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(57) ABSTRACT

A reconfigurable processor architecture, compiler and
method of program instruction execution provides reduced
cost, short design time, low power consumption and high
performance. The processor executes program instructions
having datapaths of both dependent and independent program
instructions. Simultaneous multithreading is also Intercon-
nects Network supported. The processor has a reconfigurable
core (1) with an interconnection network (4) and a heteroge-
neous array of instruction cells (2) each connected to the
interconnection network (4). A decoding module (11)
receives configuration instruction (10), each instruction
encoding the mapping of one of the datapaths to a circuit of
the instruction cells (2). The decoding module (11) decodes
each configuration instruction (10) and configures the inter-
connection network (4) and instruction cells in order to map
the datapath to the circuit of the instruction cells and execute
the program instructions. A clock module (24) is reconfig-
urable each clock cycle by the configuration instruction (10).
The compiler generates configuration instructions (10) for the
processor by identifying the datapaths of both dependent and
independent program instructions then mapping them as cir-
cuits of the instruction cells (2) using operation chaining.
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RECONFIGURABLE INSTRUCTION CELL
ARRAY

[0001] This invention relates to computer processors and in
particular to reconfigurable processors.

[0002] The need for new hardware architectures for future
semiconductor devices was recognised several years ago as
current architectures will not be able to cope with future
requirements in data processing and throughput. Typical
examples are mobile devices for next-generation networks
where a high amount of audio and video data will need to be
processed; this adds extra demands on the performance of
processors in order to maintain a high throughput at the cost
of efficiency in terms of power consumption and silicon area.
The hardware also needs to provide high adaptability to
upcoming and changing standards.

[0003] Re-programmability and flexibility are key factors
in reducing design costs as they permit post-fabrication
changes to the system. Having this flexibility programmable
through a high-level program description, such as standard
C/C++, is important in reducing the design-cycle and in
allowing realistic implementations of big systems.

[0004] Current established solutions include Field Pro-
grammable Gate Arrays (FPGAs), Digital Signal Processors
(DSPs) and Application-Specific Integrated Circuit (ASIC)
architectures. However, they all suffer from drawbacks such
as very high power consumption in FPGAs, high non-recur-
rent-engineering costs and low flexibility after fabrication in
ASICs and low throughput in DSPs. Very Long Instruction
Word (VLIW) DSP architectures offer advantages in parallel
processing. However, they are easily restricted by the limited
amount of Instruction Level Parallelism (ILP) found in typi-
cal programs. Many solutions have been proposed by the
research community mainly based on the high-performance
offered by reconfigurable computing in terms of flexibility
and high amount of parallel processing. Even though these
solutions achieve remarkable results in computing-power and
flexibility, they either do not provide enough power savings or
are too difficult to program.

[0005] Several architectures try to combine a RISC proces-
sor with a coarse-grain reconfigurable array like MorphoSys
(H. Singh et al. “Morphosys: an integrated reconfigurable
system for data-parallel and computation-intensive applica-
tions”, IEEE Trans. on Comp., 49(5):465-481, May 2000)
and SMeXPP (V. Baumgarte et al., “PACT XAPP-A self-
reconfigurable data processing architecture”, Proc.,
ERSAO1), however these suffer from difficulties in program-
ming the arrays due to the use of specialised custom low-level
languages. They also suffer from other limitations due to the
loose coupling between the conventional processors and the
arrays, like difficulties in programming and large amounts of
data-transfers between the array and processor. The ADRES
architecture (Bingfen Mei et al., “ADRES: An Architecture
with tightly coupled VLIW processor and coarse-grained
reconfigurable matrix”, Proc, FPL’03) closely couples the
processor and reconfigurable fabric by sharing the memory
and register-file, which simplifies the programming model
through the use of a high-level C language. The RaPiD archi-
tecture (C. Ebeling et al, “Implementing an OFDM Receiver
on the RaPiD Reconfigurable Architecture”, Proc., FPL’03)
can be programmed using the high-level RaPiD-C language
but this language is not compatible with ANSI-C and requires
manual scheduling of parallel operations. The approach in the
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Chameleon/Montium coprocessor (Paul M. Heysters, et al.,
“Balancing between Energy-Efficiency, Flexibility and Per-
formance”, Proc. ERSA’03) and in Elixent’s (Bristol, UK)
D-Fabrix™ s to interconnect several AL Us to build datapaths
using a special C compiler so that time-consuming computa-
tions are speeded up. In the case of Elixent™, programming
is achieved through Handel-C, which is more like HDL as the
designer has to state the parallelism in the code.

[0006] Therefore, none of the proposed reconfigurable
hardware infrastructures have become widely adopted since
they do not adequately address the need to reduce cost, have
a short design time, have low power consumption and high
performance.

[0007] Inprogramming environments, threads are uncorre-
lated, independent tasks working in “parallel”, ideally on
separate set of data. Throughout the execution of a multi-
threaded program there is no pre-defined or known order in
which the threads are executed or synchronised with each
other. I a known pattern could be constructed from analysing
the program then it would be questionable to why one should
implement this as a multi-thread (MT) program.

[0008] A multi-threaded program relies on dynamic infor-
mation which is not known at compile time. Because of that it
is extremely difficult to statically analyse the execution flow
of a multi-threaded program and make allocation decisions
that will satisfy all active supported threads. Each thread is
mapped independently without any prior knowledge of other
active threads.

[0009] Traditionally multi-threading is associated with the
use of completely isolated execution cores. Conventionally
MT on a single core can be achieved by time-slicing the
hardware resources, often referred to as temporal multi-
threading. With the appearance of superscalar computers,
VLIW (Very Long Instruction Word) and reconfigurable
computing machines, true MT is possible even in a single
core. Inherently parallel architectures rely on the use of a
large number of computational resources and/or interconnec-
tion resources (in the case of reconfigurable computing).
Keeping these resources busy is a challenging task. Most
parallel architectures suffer from low core utilisation. A
known approach to reduce this effect is to employ Simulta-
neous Multi-Threading (SMT) in a single core. SMT usually
comes as an extension to the execution flow control mecha-
nism of a core, allowing sharing most of the core’s resources
by more than one concurrent thread. The realisation of SMT
is very implementation dependent but a general overview for
a given class of devices can be defined.

