) filter, a 64-point 6-stage radix-2 FFT, an image smoothing and edge 

enhancement application and WiMAX BPSK based transmitter and receiver applications. 

An Intel Core 2 2.4GHz PC was used as the host machine for MRPSIM simulator. All 

Table 5.4 Mpsockit options 

Options Description 

--ci/--cs Calculate the number of instructions/steps in each input trace files 

--merge files Merge multiple trace files into one trace for task replication method 

--move files Move some instructions from one trace to others for loop partitioning 
method 

--shmem source mdf Get information from source to indicate the size of global variables in mdf 

--split file Split one trace file into multiple traces for loop partitioning method 

--stack source mdf  Get information from source to set the stack top for each core in mdf for 
the mapping without local memory 

-t files 
Compress trace files 
Calculate the number of used instruction cells for each step 
Modify the configuration bits for atomic operations 
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applications were developed for dual-core architectures with 2ns RRC period. Figures 

5.5-5.7 show the simulation performance in terms of three different metrics including Steps 

Per Second (SPS), Instructions Per Second (IPS) and Cycles Per Second (CPS). The metric 

of CPS is used to estimate how fast the cycle-accurate model can achieve, from the hardware 

system point of view. While IPS is a measure of how fast the application can be executed on 

the simulator, and is a software developers’ concern. As for SPS, it is particularly defined 

for RICA and represents how fast the simulator can execute configuration contexts for this 

DR processor.  
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Figure 5.5 The simulation speed (steps/sec) 
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Figure 5.6 The simulation speed (instructions/sec) 
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Each application owns two sub-test cases, one of which enables MRPSIM to generate 

detailed statistics and processor profiles, while the other only produces the basic 

performance information. As shown in Figures 5.5-5.7, MRPSIM simulator can achieve 

simulation speeds up to 25 KSPS, 300 KIPS and 300 KCPS, respectively, depending on the 

application. It proves that TLM based MRPSIM simulator can provide much higher 

simulation speeds, compared to RTL approaches which usually run at several hundred CPS. 

For the image application, the simulator demonstrates the highest CPS and lowest IPS. It is 

because the image application involves much more memory access operations which take 

more waiting cycles due to competition. The simulation of WiMAX applications is 

significantly lower in terms of IPS and CPS, compared to other applications. It is because 

WiMAX applications contain many conditional statements which cause frequent context 

switches and relatively less instructions within each step. Figures 5.5-5.7 also indicates that 

the collection of detailed statistics and profiles causes about 30% drop in the simulation 

speed. Figure 5.8 shows the simulation time for each application. Due to the size of the 

image being processed, the image application takes much longer to run compared to other 

applications. 

5.9 Summary 
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Figure 5.7 The simulation speed (cycles/sec) 
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This chapter presented a trace-driven simulator, called MRPSIM, for modeling the proposed 

multi-core architecture. Implemented by SystemC transaction-level modeling, this simulator 

provides a variety of architectural parameters and performance information, delivers fast 

simulation speeds and maintains timing accuracy. MRPSIM can correctly and efficiently 

simulate the run-time multi-core environment, allowing the throughput of the modelled 

system to be measured. Meanwhile a trace preprocessing tool, Mpsockit, was introduced to 

facilitate the multi-core system simulation and task mapping. In addition, several test 

benches have been executed on this simulator to estimate this simulator’s performance. For 

chosen applications, MRPSIM simulator demonstrated high simulation speeds, up to 300 

KCPS, 300 KIPS and 25 KSPS, respectively. 
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Figure 5.8 The simulation time (sec) 
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6.1 Introduction  

Many successful multi-core processors in the market are homogeneous collections of 

processing cores, such as UltraSPARC from Sun Microsystems and Intel Quad-Core Xeon. 

One of the salient advantages of homogenous multi-core solutions is that once a core passes 

the verification test, it can be easily replicated in the multi-core system. Therefore the 

development time is dramatically shortened. In addition, a homogeneous multi-core system 

has a simple software model which requires less programming efforts. This chapter 

introduces several homogeneous multi-core solutions for a fixed WiMAX physical layer. 

These solutions have different configurations in terms of the number of processing cores, 

partitioning method and memory architecture. These configurations are chosen for different 

resource/performance tradeoffs. These solutions originate from the basic multi-core 

architecture proposed in Chapter 4. All processing cores used in these solutions are based on 

the RICA architecture. The target WiMAX physical layer uses BPSK modulation and 1/2 

rate convolutional coding where puncturing and RS coding are not required. Before 

Chapter 6
Homogeneous Multi-core

Solutions for WiMAX
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describing these solutions, this chapter investigates how multiple tasks can be mapped onto 

the multi-core architecture and synchronise with each other.  

This chapter is structured as follows. Section 6.2 presents a mapping methodology used to 

partition, schedule and map tasks onto the multi-core architecture. Section 6.3 addresses 

three task partitioning methods: task merging, task replication and loop partitioning. Section 

6.4 introduces how a multi-core project can be developed for the multi-core architecture. 

Section 6.5 describes how tasks synchronise with each other by using the synchronisation 

methods introduced in Section 4.3. Section 6.6 describes these homogeneous multi-core 

solutions and demonstrates results. 

6.2 Mapping methodology 

Basically, the mapping and scheduling of tasks involved in the implementation of WiMAX 

on a multi-core architecture are complex optimisation problems. These problems need to be 

solved simultaneously to maximise the throughput. In addition, data transmission time 

between different processing cores must also be taken into account during task mapping and 

scheduling. As shown in Figure 6.1, a mapping methodology is developed to enable running 

multiple tasks on MRPSIM simulator. This methodology incorporates profiling-driven task 

partitioning, task transformation and memory architecture aware data mapping in order to 

reduce the overall application execution time. This methodology allows the designer to 

explore the different multi-core implementations on MRPSIM simulation platform. During 

the process of task partitioning and task mapping, execution-time estimation for the different 

tasks, as well as the time estimation for data transfer between processing cores, are required. 

It is also necessary to schedule the execution order of pipelined tasks, such as those shown 

in Figure 2.1, to improve the system performance. The execution time of a task performed 

by a single RICA processor can be obtained from profiling information generated by the 

single RICA simulator. The mapping flow starts from the description of an application in 

standard sequential C code which is optimised for a single RICA implementation. Then a 
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proper task partition and mapping is chosen after executing the application using the single 

RICA tool flow. 

As shown in Figure 6.1, the task partition and mapping selection is based on the control data 

flow graph and static profiling generated by the single RICA tool flow. The control data 

flow graph provides instruction level parallelism information for loop level partitioning. The 

static profiling information contains the timing characteristics for each task and the access 

frequency for the various data items. This information is used for mapping tasks to available 

processing cores as well as mapping various data items to proper memory locations. After 

the task partition and mapping method is decided, the application is modified to run on a 

multi-core system. A task-level interface, including the macros for synchronisation, is 

developed to facilitate the multiprocessing programming. In addition, this mapping 

methodology supports both homogeneous and heterogeneous architectures. Therefore the 

resource mix for each processing core in the system is allowed to differ, and may be tailored 

to the particular tasks that it is intended to execute. Through this method, the multi-core 

processor model can support both homogeneous and heterogeneous multi-core architectures 

 

Figure 6.1 Mapping methodology 



Homogeneous Multi-core Solutions for WiMAX 

 90

based on dynamically reconfigurable processor, or even conventional DSPs (or any mixture 

thereof).  

The data mapping stage performs mapping of data items to the memory architecture and 

explores different memory architectures for minimising memory access latencies. As 

described in Section 4.2.2, in the proposed multi-core architecture, each processing core can 

access four types of memory components, shared multi-bank register file, stream buffer, 

shared data memory and local data memory. A local data memory is private to a processing 

core and cannot be accessed by other cores. Thus, shared data items, accessed by tasks 

running on different cores, should not be mapped to these memory blocks. Instead, they can 

be mapped to shared register file, or shared memory, which can be accessed by the different 

cores. As shown in Figure 6.1, through each single processor tool flow, trace files and 

memory files are generated and fed into MRPSIM simulator. Eventually, after one 

exploration iteration, the architecture model and the application can be modified to pursue 

higher throughput according to the performance report.  

6.3 Task partitioning methods 

As shown in Figure 2.1, both WiMAX transmitter and receiver consist of five main 

functional blocks. For BPSK based WiMAX, convolutional coding is used as FEC encoding. 

Correspondingly Viterbi encoding is used as FEC decoding. For one OFDM symbol, 

randomising, convolutional coding, interleaving and modulation jointly have an execution 

time of 32 sμ , while the OFDM downlink processing function takes 200 sμ . In the receiver 

side, there are six functions. Among them, the decoding function (including both Viterbi 

decoding and de-randomising) takes 1567 sμ  where Viterbi decoding is the most time 

consuming function, while other functions (i.e. synchronisation, OFDM uplink processing, 

demodulation and de-interleaving) totally run 180 sμ . The design challenge is to map the 

application onto an architecture optimised in terms of system performance and cost. This 

includes not only the mapping strategy but also architectural design choices such as the 



Homogeneous Multi-core Solutions for WiMAX 

 91

number of processing cores as well as the number and types of instruction cells in each core. 

At present, the optimisation involves a lot of manual work. A tool which can make 

automatic optimisation would be a research target in future.  

6.3.1 Task merging and task replication  

A simple mapping would assign each function as a task to one processing core for both 

transmitter and receiver. This mapping generates a multi-core architecture with totally 

eleven processing cores (i.e. five cores for transmitter and six cores for receiver). Each core 

acts as one stage of either transmitter or receiver processing chain, as shown in Figure 2.1. 

However, this partitioning method would lead to highly unbalanced workloads among cores. 

The overall throughput of the WiMAX application is limited by the most time-consuming 

tasks, which are the OFDM downlink processing task in the transmitter side, and the Viterbi 

decoding task in the receiver side. The processing cores with a light workload would spend a 

considerable time idle waiting for synchronisation. To improve the load balance, merging 

and replicating tasks can be employed in the mapping strategy. The task merging method 

incorporates several tasks into one single task which keeps the original execution order of 

these tasks. This method can reduce the number of processing cores, but requires larger local 

program and data memory for each core running the merged task. In the transmitter side, the 

randomising, convolutional coding, interleaving and modulation tasks are merged into one 

single task called channel coding that sequentially performs these original tasks. The merged 

channel coding task and the OFDM downlink processing task are assigned to different 

processing cores, as shown in Figure 6.2 (a). Similarly, for the receiver, the synchronisation, 

OFDM uplink processing, de-interleaving and demodulation tasks are merged and assign to 

one core. The Viterbi decoding and de-randomising tasks are merged into one task called 

Task decoding and assigned to another core, as shown in Figure 6.2 (b). This mapping 

strategy involves four processing cores, as both transmitter and receiver occupying two 

cores. Obviously, workloads are unbalanced and throughputs are still determined by the 

most time consuming tasks (OFDM downlink processing in the transmitter and decoding in 
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the receiver).  

To further improve throughputs, task replication can be applied to the tasks on critical paths. 

Task replication assigns the same task to several processing cores such that all instances of 

the task perform different OFDM symbols in parallel. As a result, task replication needs 

more processing cores to carry out the parallelism as well as larger shared data memory for 

storing the shared data within multiple OFDM symbols. As shown in Figure 6.2 (a), in the 

transmitter, the OFDM downlink processing task is replicated to seven processing cores, as 

its execution time is about seven times that of the merged channel coding task. Ideally, the 

OFDM downlink processing task will complete seven parallel instances every 200 sμ , 

resulting in a 700% performance improvement. As for the receiver, similarly the decoding 

task is replicated to nine processing cores. Clearly, the combination of task merging and task 

replication can lead to higher performance solutions. However, task merging requires more 

 
(a) Transmitter 

 
(b) Receiver 

Figure 6.2 Task merging and task replication methods 



Homogeneous Multi-core Solutions for WiMAX 

 93

local memory and task replication requires more shared data memory as well as more 

processing cores. Obviously, for a multi-core system which has limited computing and 

storage resources, task replication can not be applied.  