[0010] To achieve resource sharing, SMT requires some
duplication of key components of the architecture. These
typically include:

[0011] 1. the flow control mechanism
[0012] 2. the architecture state
[0013] Other than achieving higher core utilisation, SMT

can hide cache latencies and fetch and decode latencies by
using this time in performing useful operations. A stall con-
dition for one thread can still leave other threads running and
keeping the resources busy.

[0014] TItwouldbe desirable to use a high level language for
describing the entire application running on a reconfigurable
processor. However, traditional software is sequential in
nature. As these high level languages have been developed for
conventional CPUs, suitable scheduling algorithms are for
sequential code. This poses a challenging task of taking an
otherwise sequential code to extract and exploit the available
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parallelism. The design flow to automate the implementation
of algorithms from a high abstraction level to run on recon-
figurable computing system requires an efficient scheduling
algorithm that can translate general purpose software code
onto the highly parallel reconfigurable device thereby maxi-
mising the resource utilisation. Traditional list scheduling can
not be directly used on an instruction cell based architecture
because:

[0015] 1) It does not deal with dependent instructions’ par-
allelism;
[0016] 2) It does not consider Register allocation in the

scheduling algorithm;

[0017] 3) It does not take the time effects of reconfigurable
function unit and routing interconnection delay into account,
which can change the data path delay in reconfigurable
devices.

[0018] Itisanobjectofanaspect of'the present invention to
provide a processor having reduced cost, short design time,
low power consumption and high performance.

[0019] According to a first aspect of the present invention,
there is provided a processor for executing program instruc-
tions having datapaths of both dependent and independent
program instructions, the processor comprising:

[0020] an interconnection network;

[0021] aheterogeneous plurality of instruction cells each
connected to the interconnection network;

[0022] adecoding module adapted to receive configura-
tion instructions, each instruction encoding the mapping
of at least one of a datapath of dependent program
instructions and a datapath of independent program
instructions to a circuit of the instruction cells and fur-
ther adapted to decode a configuration instruction and
configure at least some of the interconnection network
and instruction cells, thereby mapping the datapath to
the circuit of the instruction cells and executing the
program instructions.

[0023] Preferably the decoding module is adapted to con-
figure at least some of the interconnection network and
instruction cells by connecting at least some of the instruction
cells in series through the interconnection network.

[0024] Preferably the decoding module is further adapted
to receive configuration instructions encoding the mapping
the datapaths of a plurality of program threads to a corre-
sponding plurality of independent circuits of the instruction
cells and further adapted to decode a configuration instruction
and configure at least some of the interconnection network
and instruction cells, thereby mapping the datapaths of the
plurality of program threads to the corresponding plurality of
circuits of the instruction cells and contemporaneously
executing the program threads independently of each other.
[0025] Preferably the processor further comprises a clock
module adapted to provide a clock signal having clock cycles
and the decoding module is operable to decode the configu-
ration instruction so as to configure at least some of the
interconnection network and instruction cells each clock
cycle.

[0026] Preferably the clock module is adapted to provide a
variable clock cycle.

[0027] Preferably, the clock module is adapted to provide
an enable signal.

[0028] Preferably the enable signal is provided to an enable
input of an instruction cell.

[0029] Preferably the clock module is adapted to provide a
plurality of clock signals.
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[0030] Preferably at least some of the plurality of clock
signals are separately provided to a plurality of instruction
cells.

[0031] Preferably the decoding module is further adapted
to decode a configuration instruction so as to configure a
clock signal.

[0032] Preferably the decoding module is further adapted
to decode a configuration instruction so as to configure the
clock cycle.

[0033] Preferably the active period of the clock signal is
configured.

[0034] Preferably the duty cycle of the clock signal is con-
figured.

[0035] Preferably the processor further comprises a pro-
gram counter and an interface to a configuration memory, the
configuration memory being adapted to store the configura-
tion instructions, and at least one of the instruction cells
comprises an execution flow control instruction cell adapted
to manage the program counter and the interface so as to
provide one of the configuration instructions to the decoding
module each clock cycle.

[0036] Preferably the enable signal is provided to an enable
input of the execution flow control instruction cell.

[0037] Preferably at least one of the instruction cells com-
prises a register instruction cell operable to change its output
each clock cycle.

[0038] Preferably the enable signal is provided to an enable
input of the register instruction cell.

[0039] Preferably the enable signal is provided both to an
enable input of the execution flow control instruction cell and
to an enable input of the register instruction cell.

[0040] Preferably the processor further comprises at least
one input/output port and at least one of the instruction cells
comprises an input/output register instruction cell adapted to
access the at least one input/output port.

[0041] Preferably the processor further comprises at least
one stack and at least one of the instruction cells comprises a
stack register instruction cell adapted to access the at least one
stack.

[0042] Preferably at least one of the instruction cells com-
prises a memory instruction cell adapted to access a data
memory location.

[0043] Preferably the data memory location comprises a
multi-port memory location.

[0044] Preferably a pair or more of memory instruction
cells are adapted to access in the same clock cycle a pair or
more of data memory locations clocked at a higher frequency
than the frequency of the clock cycle.

[0045] Preferably the decoding module is further adapted
to decode a configuration instruction so as to configure the
clock signal dependent on the configuration of a clock signal
decoded from a previous configuration instruction.

[0046] Preferably at least one of the instruction cells com-
prises a multiplex instruction cell adapted to route data
between instruction cells.

[0047] Typically at least one of the instruction cells com-
prises a combinatorial logic instruction cell.