6.3.2 Loop-level partitioning 

As discussed before, for both transmitter and receiver, the task merging with two cores 

results in an unbalanced workload, leaving the first core idle for a significant fraction of the 

time. In order to balance the workload among the two processing cores, another partitioning 

method has been proposed, called loop partitioning which includes both loop splitting and 

instruction level partitioning. This method divides the tasks at the instruction level instead of 

the function level in order to explore the instruction level parallelism within a task. In the 

transmitter side, the overall execution time of all the other tasks is much less than the 

execution time of the OFDM downlink processing task where the main function is 256-point 

IFFT. In this thesis, the 256-point IFFT is based on radix-2 FFT algorithm which has eight 

pipeline stages, each stage involving 128 butterfly operations. The most time-consuming 

part of the FFT algorithm is the 2-level loop body shown in Table 6.1 where the left hand 

code is the original code running on a single processor. Originally as a compiler 

optimisation technique, in this thesis, loop splitting is used to break a loop into multiple 

loops which then are assigned to different processing cores. The generated loops keep the 

same original loop body but iterate over different portions of the original index range. 

Shown as the right hand code of Table 6.1, the outer loop is split into two parts. The first 

part executes the first four stages, while the second part executes the remaining four stages. 

The two parts are assigned to two different processing cores.  
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In the receiver side, the decoding task is the most time-consuming. Here, the loop 

partitioning method uses both loop splitting and instruction level partitioning in order to 

parallelise the resulting code across different processing cores. The decoding task contains 

the most time-consuming loop body with a loop-carried dependence, which means each 

iteration of a loop depends on values computed in an earlier iteration. This prevents further 

efficient partitioning at the task level. As shown in Figure 6.3 (a), the body of the main loop 

in the decoding task iterates 870 times and includes 16 butterfly operations which are the 

main operations in Viterbi decoding. A butterfly operation consists of independent and 

Table 6.1 IFFT Loop Partitioning 

Original Code Split Code 

// the number of stages 
#define STAGE      8;  
// the size of FFT 
#define SIZE      256;  
 
int half_size = SIZE/2; 
 
for (i =0; i < STAGE; i++) { 
    counter = 0; 
    do { 
        butterfly(real, image); 
        counter++; 
    } while (counter < 
half_size) 
} 

#define STAGE      8; // the number of stages 
#define SIZE      256; // the size of FFT 
/* assigned to Processing core 0*/ 
/* load data from shared memory to Core0 local memory*/ 
Load(real, image, core0_real, core0_imag); 
for (i =0; i < STAGE/2; i++) { 
    counter = 0; 
    do { 
        butterfly(core0_real, core0_image); 
        counter++; 
    } while (counter < half_size) 
}   
/*store back results from Core0 local memory to shared memory*/  
Load(core0_real, core0_imag, real, image); 

 
/* assigned to Processing core 1*/ 
/* load data from shared memory to Core1 local memory*/ 
Load(real, image, core1_real, core1_imag); 
for (i =0; i < STAGE/2; i++) { 
    counter = 0; 
    do { 
        butterfly(core1_real, core1_image); 
        counter++; 
    } while (counter < half_size) 
}   
/*store back results from Core1 local memory to shared memory*/ 
Load(core1_real, core1_imag, real, image); 
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dependent data paths. The independent data paths can be run on different processing cores to 

increase the instruction level parallelism. To make use of the idle time of the first core, loop 

splitting can be used to effectively move some work of the decoding task from the second 

core to the first core running the merged task. To achieve this, the decoding loop body is 

written in two ways: one with all the work being done on a single processing core, and the 

other where some of the butterflies are moved to the other processing core, such that they 

can be performed in parallel, but need to be synchronised to allow for the dependencies to be 

met. The second core then runs the first (single core) version when the first core is busy 

executing the merged tasks, then switches to the second version (dual-core), allowing the 

now idle first processing core to share in the decoding task.  

Based on the execution time of the merged task, the loop is split into two parts: the first 840 

iterations and the last 30 iterations as shown in Figure 6.3 (b). The execution time of the last 

30 iterations is nearly equal to the merged task. The body of the loop in the first 840 

iterations is partitioned across two processing cores, as shown in Figure 6.3 (b). After loop 

partitioning, the merged task and part of the first 840 iterations are assigned to one 

processing core, the remaining part of the first 840 iterations and the whole of the last 30 

 
Figure 6.3 Decoding loop partitioning 
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iterations are assigned to the second processing core. The first core's idle time can be best 

absorbed in this way by executing the dual-core version of the decoding task for 840 

iterations. The loop partitioning results in a balanced workload, however it may introduce a 

large number of data exchange between the cooperating processing cores and increase 

communication overheads. If the data exchange happens in the shared data memory, the 

shared data memory could become a performance bottleneck of the loop partitioning method 

due to the frequent additional data communication between the processing cores. Therefore, 

a feasible optimisation method is mapping the frequently read and written shared data in the 

dual-core version to the shared register file for reducing memory access time and memory 

access conflicts. 

6.4 Development of multi-core projects  

For easily developing a multi-core project based on the proposed mapping methodology, 

MRPSIM simulator has been integrated into an open source integrated development 

environment, Eclipse. After creating a multi-core project, the parameters for MRPSIM can 

Figure 6.4 Integration of MRPSIM in Eclipse  
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be set through the project properties, as shown in Figure 6.4. Meanwhile, Makefiles have 

been written to automatically compile programs and execute them on simulators. This 

automation process includes compiling and executing each task on a single RICA tool flow, 

Mpsockit preprocessing and the execution of multiple tasks on MRPSIM simulator. Once 

the task partitioning method has been decided, the automation process can carry out, 

following the predefined settings of the tool flow in Makefiles. 

6.5 Synchronisation between tasks 

As mentioned in Section 4.3, two synchronisation methods, spinlock and binary semaphore, 

have been developed. In this thesis, there are two sync variables used for protecting a shared 

data item between tasks in the pipeline. One is for writing and the other is for reading. These 

sync variables are implemented by either spinlocks or binary semaphores. Table 6.2 shows a 

pseudo code for how two tasks running on two cores synchronise with each other. The 

writing sync variable is initialised to one, while the reading one is initialised to zero. Every 

time before Task 1 writes values to the shared data, it will require the writing sync variable. 

If this variable is one, Task 1 will set it to zero and write values to the shared data, otherwise 

Task 1 either continuously checks the availability of this variable or sleeps, depending on 

synchronisation methods. On the other side, as a concurrent task on another processing core, 

Table 6.2 Synchronisation between tasks 

header.h 

 SYNC wlock = 1; // writing sync variable 
SYNC rlock = 0; // reading sync variable 
/*1: sync variable available; 0: sync variable unavailable*/ 
INT shared_data; // shared data item 

Task 1 Task 2 

#include “header.h” 
task1_function();// the main job of Task 1 
require(wlock);//require writing sync variable   
write(shared_data);//write values to shared data 
release(rlock)//release reading sync variable 

#include “header.h” 
require(rlock);//require reading sync variable   
read(shared_data);//read values from shared data
release(wlock);//release writing sync variable 
task2_function();// the main job of Task 2 
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Task 2 falls into sleep or a busy waiting state at the beginning, when it finds the reading 

sync variable is zero. After writing the shared data, Task 1 releases the reading sync variable 

by setting it to one. Meanwhile, Task 2 is aware of the availability of the reading sync 

variable and is able to read the shared data. After finishing reading, Task 2 releases the 

writing sync variable, so that Task 1 is enabled to write new values to the shared data. 

6.6 Results 

Following on from the discussion in Section 6.4, several homogeneous multi-core scenarios 

for both transmitter and receiver have been proposed. These scenarios are based on different 

task partitioning methods and memory architectures, as described in Tables 6.3 and 6.4. 

These scenarios are design examples not aiming to find a global optimum homogeneous 

Table 6.3 Homogeneous multi-core scenarios for WiMAX transmitter 

Scenario No. of cores Partitioning method Data memory mapping 

Scenario 1 2 std. cores Task merging Shared memory 

Scenario 2 2 std. cores Task merging Shared & local memory 

Scenario 3 2 std. cores Loop partitioning Shared memory 

Scenario 4 2 custom cores Loop partitioning Shared memory & shared register file 

Scenario 5 2 custom cores Loop partitioning Shared & local memory & shared register file 

Scenario 6 8 std. cores Task replication Shared memory 

Scenario 7 8 std. cores Task replication Shared & local memory 

 
Table 6.4 Homogeneous multi-core scenarios for WiMAX receiver 

Scenario No. of cores Partitioning method Data memory mapping 

Scenario 1 2 std. cores Task merging Shared memory 

Scenario 2 2 std. cores Task merging Shared & local memory 

Scenario 3 2 std. cores Loop partitioning Shared memory 

Scenario 4 2 custom cores Loop partitioning Shared memory & shared register file 

Scenario 5 2 custom cores Loop partitioning Shared & local memory & shared register file 

Scenario 6 10 std. cores Task replication Shared memory 

Scenario 7 10 std. cores Task replication Shared & local memory 
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multi-core solution for WiMAX but explore the resource/performance tradeoffs in the 

multi-core architecture for different system requirements. For both task merging and task 

replication methods, two scenarios have been designed with and without support for local 

data memory, respectively. These scenarios use standard cores which have the same 

instruction array as used for the RICA test chip. As for loop partitioning based scenarios, 

three scenarios have been designed with different memory architectures. For both transmitter 

and receiver, Scenario 3 only has shared memory used to exchange data between two 

processing cores, while Scenario 4 is equipped with shared register files for data exchange. 

Scenario 5 is an improved version of Scenario 4, with local data memory support.  

Due to the use of shared register files, the cores utilised for Scenarios 4 and 5 have 

MULTIPBK_REG_FILE custom cells integrated. The instruction cell array configurations 

of both a standard core and a custom core are provided in Table 6.5. All scenarios use a 

Table 6.5 Configurations of both a standard core and a custom core 

Instruction Cell Instances in Standard core Instances in Custom core 

ADD 5 5 

MUL 4 4 

REG 30 30 

CONST 9 9 

SHIFT 3 3 

LOGIC 3 3 

COMP 2 2 

MUX 2 2 

I/O REG 1 1 

MEM 8 8 

DMA_interface 1 1 

I/O port 1 1 

RRC 1 1 

JUMP 1 1 

MULTIPBK_REG_FILE nil 8 

Total cell number 71 79 
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semaphore synchronisation method, since a spinlock method would cause more memory 

access conflicts as discussed in Section 4.3. For all scenarios, the shared data memory size is 

128KB, with the access delay being 6ns. According to the memory requirement from tasks, 

each local memory size is 64KB and each local program memory size is 32KB. The local 

data memory access delay was set to 4ns. The load time from program memory differs 

depending on the size of each step. Only used in loop partitioning based scenarios, the 

shared multi-bank register file has eight banks, each of which is 32x32 bits, with the access 

delay being 2ns. All memory blocks have been synthesised by Faraday memory compiler 

Memaker using UMC 0.18µm process technology which the test RICA chip is based on. 

The above memory access latencies are based on generated timing results. The RRC period 

for each processing core was set to 2ns. Meanwhile, the transmitter and receiver were 

separately executed on a single RICA processor containing 128KB data memory and 128KB 

program memory, with 2ns RRC period and 5ns data memory access delay.  

For the sake of verification, the input of the receiver is the output of the transmitter. The 

WiMAX PHY is based on BPSK modulation and 1/2 rate convolutional coding. To make 

fair performance comparisons, all scenarios are executed with 126 OFDM symbols for 

satisfying the replication on both transmitter and receiver. All scenarios have been 

implemented in ANSI C and simulated on MRPSIM simulator. Different transmitter and 

receiver scenarios can be combined to build various multi-core WiMAX physical layer 

solutions. For both transmitter and receiver, there are seven scenarios. It means that totally 

there could be 49 multi-core solutions based on different combinations. Figures 6.5 and 6.6 

show the speedup and parallel efficiency of each scenario for WiMAX transmitter and 

receiver, respectively. The speedup is defined as the execution time of an application on a 

single-core processor divided by the execution time of the parallel version of this application 

on a multi-core processor. While the parallel efficiency (defined as the speedup divided by 

the number of processing cores) is used to estimate how efficiently processing cores are 

utilised in solving the problem [108].  
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Tables 6.6 and 6.7 provide the throughput, the average idle ratio and area of different 

scenarios for transmitter and receiver, respectively. The idle ratio refers to the ratio of the 

period when a processing core is idle to the overall simulation time. The average idle ratio is 

calculated by dividing the sum of the idle ratios by the number of cores. An overall 

multi-core processor area is estimated by accumulating the area of the instruction arrays and 

all memory blocks. The area figures are gained from the logic synthesis of individual RICA 

 
(a) Speedup 

 
(b) Parallel efficiency 

Figure 6.5 Speedup and parallel efficiency of transmitter scenarios 

 
(a) Speedup 
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cores and memory blocks based on UMC 0.18 mμ  process technology. 

As shown in these figures and tables, in the example scenarios, task replication achieves the 

highest speedup compared to other task partition methods. This is mainly because task 

replication employs more processing cores and dispatches more balanced workload to cores. 

Obviously, the scenarios utilising the local data memory have better profiling in most 

performance metrics compared to their counterparts which have shared data memory only. 

This improvement is due to the data locality which reduces the accesses to the slower shared 

data memory. With the local data memory, several scenarios, such as Scenario 5 for 

transmitter and Scenario 7 for receiver, gain a super linear speedup [108] where the speedup 

is greater than the number of processing cores. However, the use of local data memory 

Table 6.6 Performance comparison for transmitter scenarios 

Scenario Throughput (Kbps) Average idle ratio Area (mm2) 

Single std. core 445 - 13 

Scenario 1 514 37.6% 9.96 

Scenario 2 720 38.6% 15.93 

Scenario 3 620 4.2% 10.03 

Scenario 4 715 0.3% 10.14 

Scenario 5 942 7.5% 16.11 

Scenario 6 1,967 3.7% 18.91 

Scenario 7 3,241 3.8% 42.78 

 
(b) Parallel efficiency 

Figure 6.6 Speedup and parallel efficiency of receiver scenarios 
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introduces a significant area overhead.  

Due to the deeply unbalanced workload, task merging based scenarios suffer from about 

30% - 40% average idle ratios and thus achieve lower throughputs. With the same number of 

processing cores as task merging, both transmitter and receiver Scenario 3, which use loop 

partitioning, have much lower average idle ratios compared to task merging based scenarios, 

however their performance is slightly worse. This is due to a large amount of data exchange 

between the two cores through the shared memory. The execution time is dramatically 

increased, since the loop partitioning introduces additional memory access instructions (read 

and write memory) and synchronised waiting time caused by memory access conflicts. 

However, this problem is resolved by providing a shared register file between cores, as 

demonstrated by Scenarios 4 and 5 which have better performance than their task merging 

counterparts, with a very small area overhead introduced by the shared register file. Even 

though the scenarios employing task replication provide the best performance, for multi-core 

systems which contain a limited number of processing cores, task merging and loop 

partitioning based solutions could be feasible alternatives.  

Currently, most of certified fixed WiMAX products are working on 3.5GHz frequency band 

with 3.5MHz channel bandwidth, using Time Division Duplex (TDD) and 256-subcarrier 

Table 6.7 Performance comparison for receiver scenarios 

Scenario Throughput (Kbps) Average idle ratio Area (mm2) 

Single std. core 55 - 13 

Scenario 1 54  44.1% 9.96 

Scenario 2 74  43.3% 15.93 

Scenario 3 60  15.2% 10.03 

Scenario 4 64  14.8% 10.14 

Scenario 5 78  14.3% 16.11 

Scenario 6 428  2.7% 21.90 

Scenario 7 659  1.4% 51.74 
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OFDM. According to Table 2.5 in [18], the fixed WiMAX profile, based on 3.5 MHz 

channel bandwidth and TDD 3:1 downlink-to-uplink ratio, requests data rates at 946Kbps 

and 326Kbps for BSPK based downlink (transmitter) and uplink (receiver), respectively. 

Obviously, the scenarios using task replication satisfy this requirement. It is reasonable that 

multi-core solutions achieve this performance with several small size RICA processing cores, 

each of which has less than 80 cells.  

6.7 Summary 

In this chapter, several homogeneous multi-core solutions, which combine different task 

partitioning strategies and memory architectures, have been presented for the WiMAX 

physical layer applications. A mapping methodology was proposed. Three different task 

partitioning methods have been applied and their impact on the system performance has 

been discussed. Simulation results have demonstrated the effectiveness of the proposed 

solutions in terms of speedup, parallel efficiency and throughput. Up to 7.3 and 12 speedups 

can be achieved by employing eight and ten dynamically reconfigurable processing cores for 

the WiMAX transmitter and receiver sections respectively. Meanwhile the throughputs 

provided by task replication based solutions satisfy the standard requirements.  

However homogeneous based multi-core solutions suffer from many restrictions and 

deficiencies which result in throughput and area inefficiency. These deficiencies include 

restrictions in the memory architectural choices available and the fixed nature of the cores 

used in multi-core architectures. For example, in this chapter, the best solutions achieving 

highest throughput have significant area costs, as eight and ten processing cores used for 

transmitter and receiver, respectively. In the next chapter, a framework for the design of 

multi-core systems with heterogeneous dynamically reconfigurable processing cores will be 

introduced. By means of a design space exploration methodology, heterogeneous multi-core 

architectures can be tailored for a range of applications and provide better performance 

parameters.
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7.1 Introduction 

Currently, the bulk of commercial and research efforts in multi-core field focus on 

homogeneous multi-core processors. However on-chip homogeneity may work well for 

desktops and servers where this general architecture can offer a reasonable average power to 

a full range of applications. In embedded systems which target some special application 

domains like multi-media processing and wireless communication, homogeneity may not be 

an efficient solution. Allowing each processing core to better match its computation 

resources to dedicated application’s needs, heterogeneous multi-core processors can provide 

higher power and area efficiency for certain performance requirements or significant 

performance advantage in an equivalent silicon area, compared to their homogeneous 

counterparts and high-complexity single-core processors. In Section 3.2.2.2, a detailed 

discussion about heterogeneous multi-core architectures has been given.  

This chapter targets heterogeneous multi-core solutions for WiMAX, using RICA cores. The 

cellular configuration and memory size of each core can differ, depending on the choice of 

applications. In addition, an exploration methodology is proposed to search the design space 

Chapter 7
Heterogeneous Multi-core

Solutions for WiMAX



Heterogeneous Multi-core Solutions for WiMAX 

 106

for multi-core systems to find suitable solutions under certain system constraints, such as the 

number of processing cores. This design space exploration methodology aims to maximise 

the overall throughput while keeping the area cost at a low level. Meanwhile this algorithm 

involves various timing and area optimisation techniques targeting WiMAX applications. In 

this chapter, the target WiMAX physical layer uses 16QAM modulation and 1/2 overall 

code rate which requires an RS (255, 239) code, 1/2 rate convolutional coding and 2/3 

puncturing pattern. Both transmitter and receiver are partitioned and mapped onto 

heterogeneous multi-core architectures. 

This chapter is organised as follows: Section 7.2 introduces the design space exploration 

methodology. Sections 7.3 and 7.4 describe how WiMAX is optimised in terms of timing 

and area, respectively. Section 7.5 presents heterogeneous multi-core solutions and provides 

the results and comparisons. 

7.2 Design space exploration 

Existing work on design space exploration methodologies for heterogeneous multi-core 

processors include [55, 121, 122]. Both [121] and [55] focus on design space exploration 

methodologies for heterogeneous multiprocessor SoCs based on a commercial ASIP - 

Xtensa from Tensilica. In [121], the authors proposed an iterative exploration algorithm to 

select custom instructions, assign and schedule tasks on ASIPs. The work in [55] presented a 

heuristic to efficiently explore the design space for a pipeline based heterogeneous 

multiprocessor system. However, the work in [121] only considered the heterogeneity of 

processing elements in terms of custom instructions. This chapter investigates the 

customisation of both processing elements and memory architectures to best fit the target 

tasks. The heuristic presented in [55] only targeted a system configured in a pipelined 

manner with relatively simple task partitioning and mapping, while the exploration 

methodology introduced in this chapter involves a profiling-driven mapping methodology 

which can lead to complex partitioning such as loop level portioning.  
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Based on SUIF parallel compiler and MOVE processor tool flow, the work in [122] 

investigated a design space exploration methodology to find the best parallelisation of a 

given embedded application. The work did not consider the effect caused by changed 

workload balance, only a fixed context graph was presented. Also it is not a clear design 

trade off description that the work used only the number of adders to represent area costs. 

The proposed algorithm in this chapter checks the workload balance iteratively to keep each 

customised processing core has as an equivalent workload as possible. 

The implementation of WiMAX on a heterogeneous multi-core architecture mainly involves 

task partitioning, task scheduling, task mapping, optimisation for each core and balancing 

the workloads among different cores. Since each core may differ, some performance metrics 

used in Chapter 6 (e.g. parallel efficiency) are not suitable for estimating how efficiently a 

heterogeneous multi-core system is utilised in solving the problem. Instead, this chapter uses 

the ratio of throughput to area to evaluate the efficiency of a multi-core architecture. This 

ratio represents a ratio of a multiprocessor performance to its hardware cost and is widely 

used in many research work such as [123]. In this thesis, this ratio is defined as  

Area TotalThroughput /=Δ                         (7.1) 

For WiMAX, the ratio is separately computed for transmitter and receiver. The throughput 

can be obtained by dividing the bit number of one symbol input or output by the execution 

time for completing one symbol transmission or reception. The total area of a transmitter or 

a receiver indicates the area sum of shared memory blocks plus RICA cores. Each RICA 

core area is calculated via the function   Ii pA ij )1()( ≤≤ where I  is the number of cores 

supported by design space j , while ip  represents i th RICA core. This function works by 

accumulating the area of all instruction cells, interconnection and local data and program 

memory in each RICA core.  
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Given a characterised application (e.g. WiMAX) and constraints such as the number of cores 

and whether the cores support custom instruction extensions (i.e. domain-specific instruction 

cells), the design space exploration objective is to maximise the throughput and the 

throughput to area ratio (Δ ) if the throughput can not be further improved. An algorithm is 

proposed for this optimisation problem. The pseudo code of this algorithm is shown in Table 

7.1. This algorithm supports both single-core processor designs and multi-core processor 

Table 7.1 Pseudo code of the design space exploration methodology 

For Design j  with I  processing cores 

Timing optimisation on a single RICA core; 
If the instruction cell array tailorable 
  Customise the instruction cell array; 
If custom instructions enabled 

    Add custom instructions (e.g. Galois Field multiplier); 
Do {  

If multi-core design 
Task partitioning, scheduling and mapping; 
For each RICA core ip  

Timing optimisation; 
If local data memory enabled 

             Add local data memory; 
       End for 

} while ( multi-core design && workloads can be further balanced)  
 
Do { 
   For each RICA core ip  

     Area optimisation; 
If the instruction array tailorable 

    Tailor the instruction cell array; 
If local data memory enabled 

         Customise local data memory size; 
     End for 

} while (multi-core design && workloads can be further balanced) 
 
Calculate the total area; 

    Total Area = ∑
=

I

i
ij pA

1
)( + the area of shared memory blocks; 

  Calculate the overall throughput achieved for Design j  

Δ j  = Throughput/Total Area; 
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designs of either homogeneity or heterogeneity. In addition, this algorithm allows both 

standard RICA and custom RICA based designs. 

For example, for a design space with I  cores, firstly an optimisation of the application 

performance is carried out on a single RICA processor. This optimisation may be twofold. 