[0048] Preferably the function of an instruction cell corre-
sponds to a program instruction.

[0049] Preferably the circuit of instruction cells comprises
a set of instruction cells including one execution flow control
instruction cell.
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[0050] According to a second aspect of the present inven-
tion, there is provided a compiler for generating configuration
instructions for the processor of the first aspect, the compiler
comprising:

[0051] a front end module adapted to receive the pro-
gram instructions and to identify the datapaths of the
program instructions; and

[0052] a scheduling module adapted to map the datap-
aths of both dependent and independent program
instructions as circuits of the instruction cells; and

[0053] amapping module adapted to encode the configu-
ration of circuits of instruction cells as configuration
instructions and adapted to output the configuration
instructions.

[0054] Preferably the program instructions comprise
assembler code output from a high level compiler.

[0055] Alternatively the program instructions comprise
source code of a high level language.

[0056] Preferably the scheduling module is further adapted
to schedule the program instructions according to their inter-
dependency.

[0057] Preferably at least one of the front end module and
scheduling module are further adapted to map access to reg-
isters for the storage of temporary results into interconnec-
tions between instruction cells.

[0058] Preferably the scheduling module is further adapted
to map a datapath of the program instructions that will be
executed in a single clock cycle.

[0059] Preferably the scheduling module is further adapted
to map the datapaths of a plurality of program threads as a
corresponding plurality of contemporaneous circuits of the
instruction cells.

[0060] Preferably the scheduling module is further adapted
to map the datapaths using operation chaining.

[0061] Preferably the scheduling module is further adapted
to use operation chaining while scheduling a single clock
cycle.

[0062] Preferably the scheduling module is further adapted
to use operation chaining while processing each ready list of
a plurality of ready lists.

[0063] Preferably the scheduling module is further adapted
to map the datapaths using register allocation.

[0064] Preferably the scheduling module is further adapted
to use register allocation while scheduling a single clock
cycle.

[0065] Preferably the scheduling module is further adapted
to use register allocation while processing each ready list of a
plurality of ready lists.

[0066] Preferably the scheduling module is further adapted
to map the datapaths using a plurality of scheduling algo-
rithms.

[0067] Preferably the scheduling module is further adapted
to map the datapaths by using the output selected from one of
the plurality of scheduling algorithms.

[0068] According to a third aspect of the present invention,
there is provided a method of executing program instructions,
the method including the steps of:

[0069] identifying datapaths in program instructions
having datapaths of both dependent and independent
instructions; and

[0070] configuring at least some of an interconnection
network and a heterogeneous plurality of instruction
cells, wherein each instruction cell is connected to the
interconnection network, by connecting at least some of
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the instruction cells in series through the interconnection
network thereby mapping the datapaths of both depen-
dent and independent program instructions and execut-
ing the program instructions.
[0071] Preferably the method further includes the step of
providing a clock signal having clock cycles to at least one of
the instruction cells, wherein the step of configuring the
instruction cells is performed each clock cycle.
[0072] Preferably the step of configuring further includes
the step of configuring the subsequent clock cycle.
[0073] Preferably the active period of the clock cycle is
configured.
[0074] Preferably the duty cycle of the clock signal is con-
figured.
[0075] Preferably the step of configuring at least some of
the interconnection network and the instruction cells includes
the steps of:

[0076] mapping the datapaths of both dependent and
independent program instructions as circuits of the
instruction cells;

[0077] encoding the configuration of the circuits of
instruction cells as configuration instructions; and

[0078] decoding the configuration instructions so as to
configure the at least some of the interconnection net-
work and the instruction cells.

[0079] Preferably the step of mapping includes the step of
scheduling the program instructions according to their inter-
dependency.

[0080] Preferably the step of mapping includes the step of
mapping access to registers for the storage of temporary
results into interconnections between instruction cells.
[0081] Preferably the step of mapping includes the step of
mapping a datapath of the program instructions that will be
executed in a single clock cycle.

[0082] According to a fourth aspect of the present inven-
tion, there is provided a computer program comprising pro-
gram instructions, which, when loaded into a computer, con-
stitute the compiler of the second aspect.

[0083] Preferably the computer program of the fourth
aspectis embodied on a storage medium, stored in a computer
memory or carried on an electrical or optical carrier signal.
[0084] According to a fifth aspect of the present invention,
there is provided a computer program comprising program
instructions for causing a computer to perform the method of
the third aspect.

[0085] Preferably the computer program of the fifth aspect
is embodied on a storage medium, stored in a computer
memory or carried on an electrical or optical carrier signal.
[0086] Anembodiment of the present invention will now be
described with reference to the accompanying Figures, in
which:

[0087] FIG. 1 illustrates, in schematic form, a processor
architecture in accordance with an embodiment of the present
invention;

[0088] FIG. 2 illustrates, in schematic form, examples of
(a) island style and (b) multiplexer based interconnects
between instruction cells;

[0089] FIG. 3illustrates ablock of C code, VLIW DSP code
and sequential assembler code (ASM);

[0090] FIG. 4 illustrates, in schematic form, execution of
the assembler instructions of FIG. 3 according to an embodi-
ment of the present invention;
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[0091] FIG. 5 illustrates, in schematic form, the program-
ming flow according to an embodiment of the present inven-
tion;

[0092] FIG. 6 illustrates, in schematic form, the design
methodology according to an embodiment of the present
invention;

[0093] FIG. 7 illustrates, in schematic form, a comparison
of instruction scheduling between VLIW DSP and that of an
embodiment of the present invention;

[0094] FIG. 8 illustrates, in schematic form, an advanced
Reconfiguration Rate Controller unit;

[0095] FIG. 9 illustrates, in schematic form, an example
construction of the configuration bits for the advanced Recon-
figuration Rate Controller;

[0096] FIG. 10 illustrates, in schematic form, independent
memory instruction cell operation;