One is optimising the application code to maximally get benefits from the RICA architecture, 

while the other is architectural, including customised cellular configuration of the RICA 

core and custom instruction extensions to best fit the application. The second type of timing 

optimisation techniques only can be applied when the RICA instruction cell array is 

tailorable and extensible. The timing optimisation is detailed in Section 7.3. Then the 

algorithm checks whether the design is a multi-core based implementation. If so, the 

application (WiMAX in this thesis) will be partitioned and mapped onto multiple cores by 

means of the profiling-driven mapping methodology introduced in Section 6.2. This 

methodology may generate a partitioning and mapping result based on task merging, task 

replication, loop partitioning or their combination. After that, tasks are separately optimised 

for reducing the execution time on the processing cores which they are assigned to. This 

optimisation is similar as that performed on a single RICA processor, except that a local data 

memory can be added for each core during this optimisation. Then if the design is multi-core 

based, the workload balance will be checked in terms of the execution time of tasks on each 

core and the idle ratio of each cores. For example, if one core has 10% idle ratio and the 

other has 40% idle ratio, the workload is not balanced. If the workloads of the cores are not 

balanced, the procedure will return to the step of task partitioning and mapping to generate a 

more balanced solution and restart the timing optimisation. If a better workload balance can 

not be achieved due to the limitation of the code itself, the procedure will switch to do the 

area optimisation for each core, which is discussed in Section 7.4. Since the area 

optimisation may break the workload balance, there is another workload balance check 

performed after it. Then the procedure either starts a new iteration for the area optimisation 

or breaks the loop. Finally, the total area, throughput, and thus Δ  are calculated. Through 

the efficient task partitioning and mapping, timing and area optimisation as well as workload 
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balance check, this algorithm tries to maximise throughput and/or Δ  for each given design 

space which may have a variety of implementations due to different configurations of RICA 

cores.  

In this chapter, both WiMAX transmitter and receiver are implemented on heterogeneous 

multi-core architectures by using this design space exploration methodology. Figures 7.1 (a) 

and (b) show the main components of 16QAM based WiMAX transmitter and receiver, 

respectively. The arrows indicate the data flow through the various function components. As 

mentioned in Section 6.3.1, the transmitter can be functionally split into two main parts, 

channel coding and OFDM downlink processing. The next two sections discuss the timing 

and area optimisation techniques employed by this design space exploration methodology. 

Some of these optimisation techniques are application specific, but many of them are general 

enough and work for different range of applications. Currently, this exploration 

methodology is performed manually. An automatic design space exploration would be a 

main focus in the future work. 

 

Figure 7.1 The main blocks in 16QAM based WiMAX transmitter and receiver 
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7.3 Timing optimisation 

7.3.1 Code optimisation 

As mentioned in the last section, timing optimisation involves two categories of optimisation 

techniques. The first one targets optimisation of the code to fit the characteristics of the 

RICA architecture better. The RICA architecture is designed to support only one jump 

operation per step. Shown in the left-hand side of Table 7.2, the original code generates two 

jumps and involves three steps. Therefore, it is more efficient to implement these small 

branches by multiplexers instead of conditional statements. Table 7.2 also gives the 

optimised code which can fit into a single step and make better use of the available resources. 

Moreover, with the optimised code, the instruction cell array does not need to be 

reconfigured at all and hence is free of reconfiguration overhead. More benefits can be 

gained from this technique, if such a piece of code is a self-loop. For WiMAX physical layer, 

this replacement technique is mainly used in functions such as demodulation and pilot 

insertion which include many branches. 

Duo to the long memory access latency and the limited memory access interface cells, it is 

very expensive to access memory. Another code optimisation technique is reducing memory 

access count by storing constants in registers. For example, 16QAM modulation has 16 

constellation points. As shown in Figure 2.6, the value of the real part or imaginary part of 

Table 7.2 A code example of replacing jumps with multiplexers 

Original Code Optimised Code 

ctrl = input_1 * input_2; 
if (ctrl > t){ 
  output = (input_1 + input_2) * (input_1 – 
input_2); 
} 
else{ 
  output = input_1 – input_2; 
} 

ctrl = input_1 * input_2; 
result_0 = (input_1 + input_2) *  
(input_1 – input_2); 
result_1 = input_1 – input_2; 
 
output = ( ctrl > t) ? result_0 : result_1; 
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each constellation point is one of four figures (i.e. 10/3 , 10/1 , 10/1−  and 

10/3− ). Therefore it is feasible to store these constants into registers instead of memory. 

Table 7.3 shows the original and optimised codes for 16QAM modulation. In the left-hand 

side, the fix point representations of these values are stored in memory. The loop body 

requires two write memory and six read memory operations, four of the read accesses from 

the function of addressCalculation. RICA processor supports no more than four write and 

read memory accesses within one single step, therefore this loop body can not be placed in 

one step. In the right-hand side code, a bit little complex calculation is carried out by using 

logic operations and multiplexers. The number of read accesses is reduced to four, so that 

this loop body can be executed within one step. This optimisation results in 48.3% execution 

time saving for 16QAM modulation.  

If a self-loop iterates many times and the loop body can fit into one single step, it is worth 

using software pipelining to reorganise the loop by inserting registers in long data-path 

chains. As a result, the original critical paths can be divided into several portions executing 

in parallel within one single step. In RICA implementations, software pipelining is 

Table 7.3 Storing constants in registers for 16QAM modulation 

Original code Optimised code 

//store fix point representations in memory 
const int real[16] ={ 324, 324, 324, 324, 971, 971, 971, 
971, -324, -324, -324, -324, -971, -971, -971, -971};  
 
const int imaginary[16] ={324, 971, -324, -971, 324, 971, 
-324, -971, 324, 971, -324, -971, 324, 971, -324, -971}; 
 
for (i = 0, j=0; i< Ncbps; i+=4, j++)  
//Ncbps: coded bits per symbol 
{ 
  addr = addressCalculation(); 
  real_out[j] = real[addr]; 
  imag_out[j] = imaginary[addr]; 
} 

for (i = 0, j=0; i< Ncbps; i+=4, j++) 
{ 
  addr = addressCalculation(); 
  pos = (addr < 4) ? 324:971; 
  neg = (addr < 12) ? -324:-971; 

real_out[j] = (addr < 8) ? pos : neg; 
ctrl1 = addr & 1; 
pos = (ctrl1 == 0) ? 324:971; 
neg = (ctrl1 == 0) ? -324:-971; 
ctrl2 = addr & 2; 
imag_aout[j] = (ctrl2 == 0) ? pos : 

neg; 
} 
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supported by means of inserting a compiler detective into the loop body. However software 

pipelining involves additional registers and corresponding routing resources. Meanwhile, a 

software pipelined step is split into several logical pipeline stages which require extra steps 

for the prologue and epilogue. Hence software pipelining is not suitable for a loop without a 

large number of iterations. For WiMAX applications, software pipelining is used in 

functions like pilot insertion and convolutional coding. For example, by using software 

pipelining, the convolutional coding function can have 28.6% throughput improvement, 

while the optimised 16QAM modulation code in Table 7.3 can have 53.6% further reduction 

in execution time.  

Another optimisation technique is common subexpression elimination which replaces the 

identical subexpression in multiple equations with a variable holding the computed value. 

Hence the number of operations can be reduced. This technique is employed in functions 

such as convolutional coding where the two generator polynomials have a common 

subexpression 6321 XXX +++ . Other optimisation techniques including loop unrolling 

and loop splitting have been used in functions like RS coding. The main idea behind these 

code optimisation techniques is to make maximal use of available resources and reduce the 

step number, especially for self-loops.  

7.3.2 Architectural optimisation  

In contrast to maximally utilising resources within each step for a given number of 

instruction cells, the second type of optimisation is architectural. It involves tailoring and 

extending the instruction cell array to best fit the dedicated program. For example, the 

optimised code in Table 7.2 could not be placed in one step, if the instruction cell array only 

has one MUL cell. By carefully increasing required resources to satisfy the requirement of 

such a piece of code, especially those self-looping code, the reconfiguration overhead for the 

whole application can be dramatically reduced. Moreover, extending the instruction cell 

array by adding user-defined custom instruction cells can speed up functions and allow 
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smaller, more cost efficient designs. In this chapter, a custom instruction cell called 

GFMULT [30] is used to implement Galois Finite Field multiplication which is the most 

time-consuming operation in RS encoding/decoding and costs much more silicon area and 

execution time if implemented by standard instruction cells. The GFMULT cell is 

implemented by the custom cell generation environment introduced in Section 4.4. In 

addition, other custom instructions such as MULTIPTBK_REG_FILE introduced in Section 

4.2.2.2 can be used to support more memory architectural choice. In Chapter 3, Table 3.3 

lists both standard and custom instruction cells. For standard instruction cells from I/O REG 

to JUMP, the instance numbers are fixed due to the architectural characteristics of RICA, 

while the instance numbers of other cells are allowed to be changed through altering their 

values in MDF. Another architectural optimisation is adding a local multi-bank data memory 

for each processing core. By equipping local data memory, the conflict in accessing the 

shared memory is alleviated, and thus the throughput is improved. The MRPSIM simulator 

can provide information of the local data memory requirement for each processing core 

according to allocated tasks. Thereby the local data memory sizes for individual cores are 

not necessarily the same and can be customised to meet the minimum memory demands, so 

that the memory access can be accelerated. 

7.4 Area optimisation 

This design space exploration methodology employs varied area optimisation techniques for 

different situations. When the workload is balanced, the area optimisation just removes those 

redundant instruction cells existing in processing cores. It will introduce insignificant 

influence on the execution time and hence still keep the balance between cores. For example, 

there are no multiplication operations required by those functions in channel coding using 

the optimised code. Therefore it is unnecessary to keep costly MUL cells in a processing 

core customised for performing channel coding only. The second type of optimisation 

technique is applied to the situation where the workload is unbalanced, even after greatest 

efforts have been paid to task partitioning and mapping as well as timing optimisation. 
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Basically the throughput of a system is determined by the most time-consuming task. Even 

though other tasks perform much better, the overall throughput would not be improved. This 

unbalance results in those processing cores with light workloads to spend a considerable 

time in idle on waiting for the inter-processor synchronisation. For example, in a transmitter 

solution with only two processing cores, after timing optimisation and merging all functions 

of channel coding into a single task, task OFDM downlink processing still takes much more 

execution time than the merged task. Therefore, task OFDM downlink processing 

determines the transmitter throughput which the merged task can not make further 

contributions to improve any more. In addition, partitioning methods like task replication 

can not be employed to such a system due to the limited number of processing cores. For 

this case, the area optimisation tries to bring a workload balance between cores through 

cutting down the resources for those highly underloaded cores (e.g. the core running the 

merged task) until all tasks have a close execution time or balanced workloads. Although it 

will not affect the throughput of applications too much even after considering the memory 

competition and inter-processor synchronisation, the ratio of throughput to area will be 

improved with the area reduction. In all cases, area optimisation techniques intend to 

maximise the area efficiency without breaking the workload balance or worsening the 

throughput. Moreover, both local data and local program memory sizes can be tuned to meet 

the minimal requirements from tasks assigned to each core, through modifying the 

multi-core MDF configuration. 

7.5 Results 

A group of single-core or multi-core processor designs were developed for transmitter and 

receiver, respectively. These designs have been configured by different constraints as 

examples for the design space exploration. These constraints include the number of 

processing cores, tailorability and extensibility. Each design may have a large design space 

in terms of the instruction cell array configuration of each individual core, local memory 

size, mapping methods and so on. A good solution can be found for each design by proper 
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partitioning and mapping as well as timing and area optimisation.  

Tables 7.4 and 7.5 show the solutions found by means of the design space exploration 

methodology for each transmitter and receiver design, respectively. The second columns of 

the two tables show the number and types of cores used in each design. For both transmitter 

and receiver, there are two single-core based designs, while others are multi-core designs, all 

of which own local data memory. Design 2 of transmitter is developed as a homogeneous 

multi-core solution which employs two standard RICA cores with equal local memory size. 

Designs 4-6 of transmitter and Designs 3-6 of receiver are heterogeneous based solutions 

where the number of processing cores gradually increases. According to the task mapping 

and scheduling results, the exploration stops at the quad-core and five-core solutions for 

transmitter and receiver, respectively. The third column in both of the two tables indicates 

Table 7.4 Comparison of transmitter design configurations 

Design No. and types of cores Tailorable& 
Extensible Mapping 

Local data 
memory (KB)

Local program 
memory (KB) 

Design 1 1 standard core No 1-7 128 128 

Design 2 2 standard cores No (1-2); (3-7) 48;48 128;128 

Design 3 1 RICA1 Yes 1-7 128 128 

Design 4 1 RICA2 & 1 RICA3 Yes (1-6); (7) 48;8 128;8 

Design 5 1 RICA4 & 2 RICA3 Yes (1-6); (7) 48;8 128;8 

Design 6 1 RICA5 & 3 RICA3 Yes (1-6); (7) 48;8 128;8 

 

Table 7.5 Comparison of receiver design configurations 

Design No. and types of cores Tailorable& 
Extensible Mapping 

Local data 
memory (KB)

Local program 
memory (KB) 

Design 1 1 standard core No 1-8 128 128 

Design 2 1 RICA6 Yes 1-8 128 128 

Design 3 1 RICA7 & 1 RICA6 Yes (1-5); (6-8) 16;16 16;64 

Design 4 1 RICA8 & 2 RICA9 Yes (1-5,7,8);(6) 16;16 64;8 

Design 5 1 RICA10 & 3 RICA6 Yes (1-5); (6-8) 16;16 16;64 

Design 6 1 RICA11 & 4 RICA6 Yes (1-5); (6-8) 16;16 16;64 
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whether the design is allowed to be tailored and extended. 

The RICA cores used in transmitter Designs 3-6 and receiver Designs 2-6 are allowed to be 

tailored and custom instruction extended. Including the standard RICA core and its custom 

variants, totally twelve types of RICA core configurations have been obtained for these 

solutions through the design space exploration. Tables 7.6 and 7.7 provide the specification 

of each core type used for transmitter and receiver, respectively. The specification includes 

the instance number of each instruction cell, local memory size, area cost as well as the tasks 

each core is customised for. The area figures are obtained from the RICA multiple product 

Table 7.6 Comparison between standard and custom RICA cores used in transmitter designs

Instruction cell Standard RICA1 RICA2 RICA3 RICA 4 RICA 5 
ADD 5 9 1 5 7 7 
MUL 4 2 nil 2 nil nil 
REG 30 69 24 28 89 89 

CONST 9 35 9 9 32 32 

SHIFT 3 19 2 3 4 19 

LOGIC 3 22 3 1 22 22 

COMP 2 13 2 2 13 13 

MUX 2 7 2 1 7 7 

I/O REG 1 1 1 1 1 1 

MEM 8 8 8 8 8 8 

DMA_interface 1 1 1 1 1 1 

I/O port 1 1 1 1 1 1 

RRC 1 1 1 1 1 1 

JUMP 1 1 1 1 1 1 

GFMULT nil 4 4 nil 4 4 

Total cell number 71 196 60 64 191 206 

Local data  
memory (KB) 128/48 128 48 8 48 48 

Local program 
memory (KB) 128 128 128 8 128 128 

Core area (mm2) 12.94/9.62 13.86 9.21 2.17 10.02 10.25 

Targeting tasks General Transmitter Channel 
coding OFDM Channel 

coding 
Channel 
coding 
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wafer test chip data sheet and memory logic synthesis. 

The mapping solutions for each design are given in the fourth columns of Tables 7.4 and 7.5. 

For instance, in transmitter Design 5, tasks 1 - 6 shown in Figure 7.1(a) are assigned to one 

RICA4 core while Task 7 is replicated on two RICA3 cores. All multi-core solutions have 

the same amount of shared memory resources – 128K bytes with 6ns access delay, and each 

core may have different sizes of local data and program memory as shown in the last two 

columns of Tables 7.4 and 7.5. For example, in transmitter Design 5, RICA4 has a local data 

memory sized 48KB and 128KB program memory, while both local data memory and 

Table 7.7 Comparison between standard and custom RICA cores used in receiver designs 

Instruction cell Standard RICA6 RICA7 RICA8 RICA9 RICA10 RICA11 
ADD 5 16 1 13 11 3 13 
MUL 4 2 1 4 nil 2 4 
REG 30 69 14 46 36 28 31 

CONST 9 26 6 15 20 6 15 

SHIFT 3 7 1 4 6 2 4 

LOGIC 3 25 1 8 12 1 2 

COMP 2 26 1 26 12 2 3 

MUX 2 19 1 19 11 2 6 

I/O REG 1 1 1 1 1 1 1 

MEM 8 8 8 8 8 8 8 

DMA_interface 1 8 1 1 1 1 1 

I/O port 1 1 1 1 1 1 1 

RRC 1 1 1 1 1 1 1 

JUMP 1 1 1 1 1 1 1 

GFMULT nil 1 nil 8 nil nil nil 

Total cell 
number 71 213 39 156 121 59 91 

Local data  
memory (KB) 128 128/16 16 16 16 16 16 

Local program 
memory (KB) 128 128/64 16 64 8 16 16 

Core area (mm2) 12.94 14.07/6.69 2.87 4.56 2.93 3.11 3.53 

Targeting tasks General Receiver 
Synch, 
OFDM, 

etc. 

Receiver 
except 
Viterbi 

Viterbi 
Synch, 
OFDM, 

etc. 

Synch, 
OFDM, 

etc. 
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program memory for each RICA3 are 8KB. The access delays for local memory differ 

depending on the size of the local memory. The RRC period for all designs was set to 2ns. 

Tables 7.8 and 7.9 show the results for each design of transmitter and receiver, respectively, 

including throughput, area, idle ratio and the ratio of throughput to area. The areas are 

calculated by the equation described in Table 7.1. All throughput and idle ratio figures are 

provided by MRPSIM simulator. For transmitter designs, it is clear that based on standard 

RICA processing cores, both Design 1 and Design 2 deliver very poor performance. Even 

equipped with homogeneous dual-core and faster local data memory, Design 2 exhibits only 

12% improvement in performance, but introduces much more area overheads compared to 

Design 1. This is mainly due to the unbalanced workload which results in a very high 

Table 7.8 Results from the exploration methodology for transmitter designs  

Design 
Throughput  

(Kbps) 
Area (mm2) Average idle ratio 

Throughput/Area 
(Kbps per mm2) 

Design 1 21.7 12.94 nil 1.68  

Design 2 24.36 25.21 49.5% 0.97  

Design 3 2,094.14 13.86 nil 154.43  

Design 4 2,910.93 17.35 1.5% 167.82  

Design 5 5,805.51 18.94  4.9% 306.46  

Design 6 8,669.47 19.96  7.3% 434.29  

 

Table 7.9 Results from the exploration methodology for receiver designs 

Design 
Throughput  

(Kbps) 
Area (mm2) Average idle ratio 

Throughput/Area 
(Kbps per mm2) 

Design 1 3.99 12.94 nil 0.31 

Design 2 476.60 14.07 nil 33.88 

Design 3 810.22 15.54 13.3% 52.15 

Design 4 1,313,68 18.14 26.4% 72.40 

Design 5 1,868.27 29.16 1.2% 64.07 

Design 6 2,430.66 36.28 3.8% 67.01 
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average idle ratio of Design 2. The reason for this unbalance is that one processing core 

executes a very heavy computation for RS encoding, while the other is almost idle at all time 

because the execution time consumed by the rest of WiMAX transmitter functions on it is 

negligible, compared to RS encoding.  

When the instruction cell array of a processing core is allowed to be tailored as well as 

extended by domain-specific custom instruction cells (in this case, GF multiplier cells), 

much better performance is achieved as can be seen in Design 3. Benefiting from a 

heterogeneous dual-core implementation, Design 4 improves over Design 3, and has about 

30% area reduction compared to its homogeneous counterpart Design 2. In both Design 5 

and Design 6, Task OFDM downlink processing is replicated on multiple RICA3 cores, 

while the other processing core runs all other functions. Hence the OFDM downlink 

processing task can be executed in parallel for multiple consecutive OFDM symbols. 

Although owning only one more RICA core, Design 6 has much better performance than 

Design 5, and achieves the highest throughput and throughput to area ratio among all 

transmitter designs. This is because the execution time of the optimised OFDM downlink 

processing is nearly three times that of the optimised channel coding. In Designs 4 and 5, the 

numbers of cores are limited to two or three. Hence both Designs 4 and 5 utilise the second 

type of area optimisation technique, introduced in Section 7.4, which brings these designs 

low area costs and average idle ratios without hurting throughputs. As a result, RICA2 and 

RICA4 are generated as small versions of RICA5 which has more resources for the channel 

coding task. Compared to RICA5, RICA2 and RICA4 have 64% and 15% area reductions in 

terms of the instruction cell array including cells and interconnection, respectively. It results 

in 10.2% and 2.3% savings for the overall processing core area, as can be seen in Table 7.6.  

For the receiver side, same as the transmitter, the custom instruction cell GF multiplier 

brings a significant improvement for both throughput and area cost for those designs 

allowed to be extended. Due to the fact that the execution time of Viterbi task takes about 

70% of the overall time of a receiver, in Designs 3, 5 and 6, the receiver is partitioned into 
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two batches of tasks. Tasks 1-5 are allocated to one RICA core, while tasks 6-8 are allocated 

to one RICA6 core or replicated to up to four RICA6 cores. Since the execution time 

proportion between tasks 1-5 and tasks 6-8 is almost one to four, Design 6 demonstrated 

much better results for throughput and the ratio of throughput to area, compared to Designs 

3 and 5. In Designs 3 and 5, RICA7 and RICA10 are optimised by means of the second type 

of area optimisation technique. Compared to RICA11, RICA7 and RICA10 are 56% and 

36% smaller in the instruction cell array area, respectively, in the meantime 19% and 12% 

smaller in the overall processing core area, respectively.  

Different from the previous mapping and scheduling, Design 4 uses a mapping and 

scheduling method where the most time-consuming task Viterbi is replicated on two RICA9 

cores and all other tasks are assigned to one RICA8 core. This mapping and scheduling is 

illustrated in Figure 7.2 where the processing of four OFDM symbols is demonstrated. The 

left-hand side of Figure 7.2 shows the receiver task graph, while the percentages represent 

the proportion of each task batch execution time in the overall execution time. On RICA8, 

first of all tasks 1-5 execute four consecutive symbols, and then tasks 7-8 perform four 

consecutive symbols once task 6 finishes the corresponding symbols on two RICA9 cores. 

This scheduling can achieve better workload balance than the normal task replication for the 

triple-core design. Design 4 does not employ the second type of area optimisation technique, 

but achieves the highest throughput to area ratio in all receiver designs. Due to the 

computational complexity of the receiver, both throughputs and the ratios of throughput to 

area in receiver designs are much lower than those for transmitter designs. According to 

 
Figure 7.2 Task partitioning, mapping and scheduling in receiver Design 4  
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Table 2.5 in [18], the fixed WiMAX profile, which uses 3.5 MHz channel bandwidth and 

TDD 3:1 downlink-to-uplink ratio, requests data rates at 3,763Kbps and 1,306Kbps for 

downlink and uplink based on 16QAM modulation with 1/2 code rate, respectively. It is 

clearly shown in Tables 7.8 and 7.9 that Designs 5 and 6 of transmitter as well as Designs 

4-6 of receiver satisfy these requirements. 

In Table 7.10, the design with the best throughput (i.e. the combination of Design 6 for both 

transmitter and receiver) is compared with combined Scenario 7 (i.e. the combination of 

Scenario 7 for both transmitter and receiver) proposed in Chapter 6 and several other 

WiMAX solutions based on commercial high performance multi-core processors. In Table 

7.10, for the sake of direct comparison, the throughput is the sum of transmitter and receiver 

throughputs. In addition, throughputs are estimated at 90nm technology basis for those 

solutions based on other process technologies. For 180 nm and 130 nm technologies, the 

estimated throughputs are double and 1.5 times as the actual throughputs, respectively. 