[0097] FIG. 11 illustrates, in schematic form, dependent
memory instruction cell operation;

[0098] FIG. 12 illustrates, in schematic form, simultaneous
multi-threading of non-conflicting threads;

[0099] FIG. 13 illustrates, in schematic form, simultaneous
multi-threading of conflicting threads having a common
interconnection resource request;

[0100] FIG. 14a illustrates, in schematic form, the execu-
tion timing diagram for two threads running under a temporal
multi-threading scenario;

[0101] FIG. 1454 illustrates, in schematic form, the execu-
tion timing diagram for two threads running under a simulta-
neous multi-threading scenario;

[0102] FIG. 14c illustrates, in schematic form, the execu-
tion timing diagram for two threads running under a simulta-
neous multi-threading scenario with support for partial
execution;

[0103] FIG. 15 illustrates, in schematic form, a flowchart of
the operation Chaining Reconfigurable Scheduling process;
and

[0104] FIG. 16 illustrates, in schematic form, an input data
control flow graph.

[0105] Anembodiment of the present invention, referred to
herein as the Reconfigurable Instruction Cell Array (RICA),
will be described.

[0106] With reference to FIG. 1, the core elements 1 of the
RICA architecture are the Instruction Cells (ICs) 2 intercon-
nected together through a network of programmable switches
4 to allow the creation of datapaths. In a similar way to a CPU
architecture, in this embodiment, the configuration of the ICs
2 and interconnects 4 is changeable on every cycle to execute
different blocks of instructions. As shown in FIG. 1, RICA is
similar to a Harvard Architecture CPU where the program
(configuration) memory 6 is separate from the data memory
8. In the case of RICA, the processing datapath is a reconfig-
urable core of interconnectable ICs and the configuration
memory 6 contains the configuration instructions 10 (i.e. bits)
that via the decode module 11 control both the ICs and the
switches inside interconnects. The interface with the data
memory 8 is provided by the MEM cells 12. A number of
these cells are available to allow effectively simultaneous
(time multiplexed) read and write from multiple memory
locations during the same clock cycle. This can be achieved
by using multiple ports on the data-memory and by clocking
it at a higher speed than the reconfigurable core. Furthermore,
some special REG ICs 14 may be mapped to I/O ports 16 to
allow interfacing with the external environment.
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[0107] The characteristics of the reconfigurable RICA core
1 are fully customizable at design time and can be set accord-
ing to the application’s requirements. This includes options
such as the bitwidth of the system, which, in this embodiment,
can be set to anything between 4-bits and 64-bits, and the
flexibility of the array, which is set by the choice of ICs and
interconnects deployed. These parameters also affect the
extent of parallelism that can be achieved and device charac-
teristics such as area, maximum throughput and power con-
sumption. Once a chip containing a RICA core has been
fabricated, the system can be easily reprogrammed to execute
any code in a similar way to a General Purpose Processor
(GPP).

[0108] The IC array in the RICA is heterogeneous and each
cell is limited to a small number of operations for example:

[0109] ADD-—Addition, Subtraction

[0110] MUL—Multiplication (Signed and Unsigned)
[0111] DIV—Divisions (Signed and Unsigned)

[0112] REG—Registers

[0113] I/O REG—Register with access to external 1/O
ports

[0114] MEM-—Read/Write from Data Memory

[0115] SHIFT—Shifting operation

[0116] LOGIC—Logic operation (XOR, AND, OR, etc.)
[0117] COMP—Data comparison

[0118] JUMP—DBranches (and sequencer functionality)
[0119] This allows an increase in the overall cell count in

the array to do more parallel computations, since the over-
head of adding such small cells is merely related to the extra
area occupied by the interconnects. The use of heterogeneous
cells also permits tailoring the array to the application domain
by adding extra ICs for frequent operations. Each IC may
have one instruction mapped to it. In a similar way to assem-
bly instructions, cells may have two inputs and one output—
this allows creating a more efficient interconnects structure
and reduces the number of configuration bits needed. The
instruction cells developed for this embodiment support the
same instruction sets found in GPPs like the OpenRISC and
ARN7™ (Arm Ltd, Cambridge, UK) although instruction
cells are not limited to supporting instruction sets from these
processors. Hence, with this arrangement the RICA can be
made binary compatible with any GPP/DSP system.

[0120] As shown above registers 18 may be defined as
standard instruction cells. With this arrangement the register
memory elements can be distributed in the array in such a way
to operate independently, which is essential to allow a high
degree of parallel processing. To program the RICA array the
assembly code of a program is sliced into blocks of instruc-
tions that are executed in a single variable length clock cycle.
Typically, these instructions, that were originally generated
for a sequential GPP, would include access to registers for the
temporary storage of intermediate results. In the case of the
RICA architecture, these read/write operations are simply
transformed into wires, which gives a greater efficiency in
register use. By using this arrangement of registers the RICA
offers a programmable degree of pipelining the operations
and hence it easily permits breaking up long combinatorial
computations into several variable length clock cycles. Hav-
ing distributed registers enables allocation of a stack to each
register, and hence providing a distributed stack scheme.
[0121] Special ICs include the execution flow control or
JUMP cell 20 which is responsible for managing the program
counter 22 and the interface to the configuration memory 6 in
a similar way to the instruction controller found in CPUs.
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[0122] Another special component is the Reconfiguration
Rate Controller (RRC) 24 clock module. The RRC takes a
signal from a clock generator 26 and generates an Enable
signal that is routed to the enable inputs of the register ICs 18
and the execution flow control IC 20 so as to provide them
with a variable clock cycle. The “clock gating” may be imple-
mentation specific and there are a number of other well-
known techniques (such as asynchronous enable signals) that
may be used. In usual CPUs the highest clock frequency at
which the processor can be clocked is determined by the
longest possible delays in the programmable datapath. For
example, if the CPU has a multiplier (which takes a much
longer time to execute than operations like addition), then the
highest clock frequency has to provide enough time for it to
operate. The problem is that if such a clock is used then the
processor might end up with instruction cycles where only an
adder is used but where the processor would be waiting for a
longer time than needed, which limits the overall maximum
throughput. In conventional CPUs this problem has been
solved by making the CPU clocked at a higher frequency than
the one required by the multiplier and at the same time mak-
ing the multiplier pipelined, and hence requiring multiple
cycles to execute.