Shown in Table 7.10, Design 6 offers a much higher throughput than Scenario 7 in Chapter 

Table 7.10 Comparison of multi-core solutions 

Multi-core solution Structure 
Process 

technology 
(nm) 

Frequency 
(MHz) 

Throughput 
(estimated 
for 90mn) 

(Mbps) 

Design 6 9 RICA custom cores 180 500 22 

Scenario 7 in Chapter 6 18 RICA std. cores 180 500 7.8 

PC7218 [94] 2 PC102       
(2 x 308 cores) 130 160 40 

SB3010 [61] One ARM9 and 4 
Sandblaster cores 90 600 2.9 

IXP2350 [59] 
one XScale core and

4 microengines 
90 1,200 (XScale)/ 

900 (microengine) 25 

MSC8126 [26] 
4 SC104 cores plus
Viterbi coprocessor

90 500 33.7 

CELL [97] 
one 64-bit PPE 
and eight SPEs 

90 3,200 40 
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6 at almost half area cost. It proves that even with more workloads (e.g. RS coding), 

heterogeneous multi-core designs surpass homogeneous multi-core designs in performance 

with much less silicon costs. In addition, the performance of both Design 6 and Scenario 7 

deliver good performance, even though the proposed solutions contain a few simple RICA 

cores operating at not very high frequency and are currently based on a test chip with a 

process technology which is one or two generation behind other solutions. One reason 

behind this is that the RICA architecture’s salient characteristics (e.g. customisable 

instruction cell array and reconfigurable rate control) bring the proposed multi-core 

solutions advantages over DSP based multi-core solutions. It is also partially because all 

processing cores in both Design 6 and Scenario 7 have very low average idle ratios, 

compared to other solutions. For example, in [97] only five of SPEs in CELL are used for 

processing WiMAX, and the SC 104 cores in Freescale MSC8126 have only an average 

loading rate of 70% [16]. Moreover, combined Design 6 and Scenario 7 have area costs at 

55.75 mm2 and 94.53 mm2, respectively. However, some of other multi-core solutions take 

up more space, for example, the die size of a CELL processor is 221 mm2 at 90nm process 

technology.  

7.6 Summary 

In this chapter, a design space exploration methodology has been proposed to find good 

design solutions under certain system constraints. This algorithm is suitable for both 

single-core based and multi-core based designs including heterogeneous and homogeneous 

multi-core solutions. The ratio of throughput to area was used for estimating the efficiency 

of a multi-core design. In addition, a variety of timing and area optimisation techniques were 

introduced and used within this algorithm to improve the throughput as well as area 

efficiency and thus the throughput to area ratio. Several designs have been developed and 

good improvement and trade off have been obtained through the exploration methodology 

for each design. Totally eleven types of custom RICA cores have been devised for these 

designs. Results demonstrated that heterogeneous multi-core architectures can provide 
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throughputs of up to 8.7 Mbps and 2.4 Mbps for transmitter and receiver, respectively, 

meanwhile achieving a ratio of throughput to area up to 200 Kbps per mm2 for the overall 

WiMAX physical layer. In addition, a comparison with other WiMAX multi-core solutions 

was provided to demonstrate that the best solution Design 6 delivers a very good throughput 

at relatively low area cost.
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8.1 Introduction 

Nowadays, complicated embedded system designs are driven by the increasing demand for 

high performance real-time applications. The approach of software applications plus bare 

machines, which may work well for microwave ovens, can not work for consumer 

electronics where multiple tasks even multiple processors are involved. As the RICA 

architecture targets on embedded systems, it is very important to have a real-time operating 

system ported to RICA for satisfying the multitasking requirement. Moreover, for embedded 

systems targeting deterministic applications (e.g. WiMAX), it is worth to have an RTOS to 

maintain the system reliability/stability, protect the system from a crash caused by some 

faults, and diagnose the faults when a crash happens. From multi-core systems point of view, 

an operating system allows for dynamic scheduling which can schedule tasks at run-time. As 

shown in Figure 4.1, an OS can be ported to the master core which takes charge of task 

management and scheduling, while all slave cores act as I/O processors. Meanwhile, some 

OSes have a load balancer or support task stealing which can automatically balance 

Chapter 8
       Multitasking 

WiMAX on an RTOS
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workloads among processing cores regarding run-time situations. In addition, an OS enables 

multithreading which can make better advantage of computing resources. As multithreading 

on multi-core systems is one of main future targets for the work originated from this thesis, 

porting an RTOS on a single RICA processor is the first compulsory step for this target. 

An RTOS or embedded operating system is a type of OS specially designed for real-time 

applications, including those running on consumer electronics, industrial robots, industrial 

control, and scientific research equipment. The major difference between an RTOS and a 

normal desktop/server OS is that an RTOS must satisfy the strict deadline of real time 

systems. RTOSes can be classified into hard real-time RTOSes and soft real-time RTOSes. 

For the first category of RTOS, such as those used in automobiles and health care, the 

deadline must be deterministically met. Otherwise applications would fail and cause serious 

accidents which may even threaten users’ lives. However the effort of satisfying the deadline 

is somewhat relaxed in soft real-time RTOSes, such as those used in customer electronics. In 

this kind of embedded system, the operations completed after the deadline are still 

meaningful, for example the delayed live video. Usually an RTOS is devised to be very 

compact and efficient, due to the limited resources of embedded systems. The minimal 

interrupt and thread switching latencies are often used to estimate how efficient an RTOS is. 

Currently, there are many RTOSes available for various hardware platforms. As for 

reconfigurable computing architectures, work so far has included mapping an RTOS on 

soft-core processors, such as Altera NiosII [124] and Xilinx MicroBlaze [125], which have 

been synthesised on fine-grained FPGAs. However, the overhead introduced by the 

communication between the underlying logic blocks has an adverse effect on power 

consumption and area. 

This chapter focuses on porting an RTOS – Micro C/OS-II to the RICA architecture and the 

multitasking implementation of a WiMAX physical layer program on a single RICA with 

this RTOS support. For comparison’s sake, the WiMAX program has been also 

implemented on the ARM7TDMI processor with Micro C/OS-II support. In Section 8.2, a 
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survey is given for choosing a suitable RTOS. Section 8.3 describes both hardware and 

software requirements for developing this porting. Section 8.4 details how the multitasking 

WiMAX program works on Micro C/OS-II. Finally, in Section 8.5, the results are given to 

demonstrate the overheads introduced by this RTOS and compare the performance of 

multitasking based WiMAX on RICA and ARM7TDMI.  

8.2 The selection of RTOSes 

To choose a suitable RTOS for exploring multitasking on RICA, thirty-three RTOSes have 

been investigated from both the open source community and proprietary sources. All of 

selected RTOSes can be categorised in term of the application domain, source type, kernel 

type and the derivation shown in Table 8.1.  

Table 8.1 Survey of RTOSes 

RTOS Application Source type Kernel type Derivation 

eCos [126] General Open source Microkernel N/A 

Fiasco [127] General Open source Microkernel N/A 

FreeRTOS [128] General Open source Microkernel N/A 

NetBSD [129] General Open source Monolithic BSD 

Phoenix-RTOS [130] General Open source Microkernel Unix-like 

QNX [131] General Open source Microkernel Unix-like 

RTEMS [132] General Open source Microkernel N/A 

ThreadX [133] General Closed source Picokernel N/A 

TRON [134] General Open source N/A N/A 

uCLinux [135] General Open source Monolithic  Linux 

VxWorks [136] General Closed source N/A N/A 

Xpe [137] General Closed source Hybrid kernel Windows XP

MontaVista Linux [138] Handheld devices Open source Monolithic  Linux 

Nucleus RTOS [139] Handheld devices Closed source N/A N/A 

Palm OS [140] Handheld devices Closed source N/A N/A 

Prex [141] Handheld devices Open source Microkernel N/A 
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Symbian OS [142] Handheld devices Closed source Microkernel N/A 

Windows Mobile [143] Handheld devices Closed source N/A WinCE 

WinCE [144] Handheld/ industrial 
devices Shared source Monolithic  N/A 

Integrity [145] Hard real-time Closed source Microkernel N/A 

LynxOS [146] Hard real time Closed source N/A Unix-like 

Micro C/OS-II [147] Hard real time Open source Microkernel N/A 

RTLinux [148] Hard real-time Open source Monolithic  Linux 

Agnix [149] Education Open source Monolithic  Linux 

Minix [107] Education Open source Microkernel Unix-like 

ChorusOS [150] Network Open source Microkernel N/A 

Contiki [151] Network sensors Open source N/A N/A 

ETLinux [152] Industrial computers Open source Monolithic  Linux 

Freesco [153] Routers Open source Monolithic  Linux 

Inferno [154] Distributed services Open source Monolithic  Unix 

Nut/OS [155] Ethernet Open source N/A N/A 

picoOS [156] Small systems Open source N/A N/A 

ShaRK [157] Control applications Open source Microkernel Unix-like 

TinyOS [158] Wireless sensor 
network Open source N/A N/A 

As shown in the fourth column of Table 8.1, most investigated RTOSes can be classified 

into four categories in terms of kernel types. Microkernel provides only basic functionalities, 

with other services delivered by user-space servers. While monolithic kernel defines a 

high-level virtual interface on the top of hardware, with OS services implemented in 

supervisor mode modules by system calls. Hybrid kernel is a mixed kernel structure similar 

to a microkernel, but implemented as a monolithic kernel. Picokernel is very small 

microkernel, also called nanokernel. 

Among these RTOSes, open source ones are preferred, because their source code are fully 

open to the public and there are plenty of supports from the thriving user communities. Four 

open source RTOSes are chosen for a further comparison, due to the fact that each of them 
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has reasonable porting complexity, has been ported to a large range of processors, and has 

good documents and the compatibility of GNU compilers which the RICA compiler is based 

on. Tables 8.2 and 8.3 give a detailed comparison for the four RTOSes. As shown in these 

tables, Micro C/OS-II has smallest memory requirements and lowest porting complexity, as 

its kernel clearly and concisely written in several thousand lines. Its simplicity also makes 

the interrupt and task switching latencies deterministic and debugging easier. Although 

Micro C/OS-II does not support multiprocessing, the basic knowledge about RTOS (e.g. 

scheduling and context switch) can be easily learned through porting this simple RTOS to 

RICA and programming multitasking based WiMAX on the top of it. Also as described in 

Chapter 4, the proposed multi-core architecture is master-slave based. Micro C/OS-II can be 

ported to this proposed multi-core system in a way where the functions of the kernel can 

only be executed on the master, with the slaves working as I/O processors. Therefore, Micro 

C/OS-II is chosen as the RTOS to be ported to the RICA architecture.  

Table 8.2 Comparison in term of memory size and multiprocessing support 

RTOS Memory footprint  Multiprocessing support 

eCos tens to hundreds of KB for some given processors 

FreeRTOS about 10KB for 8 bit processors no 

Micro C/OS-II minimal: 3-10KB ROM; 2KB RAM no 

RTEMS application dependent, <100KB homogeneous and heterogeneous 
mulitprocessing 

Table 8.3 Comparison in term of ported devices and specific features 

RTOS Porting complexity Specific features 

eCos High high configurability with a friendly configuration 
tool; many APIs support 

FreeRTOS Medium small memory footprint; good demo applications 

Micro C/OS-II Low small memory footprint; satisfy stringent real-time 
requirements 

RTEMS High homogeneous and heterogeneous multiprocessing 
support; satisfy stringent real-time requirements 
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8.3 Porting Micro C/OS-II to RICA 

From the system point of view, an embedded system can be simply described as a 

combination of the hardware infrastructure, an operating system and application programs. 

Figure 8.1 shows a diagram for a Micro C/OS-II based system. Acting as a middle layer 

between the hardware layer and the software layer, the RTOS Micro C/OS-II hides the 

details of the underlying hardware infrastructure from the software. For porting this RTOS 

to the RICA architecture, there are some requirements from both hardware and software 

sides [147]. 