[0123] In the RICA architecture a similar problem is
encountered since the high flexibility provided allows creat-
ing data-paths with many levels of calculations and hence
many possible delay requirements. If the RICA was to be
clocked at the highest frequency dictated by the longest data-
path, then there would be a restriction on the maximum
achievable throughput.

[0124] The amount of clock cycles the RRC waits for
before generating the Enable signal is configurable by the
decoder 11 as part of the array’s configuration instruction 10.
By combining this with a clock gating technique on the reg-
isters and program counter (via the execution flow control
cell) it practically achieves variable clock cycles which are
programmable as part of the software.

[0125] A further special cell is a multiplexer instruction cell
that provides a conditional combinatorial path. By providing
acell that contains a hardwired comparator and a multiplexer,
the present invention can provide implementation of the con-
ditional moves identified by the compiler as simple multi-
plexers. Furthermore, when embodied as RICA, the present
invention can also provide implementation of parallel mul-
tiple execution datapaths. Such a spanning tree is useful in
conditional operations to increase the level of parallelism in
the execution, and hence reduce the time required to finish the
operation.

[0126] FIG. 2 shows examples of (a) island style and (b)
multiplexer based interconnects between instruction cells.
With reference to FIG. 2, the programmable switches 21
perform directional connections 23 between the output and
input ports of the ICs 25. The design of the interconnects may
take into account rules, for example that each IC has only one
output and two inputs and that in no case will the output of an
ICbelooped back to its inputs (to avoid combinatorial loops).
Different known solutions are available for the circuit design
and topology of the switches, such as the island-style mesh
found in normal FPGAs as shown in FIG. 2a, or the multi-
plexer-based crossbar as shown in FIG. 25.

[0127] A feature of the RICA architecture is that both the
programmable cells and their programmable interconnects
can be dynamically reconfigured every clock cycle. The num-
ber and type of these cells are parameterisable upon applica-
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tion and implemented on a UMC 0.13 pm CMOS technology
library. The reconfigurable fabric of RICA is shown in FIG.
2a. The RICA architecture consists of distinct 32 bit (but
parameterisable, therefore not limited to 32 bit) program-
mable function units, general purpose registers, memory cells
and an island-style mesh reconfigurable interconnects. The
basic and core elements of the RICA architecture are the
32-bit programmable ICs which can be programmed to
execute one operation similar to a CPU instruction. For
example, an ADD cell can be programmed as a signed/un-
signed addition or subtraction function. The ICs are intercon-
nected through an island-style mesh architecture which
allows operations chaining in the datapaths.

[0128] With reference to FIG. 3, the sample C code 30
requires nineteen cycles 32 to execute on a typical sequential
processor. However, if the same code is compiled for a VLIW
DSPs, such as the TT C6203, then it would execute in fifteen
cycles 34 since the VLIW architecture would try to concur-
rently execute up to 8 independent instructions (6 ALUs and
2 multipliers are available). If 4 simultaneous multiplications
and 4 memory accesses were permitted, then the number of
cycles would reduce to 8. This is still high taking into account
the simplicity of the code and to what could be achieved by
using hardwired solutions like FPGAs. The presence of
dependent instructions prevents the compiler achieving fur-
ther reduction in the number of clock cycles.

[0129] With reference to FIG. 4, the configuration of
instruction cells required to execute the previous C code 30 in
only two cycles 40, 42 is shown, if, for example, the archi-
tecture provided 14 operational elements that can execute
4xADD, 4xRAM, 4xMUL and 2xREG simultaneously. This
overcomes the limitation faced by VLIW processors and
enables a higher degree of parallel processing. As shown in
Cycle 1, 40, the longest delay path 44 is equivalent to two
RAM accesses, one multiplication and some simple arith-
metic operations. This is the case only if pseudo-simulta-
neous RAM accesses can be achieved within a reasonable
time in a single variable clock cycle. This is not much longer
than critical paths in typical DSPs when compared to how
much more instructions are executed in the same cycle.
Hence, an architecture that supports such an arrangement is
able to achieve similar throughputs as VLIWs but at a lower
power consumption, depending on the type of computation.

[0130] An aspect of the present invention provides an auto-
matic tool flow for the hardware generation of RICA arrays,
in this embodiment based on the tools available for generating
domain-specific arrays. These tools take the characteristics of
the required array and generate a synthesizable Register
Transfer Language (RTL) definition of a RICA core that can
beused in standard System On a Chip (SoC) software flow for
verification, synthesis and layout.

[0131] With reference to FIG. 5, which depicts the pro-
gramming flow according to an embodiment of the present
invention, the standard GNU C Compiler (gcc) is used to
compile C/C++ code 50 into assembly format 52 describing
which ICs need to be used, with the supposition that instruc-
tions are executed in sequence. This assembly is processed by
the RICA Compiler to create a sequence of netlists 54 each
containing a block of instructions that are executed in one
clock cycle. Partitioning into netlists is performed after
scheduling the instructions and analysing the dependencies
between them. Dependent program instructions are con-
nected serially and independent program instructions are con-
nected in parallel in the netlists. The scheduling algorithm
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takes into account IC resources, interconnects resources and
timing constraints in the array; it tries to have the highest
program throughput by ensuring that the maximum number
of ICs is occupied and that at the same time the longest-path
delay is reduced to a minimum.

[0132] Depending on the interconnects architecture, the
routing part of the compiler can be based on the standard and
established techniques such as the ones found in the place and
route tool VPR. Furthermore, the compiler also performs
crucial optimizations like removing the temporary registers
generated by gcc by replacing them with simple wires. The
compiler generates a sequence of configurations of instruc-
tion cells 56, that are encoded as configuration instructions 6
for storing in the configuration memory 10.

[0133] A complete tool chain is useful to allow rapid analy-
sis of the design space for various algorithms and gain the
most flexibility from of the hardware. Moreover it is advan-
tageous for the tool chain to be suitable for integration with
current design methodologies. FIG. 6 depicts the design
methodology of the RICA system.

[0134] There are two levels of flexibility that can be applied
to the RICA reconfigurable architecture.

[0135] Before fabrication—The high-level C/C++ code
is compiled for a selected number of hardware
resources. If the required performance determined by
RTL simulation or through the RICA simulator is not
met then the high level code can be modified or the
mixture of cell resources changed. Adjusting the hard-
ware resources allows the architecture to be tailored to
the specific domain where it is to be utilised, thus saving
power and resources. This stage has the highest level of
flexibility.

[0136] After fabrication—The array resources are fixed.
Consequentially, if the algorithm continues to change
during or after the fabrication process then the code is
simply recompiled for that fixed resources. As often
similar operations are required for the updated code
when compared to the previous code and a large percent-
age of the algorithm remains unchanged. This means the
generated code is still fairly optimised for the given
architecture.

[0137] The programming of the RICA architecture is
achieved with a collection of different tools. The use of
Instruction-Cells (IC) greatly simplifies the overall effort
needed to map high-level programs to the RICA architecture.
Having the arrays programmable in a similar way to standard
CPUs allows the reuse of existing technologies available for
processors, such as optimized compilers and language pars-
ers.

[0138] With reference to FIG. 6, in Stage 1, the high-level
compiler 604 takes the high-level code 602 and transforms it
into an intermediate assembly language format 606. This step
is performed by a standard GNU C Compiler (gec), which
compiles C/C++ code (amongst other front-ends) and trans-
forms it into assembly format describing which ICs need to be
used. The output of gce is written with the supposition that
instructions are executed in sequence, i.e. one instruction per
cycle; the compiler has no knowledge about the parallelism
available on the RICA. However, as is typical for a conven-
tional processor using a machine description definition, gcc is
adjusted to take into account some limitations of the target
RICA, like the maximum number of available registers and
the available Instruction-Cells (which define the allowed
operations). The compiler automatically deals with issues
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like registers allocation, stack handling and prologue/epi-
logue definitions: Moreover, it performs all the optimisations
that will be useful later on like loop unrolling and loop peeling
in conjunction with loop fusion.

[0139] In Stage 2, (RICA compiler 608), all the optimiza-
tions related to the RICA architecture are performed. The
RICA compiler process takes the assembly output of gcc 606
and tries to create a sequence of netlists to represent the
program. Each netlist contains a block of instructions that will
be executed in a single clock cycle. The partitioning into
netlists is performed after scheduling the instructions and
analysing the dependencies between them. Dependent
instructions are cascaded in the netlist while independent
ones are running in parallel. The scheduling algorithm also
takes into account resources and timing constraints in the
array; it tries to have the highest program throughput by
ensuring that the maximum number of ICs is occupied and
that at the same time the longest-path delay is reduced to a
minimum. Finally, it also performs crucial optimizations like
removing the temporary registers generated by gcc by replac-
ing them with simple wires.

[0140] Thus the RICA compiler performs several stages of
operations to optimise the code for the architecture and gen-
erate the configuration instruction streams. It is needed to
solve the problem of identifying and extracting the parallel-
ism in the otherwise sequential assembly code.

[0141] The distributed registers in the array allow building
data paths with different pipelining options of the same cir-
cuit. The change in pipelining plan can affect the maximum
throughput or power consumption. Such flexibility in pipe-
lining is usually not available in CPU architectures (it does
exists in FPGAs), which creates an opportunity of making the
compiler choose the best pipelining arrangement to improve
the performance of the compiled C code. This can for
example allow choosing a pipelining scheme with reduced
power consumption which otherwise would not be possible.
[0142] Stage 3, Place and Route, is actually begun inside
the RICA compiler 608 of Stage 2 since it is part of the loop
that performs partitioning and resources scheduling, as inter-
connect resources can affect the routability of the netlist and
the timing ofthe longest path. However, it is described here as
a separate step since we can reuse standard tools, such as the
place and route tool VPR 624 to map the netlists 622 into the
array 628.

[0143] Stage 4 Configuration-memory: From the mapped
netlists the compiler generates the required content of the
configuration memory 26, in this case the configuration
RAM. Simulation and performance analysis can then be per-
formed with conventional EDA tools or functionality of the
code can also be tested using the Rica simulator.

[0144] Other tools can be plugged into the design flow to
aid the design process such as the RICA compiler being able
to output a format 618 suitable for GraphViz 620 that is open
source graph visualisation software, to create a visual repre-
sentation of the dependencies in the code and scheduled steps.
Asthe combination and number of Cells in the RICA can vary
depending on the designer’s application domain and available
silicon estate then a hardware generation utility 642 is used to
generate the custom RTL code 644 based on the machine
description.

[0145] There are several stages involved in the compilation
process. The front end 610 ofthe RICA compiler is an instruc-
tion parser that deals with instructions such as addition, logic,
div, shift, multiply. This stage performs lexical analysis of the
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modified GCC assembler code and extracts the function, des-
tination register, and source registers along with the cells
configuration data. Each new instruction is added to the inter-
nal pattern, creating a complete netlist of the instructions
based on having infinite amount of resources (register,
adders, etc). Appropriate generation of wire names, alloca-
tion of registers are performed to unravel the register reuse to
ensure that all the information that the scheduler needs are
kept. Due to the fixed number of registers on processors
compilers utilise techniques, such as graph colouring, to
reuse them. The front end section of the RICA compiler also
provides a suitable mechanism for the handling oflabels from
the modified gce assembler code. This is because the gener-
ated scheduled assembly code needs to deal with the labels
locations for when branch or jump instructions are met.