8.3.1 Hardware requirements  

The minimum hardware requirement for running Micro C/OS-II on the RICA architecture is 

shown in Figure 8.2. This hardware system is different from the standard RICA architecture 

shown in Figure 3.1. The data memory address space contains an interrupt vector table 

starting from address FFFFFF00, with a size of 80h. Upon the address of FFFFFF80, locates 

memory mapped registers for peripherals. This external register bank includes Timer0 

control/status register, the interrupt control register, the interrupt status register and the 

previous program counter. The RTOS system time is provided by the system timer Timer0, 

which delivers an interrupt periodically to the RICA core as a tick. The tick period can be 

 
Figure 8.1 The Micro C/OS-II based system 
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programmed by writing a value in the Timer0 control/status register. The interrupt controller 

is programmable through setting the interrupt control register, while its status can be read 

from the interrupt status register. The previous program counter is used in the interrupt 

handler for restoring the program counter of the interrupted task during task switching.  

8.3.2 Software requirements  

From the operating system point of view, several machine dependent files are required to 

describe the profile of the underlying hardware architecture. Described in Table 8.4, these 

 
Figure 8.2 Hardware requirements for porting Micro C/OS-II to RICA 

Table 8.4 Micro C/OS-II machine dependent files for RICA 

Machine dependent files Description 

OS_CFG.H System configuration 

OS_CPU.H Define the data types related to the processor 

OS_CPU_C.C 

Main functions: 
OSStartHighRdy(): enable the execution of the highest priority task 
OSCtxSw(): perform a context switch for the task pre-emption 
OSIntCtxSw(): perform a context switch for interrupts 
OSTickISR(): Timer0 tick interrupt service routine 
OSTaskStkInit(): initialise the stack frame of a task and other functions 
for functionality extension 
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files have been written according to the format defined by Micro C/OS-II. Some 

architecture-specific functions, such as initialisation, interrupt handling and task switching, 

are defined in these machine dependent files. Several Micro C/OS-II based programs have 

been written to test the basic RTOS functionalities like task management and scheduling. As 

for ARM7TDMI [159], the machine dependent files can be downloaded from the Micro 

C/OS-II official website. 

8.4 The multitasking implementation of WiMAX on Micro 

C/OS-II 

For demonstrating multitasking with Micro C/OS-II, a BPSK based WiMAX physical layer 

program has been modified to use APIs provided by this RTOS. For self-test’ sake, the 

multitasking WiMAX program includes the transmitter, the receiver and an additional error 

checking function, as shown in Figure 8.3. The transmitter output data are fed as the input to 

the receiver, and the error checking function makes sure that the received data matches the 

sent data. Under the RTOS environment, the WiMAX program is partitioned into six Micro 

C/OS-II tasks: channel coding, OFDM downlink, OFDM uplink, demodulation, channel 

decoding and error checking, as shown in Figure 8.3. This partition is slightly different to 

that seen in Chapters 6 and 7, since the task balance is not the concern for multitasking on a 

single processor.  

The multitasking scheme provided by this RTOS makes the tasks operate in a pipelined 

 
Figure 8.3 Multitasking WiMAX function blocks 
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fashion. It gives the tasks more independence from each other. These tasks have different 

priorities from high to low according to the above task order, since Micro C/OS-II’s 

pre-emptive kernel does not support multiple tasks with a same priority [147]. In a 

pre-emptive multitasking OS, when a task with a higher priority is ready to run, the 

scheduler will interrupt the current running task and enable the pre-emptive task to perform. 

For achieving this, a context switch carries out to store the state of the interrupted task (e.g. 

the values of registers) into this task’s stack and restore the state of the pre-emptive task 

from its stack. In Micro C/OS-II, a context switch may happen when an interrupt arrives as 

well. In this situation, the corresponding Interrupt Service Routine (ISR) saves the 

interrupted task’s state. After the ISR finishes, a context switch function is called to restore 

the state of the ready Highest Priority Task (HPT) or the state of the interrupted task [147].  

To protect the shared data between tasks and make tasks more independent from each other, 

the predefined RTOS semaphores are used as the interprocess synchronisation approach. 

Usually, the execution of the WiMAX program on Micro C/OS-II starts with the OS 

initialisation, followed by the creation of tasks and semaphores. Then the OS chooses the 

task with the highest priority to run. Tasks communicate with each other via semaphores. 

The program flow for the multitasking WiMAX on Micro C/OS-II is illustrated in Figure 8.4. 

 
Figure 8.4 Program flow chart of WiMAX running on Micro C/OS-II 
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As shown in Figure 8.4, an arrow starting from a semaphore and ending at a task represents 

the task requesting the semaphore, while an arrow starting from a task and ending at a 

semaphore represents the task posting the semaphore. For each block of the shared data, 

there are two binary semaphores. One controls write access, while the other controls read 

access. Initialised as either 1 or 0, a binary OS semaphore ensures that only one task can 

access the shared resource at any one time [147]. The writing semaphores are initialised to 1, 

and the reading semaphores are initialised to 0. When the current task intends to access the 

shared data, either for writing or reading, it must first check the availability of the 

corresponding semaphore. If the value of that semaphore is zero, the current task will 

suspend, and the OS will place it back into the ready state until the semaphore becomes 

available. Each time when the current task suspends, the OS chooses to run the HPT from 

the ready list. Basically, for each OFDM symbol processing, a task can read the data shared 

with a previous task only after the previous task posts the reading semaphore.  

 
Figure 8.5 Detailed program flow diagram for the execution of channel coding and OFDM 

downlink tasks 
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Figure 8.5 illustrates the detailed program flow diagram for the execution of the channel 

coding task and the OFDM downlink task, giving an example of how the tasks run and 

switch. As shown in Figure 8.5, after OS initialisation and resource creation, the OS chooses 

the channel coding task to run for processing the first symbol, since it has the highest 

priority. Since the writing semaphore for the shared data between the channel coding task 

and the OFDM downlink task is initialised to 1, the channel coding task can write the shared 

data, and post the reading semaphore right after it finishes writing. During the semaphore 

post, the HPT waiting for this semaphore is made ready to run. The HPT is the OFDM 

downlink task in this case. Then the scheduler is called to check whether the ready HPT has 

a higher priority than the current running task. If so, a task based context switch happens and 

the current task will be pre-empted by the HPT. Otherwise, the semaphore posting function 

returns to the current running task. Obviously, at this time, the posting function returns to the 

channel coding task. 

Next the channel coding task starts to process the second symbol after it finishes the 

computation of the first symbol. When the writing semaphore is reached for the second time, 

the channel coding task recognises that this semaphore is not available, since the OFDM 

DOWNLINK task has not start yet and read the shared data written there for the first symbol. 

Therefore, the channel coding task suspends, and will be returned to the ready state until the 

writing semaphore is released. After that, the OS scheduler chooses to run the OFDM 

downlink task, which is the highest priority ready task at that instant. Then the OFDM 

downlink task starts to run and requests the reading semaphore for the shared data between it 

and the channel coding task, which was posted during the execution of the channel coding 

task. After reading the shared data, the OFDM downlink task posts the writing semaphore, 

and the OS makes the channel coding task ready. Having higher priority, the channel coding 

task pre-empts the OFDM downlink task and continues to process the second symbol. 

After processing the second symbol, the channel coding task again suspends due to the 

writing semaphore being unavailable. Then the scheduler makes the OFDM downlink task 
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continue to finish its job for the first symbol and post the reading semaphore which makes 

the OFDM uplink task ready. Again the scheduler keeps the OFDM downlink task 

continuing to run. The OFDM downlink task is blocked at its processing for the second 

symbol as the channel coding task was before. At this time, the scheduler chooses the 

OFDM uplink task to run for the first symbol. Similar logic applies to the other tasks in the 

pipeline mode. Once all six tasks finish, the scheduler activates an idle task, which is a 

system task with the lowest priority. 

8.5 Results 

Firstly, to demonstrate the overheads introduced by porting Micro C/OS-II to the standard 

RICA, both the RICA implementations of a WiMAX program with and without this RTOS 

support have been developed. The detailed results are shown in Table 8.5, where WiMAX 

and RTOS represent the execution of WiMAX on a standard RICA with no OS support and 

with Micro C/OS II support, respectively. The RRC period of RICA was set to 2ns and the 

data memory access delay was set to 4ns. The comparison is based on the execution time per 

OFDM symbol, data memory and program memory requirements. The italic values 

represent the overheads introduced by the OS. Clearly, the overhead for the execution time 

is very small. The overhead for data memory is caused by the data structures for the OS 

resources and the stack for the tasks. Obviously, it is unavoidable that the program size 

significantly rises with the OS involved. As 1K configurable bits for each step, the increase 

is acceptable. Because both WiMAX and Micro C/OS II are not big programs, as some other 

programs (e.g. H.264) may cost thousands of steps executed on RICA.  

Table 8.5 Results of WiMAX with/without RTOS support 

Scheme Execution time per symbol (μs) Data memory (byte) Program memory (step) 

WiMAX 1,748 63,194 204 

RTOS 
1,779 
1.8% 

90,051 
42.5% 

396 
94.1% 
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For comparison’s sake, the multitasking based WiMAX application has also been ported to 

ARM7TDMI which is popularly used for RTOS multitasking in embedded systems. 

ARM7TDMI is a 32-bit RISC embedded processor with a three-stage instruction pipeline 

[159]. For the ARM based implementation, this program was developed using the ARM 

Developer Suite [160] and was simulated on the Armulator (an instruction set simulator for 

ARM processors). The RRC period of the RICA processor was set as 2ns, while the 

ARM7TDMI run at a clock frequency of 500MHz. The comparison results are shown in 

Table 8.6, including the execution time on both simulators, as well as data memory and 

program memory requirements. In order to study the effect of memory latency on the 

execution time, different memory access delays were set. These delays are given as the 

values in the parentheses of the second column. In addition, with proper setting up, both of 

the simulations can quit when the idle task is reached. 

As shown in Table 8.6, in terms of the execution time, the savings of the RICA architecture 

compared with ARM7TDMI are 53.6%, 70% and 78.8% for the memory latencies of 2ns, 

4ns and 8ns, respectively. This is because the RICA architecture has more hardware 

resources available for use at any one time. With proper scheduling, it allows for the 

execution of multiple independent and dependent instructions concurrently in a single 

configuration context. Also, RICA performs much fewer memory accesses than 

ARM7TDMI. This is again a result of the higher availability of computation resources. Once 

an instruction is executed, instead of storing the result back to registers or to memory like a 

Table 8.6 Comparison of multitasking WiMAX on RICA and ARM7TDMI 

Architecture Execution time per 
symbol (μs) 

Data memory 
(byte) 

Program 
memory (bit) 

Area excluding 
memory (mm2)

RICA 
1,451  (2ns) 
1,779  (4ns) 
2,184  (8ns) 

90,051 396 x 1 K 1.01 

ARM7TDMI 
3,127  (2ns) 
5,945  (4ns) 
10,306  (8ns) 

86,338 69,280 0.59 
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normal processor does, the value can be directly fed into another instruction cell that 

performs a dependent instruction. 

Basically, at the clock frequency of 500MHz, ARM7TDMI can complete a memory access 

in one clock cycle with 2ns memory latency, while having to insert one or three wait states 

with 4ns or 8ns memory latency, respectively. However, the specific features of RICA allow 

it to execute the memory access instructions concurrently with other instructions. No wait 

states need to be inserted to wait for the response from the memory, so long as there are 

sufficient other instructions that can be executed in the mean time. Therefore, the execution 

time on RICA depends much less on the memory latency, compared with ARM7TDMI 

which demonstrates an increase in execution time nearly proportional to any increase in 

memory latency. As shown in Table 8.6, the instruction cell array of a standard RICA has a 

nearly double area cost as an ARM7TDMI. It is mainly caused by switch boxes which are 

used as the interconnection and occupy about 50% area of the array.  

The RICA architecture has a slightly larger data memory and about 5.7 times program 

memory requirement due to 1K bits being required for each step configuration. However, 

with the addition of suitable code compression techniques especially designed for the RICA 

architecture, this overhead can be dramatically reduced. Such techniques include the 

path-encoding technique proposed in [161] which can archive around 0.2 compression ratio 

and a dictionary-based lossless technique with a compression ratio in the range of 0.32 to 

0.44 [162].  