[0146] The RICA compiler implements a reconfigurable
resource scheduling algorithm (RRS) based on the concepts
of operation chaining list scheduling (CLS) algorithm with
additional resource and time constraints considerations. It
operates to process the available time instants in increasing
order (starting at zero) and to schedule as many as possible
instructions at a certain instant before moving to the next.

[0147] List scheduling (LS) is the most commonly used
compiler scheduling technique for basic blocks. The main
idea is to schedule as many operations as possible at a certain
clock cycle before moving to the next clock cycle. This pro-
cedure continues until all operations have been scheduled.
The major purpose of this way is to minimise the total execu-
tion time of the operations in the DFG. Of course, the prece-
dence relations also need to be respected in list scheduling.
All operations, whose predecessors in the DFG have com-
pleted their executions at a certain cycle t, are put in the
so-called ready list R[t]. The ready list contains operations
that are available for scheduling. If there are sufficient unoc-
cupied resources at cycle t for all operations in R[t], these
operations can be scheduled. However, if an appropriate
resource for each operation in R[t] is not available, a choice
has to be made on which operations will be scheduled at cycle
t and which operations will be deferred to be scheduled at a
later time. This choice is normally based on heuristics, each
heuristic defining a specific type of list scheduling. By com-
puting priories in a sophisticated way, they try to schedule the
most critical cells first, and to assign them to the right
resource. LS usually employ a priority vector to determine
what tasks to consider first.

[0148] During the scheduling process 612, the RRS sched-
uling algorithm uses a Ready List to be able to keep track of
operations. Those operations that are available for scheduling
are put in the Ready List. If there are free resources for
operations in the Ready List, this operation can be scheduled
after taking register allocation and routing information into
consideration. However, if there are not enough free
resources for operations in the Ready List, the scheduling
algorithm must choose which operation to be scheduled at
this cycle. The RRS scheduling algorithm selects the highest
priority operation determined by mobility and parallelism in
the Ready Lists as long as the operation meets resource and
clock cycle constraints. Operations with higher priority have
smaller mobility and higher parallelism. Mobility is defined
as the length of schedule interval. Higher parallelism decides
independent instruction to be scheduled first. The compiler
technique called operation chaining is adopted in RRS
because the available dependent parallelism present in RICA
architecture. Since the scheduling and chaining of operations
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affects the register reuse, the scheduling algorithm also per-
forms register assignment. The resource and time constraints
are given in the machine description 616 where pre-schedul-
ing estimated routing times are utilized and post-scheduling
the routing time delays from VPR are used. The time con-
straints include not only the programmable computational
unit delay but also the routing delays. A simple example of
code before and after scheduling is now presented. The initial
assembly code generated by gec is:

1 Load r], X
2 Load 2, Y
3 Mult 13,12, 1l
4 Load 4, A
5 Mult 12,14, 1l
6 Add 15,12, 14
7 Mult rl, 12,15
8 Load 13,B
9 Add 17,11, 13

[0149] It takes 9 cycles and 6 registers to implement the
code. If the targeted RICA has 3 loads, 2 multipliers and 2
adds, the code generated by the scheduler targeted on RICA
only takes 2 variable length clock cycles and 4 registers to
finish the code. This scheduled assembly code is:

Step 1:
1 Load wirel, X
2 Load wire2,Y
3 Mult rl, wirel, wire2
4 Load wire3, A
5 Mult wired4_ 12, wirel, wire3
6 Add 13, wired, wire3
Step 2:
7 Mult wire5, r2, r3
8 Load wire6, B
9 Add 14, wire5, wire6
[0150] The last stage of the RICA compiler is the mapper

614, which allocates and maps the functional cells in the
scheduled step’s netlists to the hardware cells layout 622 and
creates the appropriate bit streams of configuration instruc-
tions 626 for the given hardware architecture based on the
resource allocation specifications. This configuration bit
stream 626 consists of the configuration for the routing inter-
connects, which is generated through VPR 624 and the cell
function configuration from the compiler. This output can be
finally used to program the hardware or used by the simulator
to analyse the system performance. The compiler also outputs
a human readable form 630 of the configuration data.

[0151] The simulator 632 is an important aspect of the
design environment by facilitating rapid exploration of the
algorithm and resource allocation at a higher level of abstrac-
tion allows the extent of the tradeoffs to be determined before
committing to time consuming RTL hardware simulation.
The simulator takes the human readable .net file 630 along
with simulation template file 634 containing code for each
cell’s functionality and performance analysis routines and
generates a behaviour level C model 636 based on the RICA
architecture for that given .net file. The C model is fed into a
gee compiler 638. A feedback loop exists through the perfor-
mance characteristics 640 output by the gcc compiler 638 and



US 2010/0122105 Al

the machine description 616 to take into account the routing
delays after the netlist have been allocated to the hardware.
[0152] For each scheduled step, the simulator reorders the
operations in accordance to their dependency in that step. All
these reordered steps along with their connections to each
other are then combined to form a set of datapaths represent-
ing the whole system. When this is compiled both the func-
tionality can be assessed such as loops, register and memory
at each step, Along with total executed steps. Other param-
eters gained are estimated power and area figures based on
having model libraries of each instruction cell.