8.6 Summary 

This chapter has covered the design of a multitasking WiMAX on the RICA architecture 

with an RTOS support. Through observing the overheads introduced by Micro C/OS-II, it 

has been demonstrated that the overhands were acceptable to enable an RTOS supported 

multitasking of a practical application, such as the WiMAX physical layer, on a single RICA 
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processor. The comparison results showed that the standard RICA processor had much 

better performance than ARM7TDMI, especially when used with higher latency memory 

where up to a 78.8% saving in the execution time was achieved. Meanwhile this work laid a 

foundation for further exploration of multithreading on the proposed multi-core architecture. 
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9.1 Introduction 

This chapter concludes this thesis. In Section 9.2, the contents of individual chapters are 

reviewed. Section 9.3 lists some specific conclusions that can be drawn from the research in 

this thesis. Finally in Section 9.4, some possible directions for future work are addressed. 

9.2 Review of thesis contents 

Chapter 2 provided the background knowledge about broadband access technologies and 

WiMAX. Chapter 3 introduced multi-core processors and reconfigurable computing, 

described a newly emerging coarse-grained DR processor – RICA, and gave a review of the 

existing literature which is relevant to this thesis.  

In Chapter 4, a novel master-slave based multi-core architecture was proposed, using RICA 

as the basic processing core. This architecture can support a wide range of memory 

architectural options, including shared/local data memory, shared register file and stream 

Chapter 9
     Conclusions
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buffer. Meanwhile a multi-bank register file architecture was presented for alleviating the 

high competition for accessing the shared memory. A custom register file interface cell was 

designed to access the register file. Moreover this multi-core architecture contains many 

other components such as arbiters for memory blocks, interrupt controllers for processing 

cores, crossbar switches and a router. In addition, this architecture provides two 

synchronisation methods (i.e. spinlock and semaphore) for inter-processor communications 

by supporting a pair of atomic options LL/SC. In the end, Chapter 4 introduced a custom cell 

generation environment for integrating custom instruction cells into the RICA architecture.  

In Chapter 5, a SystemC TLM based trace-driven simulator, called MRPSIM was presented 

to model this proposed multi-core architecture. This simulator provides a variety of 

architectural and performance analysis options, and can accurately simulate applications on 

multi-core architectures at a fast simulation speed. In addition, Chapter 5 introduced a 

preprocessing tool, Mpsockit, which can efficiently compress trace files and modify 

MRPSIM input files according to the requirement from different mapping methods. Several 

applications were chosen as test benches to estimate this simulator’s performance. The 

results demonstrated that MRPSIM simulator could provide simulation speeds up to 300 

KCPS, 300 KIPS and 25 KSPS for certain applications, respectively. 

Chapter 6 focused on homogeneous multi-core solutions for WiMAX. A profiling-driven 

mapping methodology was proposed. This methodology incorporates task partitioning, task 

transformation and memory architecture aware data mapping. Three task partitioning 

methods, including task merging, task replication and loop level partitioning, were addressed 

and used for a BPSK based fixed WiMAX application. Furthermore, Chapter 6 introduced 

how to develop a C based multi-core project on the proposed multi-core architecture as well 

as how to synchronise tasks. At the end of Chapter 6, various homogeneous multi-core 

solutions, which combine different task partitioning methods and memory architectures, 

were developed for WiMAX. The impact of task partitioning methods and memory 

architectures on the system performance was analysed. The simulation results demonstrated 
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up to 7.3 and 12 speedups or 3,241 Kbps and 659 Kbps throughputs could be achieved by 

employing eight and ten RICA cores for the WiMAX transmitter and receiver respectively. 

In Chapter 7, a design space exploration methodology was proposed to efficiently search 

design spaces to find good solutions under certain system constraints. This algorithm is 

suitable for both single-core and multi-core designs. Instead of speedup and parallel 

efficiency, the ratio of throughput to area was used to estimate the efficiency of a multi-core 

design. In addition, Chapter 7 introduced various timing optimisation techniques to increase 

the throughput, and investigated area optimisation techniques to improve area efficiency 

without breaking the workload balance or worsening the overall throughout. Diverse designs 

were developed by means of the design space exploration methodology for both WiMAX 

transmitter and receiver. Totally eleven types of custom RICA cores were designed in these 

designs. The results demonstrated that a heterogeneous multi-core architecture involving 

totally nine RICA cores was the best solution. This solution can provide throughputs of up to 

8.7 Mbps and 2.4 Mbps for WiMAX transmitter and receiver, respectively. In addition, 

Chapter 7 compared this best design with other multi-core based WiMAX designs. The 

comparison showed that the best design in Chapter 7 could deliver a very good throughput at 

relatively low area cost and performed even better than some commercial solution. 

In Chapter 8, an RTOS Micro C/OS-II was ported to the RICA architecture. The 

multitasking implementation of WiMAX with this RTOS support was developed. The 

results demonstrated that the overheads introduced by Micro C/OS-II were acceptable. 

Furthermore, Chapter 8 compared the performance of the multitasking based WiMAX on 

both a standard RICA processor and an ARM7TDMI processor. The comparison results 

showed that a standard RICA processor could have up to a 78.8% saving in the execution 

time compared to ARM7TDMI.  
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9.3 Specific findings 

This section presents a variety of conclusions, which stem from the research in this thesis. 

Most academic and industry efforts on multi-core architectures have focused on using 

traditional processing cores like GPP core and DSP core to build multi-core architectures. 

This thesis investigated multi-core architectures building upon coarse-grained dynamically 

reconfigurable processing cores - an area that as yet has been little explored. The results in 

Chapters 6 and 7 showed that based on the proposed multi-core architecture, developed 

multi-core WiMAX solutions can deliver high performance beyond requirements of 

WiMAX standards. It proved that it was very promising to utilise DR cores in future high 

performance multi-core systems designed for applications like WiMAX.  

In Chapter 5, a trace-driven simulator MRPSIM was proposed. By means of splitting the 

execution time into static and dynamic time as well as decoupling communication from 

computation, MRPSIM owns the benefits of both trace-driven and execution-driven 

simulators, in the mean time does not suffer the drawbacks of the two types of simulators. 

The advantages of MRPSIM include trace reuse, fast simulation and execution-driven like 

cycle accuracy. In addition, based on System TLM, MRPSIM simulator provides a platform 

for hardware/software co-design and enables fast application verification and architecture 

analysis.  

In Chapter 6, a profiling-driven mapping methodology has been proposed to partition the 

target application into multiple tasks, schedule and map tasks on the proposed multi-core 

architecture. Three partitioning methods were investigated for WiMAX applications and 

suitable for different hardware environments. Task merging can be applied for a multi-core 

system with limited computing and storage resources, while task replication can bring into 

full play if the system has enough resources. For dedicated multi-core systems and 

applications, loop level partitioning can be used to explore the instruction level parallelism 
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in order to improve the utilisation rates of processing cores. The results demonstrated that 

even based on unoptimised standard RICA cores, the best homogeneous multi-core solution 

presented in this chapter can deliver a high throughput satisfying the protocol requirement. 

Chapter 7 presented a design space exploration methodology which can be used to find good 

solutions for both single-core and multi-core designs. This algorithm targets the optimisation 

of not only basic performance metrics like throughput and area, but also the ratio of 

throughput to area, through timing and area optimisation as well as the workload balance 

checking. By means of this exploration methodology, a variety of single-core and multi-core 

designs have been developed. The results proved that heterogeneous multi-core solutions 

with dynamically reconfigurable cores customised for dedicated tasks performed much 

better than homogeneous multi-core solutions, even though heterogeneous systems take 

more workloads. Meanwhile the comparison with other multi-core solutions demonstrated 

that the best homogeneous and heterogeneous multi-core solutions can provide a very good 

performance with a few simple DR processors, even based on a process technology one or 

two generations behind other solutions. It is mainly because of the salient characteristics of 

the RICA architecture and the low idle rate achieved by proper task partitioning and 

mapping.  

Chapter 8 investigated an RTOS porting and multitasking WiMAX on a single RICA 

processor. It has been demonstrated that the overheads introduced by Micro C/OS-II were 

acceptable for running an RTOS on an RICA processor. Meanwhile, even with a limited 

instruction cells, a standard RICA processor delivered a much better performance for an 

RTOS based multitasking than an ARM7TDMI processor broadly used in embedded 

systems. Through this work in Chapter 8, valuable experience and knowledge were gained 

for further investigation of multithreading and RTOS support on the proposed multi-core 

architecture. 
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9.4 Directions for future work 

The future work from this thesis can be split into three aspects: architecture, software tool 

flow and application.  

From the architecture point of view, currently the proposed multi-core architecture has a 

simple interconnection and is difficult to scale to many-core architectures. The future work 

would improve the architecture by using more advanced interconnection techniques such as 

network-on-chip. In addition, this thesis chooses the RICA processor as the basic processing 

core. However, the proposed multi-core architecture is general enough to integrate other DR 

processing cores or even DSP cores. Therefore a heterogeneous multi-core architecture 

incorporating multiple processor families would be a research direction. In such 

architectures, processing cores from different families could make a close cooperation and 

meanwhile perform individual applications which they are particularly designed for. Another 

future work would be the hardware implementation of the multi-core architecture. In this 

thesis, the proposed multi-core architecture is modelled in TLM and performance results are 

gained from the high level simulation. Although this approach is suitable for fast architecture 

exploration and software verification, it is highly desired to implement this architecture in 

RTL to further prove the efficiency of the architecture and demonstrate its advantages. It 

could be done by either the re-design of the architecture in RTL or EDA tools which can 

transform designs from TLM to RTL. After that, an RTL simulation or even FPGA prototype 

could be carried out to demonstrate the hardware feasibility of the multi-core architecture. 

The future work on the software tool flow would involve the improvement of MRPSIM 

simulator, more automated tools and dynamic scheduling supported by RTOSes. MRPSIM 

simulator could provide more architectural options (e.g. interconnection type and core type 

options) to keep up with the future development of the proposed multi-core architecture. 

Meanwhile the simulator could generate more detailed and user friendly performance 

analysis such as dynamic graphic display of memory accesses and interconnection traffic 
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during simulation.  

In Chapter 6, a mapping methodology has been proposed to partition, schedule and map 

tasks on multi-core architectures. In [163], we proposed an integer linear programming 

based approach to automatically map and schedule tasks on homogeneous multi-core 

architectures with RICA cores. A series of DSP applications have been implemented to 

demonstrate the efficacy of the technique. This approach could be improved to support 

RICA based heterogeneous multi-core architectures as well. A design space exploration 

methodology has been presented in Chapter 7. The operations (e.g. timing and area 

optimisation) in this algorithm could involve a lot of manual work. An automated tool would 

be needed to implement this algorithm. This design space exploration tool could be 

developed by using integer linear programming or genetic algorithm which can keep 

searching the design space to gradually approach the optimal solution.  

Complementary to the static task scheduling performed by mapping tools, dynamical 

scheduling and RTOS support could enable the multi-core architecture to execute more 

general applications, besides deterministic applications like WiMAX. In Chapter 8, an RTOS 

Micro C/OS-II has been ported to RICA processor. Hence the next step on this direction 

would be porting this RTOS or another RTOS on the proposed multi-core architecture. 

Furthermore, how to support multithreading on the multi-core architecture could be 

investigated as well. 

From the application side, this thesis mainly focuses on fixed WiMAX physical layer. 

However, as demonstrated in Chapter 5 and [163], many other applications have been 

executed on the proposed multi-core architecture as well. More applications are planned to 

be mapped to this multi-core architecture, including, but not limited to, WLAN physical 

layer, H.264 video compression, freeman demosaicing algorithm and the receiver in global 

positioning system. As for fixed WiMAX itself, there would be a lot of work for further 

optimisation and the implementation of more fixed WiMAX profiles such as QPSK and 
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64QAM based. In addition, as the mobile version of WiMAX, IEEE 802.16-2005 standard 

[1] is highly valued, especially after it became one of the four 3G standards in Oct. 2007. 

The upgrade from fixed WiMAX to mobile WiMAX would be investigated. For achieving it, 

more components would be required to be designed, such as Multi-Input Multi-Output 

(MIMO) and SOFDMA. 
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