[0153] With reference to FIGS. 7a and 76, The advantages
of'the present invention are demonstrated. RICA has the same
flexibility of coarse-grain FPGA and programmability of
DSP. Since it employs coarse-grained reconfigurable archi-
tecture, RICA has lower power consumption than generic
fine-grained FPGA. VLIW DSP can only execute indepen-
dent instructions in parallel while RICA can execute both
independent and dependent assembly instructions in the same
clock cycle because it allows connections in series. This is
illustrated in FIGS. 7a and 7b where it is assumed that the
hardware resources include 4 adders and 2 multipliers. With
reference to FIG. 7a, VLIW processors can only executed
independent instructions 702 thus it takes 5 clock cycles 704.
With reference to FIG. 75, RICA can perform independent
706 and dependent 708 instructions under resource constrains
so it only consumes two clock cycles 710. Consequently,
RICA allows higher throughput than VLIW DSP. RICA pro-
vides a higher throughput if running at the same ‘frequency’,
or if there are the same delays of the computational elements
inside both of them. RICA provides a lower maximum fre-
quency than the VLIW DSP, hence potentially a lower maxi-
mum throughput for some control-intensive applications.
[0154] In addition, RICA adopts the advanced operation
chaining technique to reduce registers and memory usage in
order to reduce significantly power consumption. Operation
chaining is a known technique that merges two operations one
after another in extended clock cycle to reduce the register
requirement for the application. Traditional high-level syn-
thesis (HLS) is a translation process which involves taking a
behavioural description into a register transfer level (RTL)
structural description. Scheduling is a critical task in this
process. Scheduling partitions the Control Data Flow Graph
(CDFQG) into time steps thereby generating a scheduled
CDFG model. After the scheduling routine is performed,
register allocation is used to minimise the registers in the
design.

[0155] An embodiment of an aspect of the present inven-
tion will now be described that relates to an advanced Recon-
figuration Rate Controller cell.

[0156] With reference to FIG. 8, an advanced Reconfigu-
ration Rate Controller (RRC) 802 generates separate Enable
signals for the program counter 804, memories 806, 808 and
registers 810 at the appropriate time so as to provide a plu-
rality of clock signals. The amount of clock cycles 812 the
RRC waits for before generating the Enable signals for the
other parts of, the architecture is programmable as part of the
array’s configuration instruction 814.

[0157] With reference to FIG. 9, in this embodiment of the
RRC instruction unit the unit’s configuration bits are com-
prises several tag fields; the jump cell critical path tag 902, the
Rmem cells path tags 904-906 and the combination cells’
critical path 908 (which determines the activation of the reg-
isters).
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[0158] The combinational cells’ critical path tag for con-
trolling the registers operates in the same way as described
above with reference to FIG. 1, i.e. the tags determines when
to clock the register cells.

[0159] Ifthejump (execution flow control) cell is not part of
the step’s longest critical path it is possible to start a pre-fetch
and decode of the next step before the longest critical path in
the current step finishes. In order to do this extra information
is required to determine when the jump cells output value is
valid. Consequently, in this example four bits 902 are allo-
cated to the RRC unit’s configuration. This corresponds to
how many of RICA internal clock cycles it waits for i.e. if the
critical path for the jump cell is 20 ns, the clock resolution is
2 ns, the jump configuration field is set to 10.

[0160] For each read interface memory cell provided in the
RICA core, there is a corresponding read memory tag (e.g.
904, 906) allocated to the RRC configuration instruction.
These tags are used to provide timing management to the
memory cells thus ensuring data is only read at the appropri-
ate time period during a step’s computation.

[0161] With reference to FIG. 10, the first part of the Rmem
tag is used to define the delay time from the start of a step to
when it should send the read interface memory instruction
cells’ 102, 112 inputs (e.g. the address 104, 114 and offset
106, 116) to memory 108, 118.

[0162] Each of these tags also has a bit to indicate the
cascading status. When the cascade bit is set high, it means
that the read memory is dependent on the previous read inter-
face memory cells access and should only begin its timing
delay at the end of the previous read interface memory cells
delay time.

[0163] In the case illustrated by FIG. 10, both Rmem cells
cascade bit are set low and both start their delay time at the
same time. In the case illustrated by FIG. 11, however, Rmem
[1] 112 has a cascade bit set high and will only start its delay
after Rmem|[0] 102 has finished its delay. Furthermore, the
output of Rmem|[0] 102 is mapped directly into a wire to the
input of Rmem|[1] 112.

[0164] An embodiment of an aspect of the present inven-
tion will now be described that relates to Simultaneous Multi-
Threading (SMT) on reconfigurable computing architectures.
[0165] This embodiment of the present invention provides
SMT in the RICA reconfigurable computing architecture.
[0166] A set of computational units connected via a 2-di-
mensional multi-hop direct network is used here as an
example to demonstrate the effect of simultaneous multi-
threading on a single reconfigurable lattice. Other example
interconnection strategies may include crossbars or seg-
mented shared-buses.

[0167] Each thread is scheduled and mapped to the array
independently to other threads that may coexist in the same
program. In temporal multithreading, only one thread is
active at any given time instance. In an SMT environment,
these threads will occupy different parts of the array and can
operate in parallel.

[0168] FIG. 12 shows two threads 122, 124 that share the
same reconfigurable lattice 126 without any conflicts. This is
an ideal case which maximises the array utilisation. Attempts
to enforce such thread isolation can be made at compile time
by restricting one of the threads to one corner of the core
while allocating the other one to the opposite side of the core.
In most cases two concurrent threads would request one or
more common resource at the same time. A form of intercon-
nection resource “conflict” is shown in FIG. 13. In this
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example, the common resource 132 will be assigned to one of
the two threads 134 and 136, while the other one would need
to wait.

[0169] A typical thread might have more than one indepen-
dent data-path in a given configuration. Unless a strict syn-
chronisation is imposed, each independent non-conflicting
data-path can operate in parallel to the rest. This could result
in a thread being executed partially, i.e. only some of its
data-paths. The use of partial execution can further increase
core utilisation and as a subsequence increase performance.

[0170] FIG. 14 shows the execution time diagram for two
threads, thread, 142 and thread, 144 running under various
scenarios, such as temporal MT (FIG. 14a), SMT (FIG. 145),
and SMT (FIG. 14¢), with support for partial execution. In
FIG. 14, the configuration load 146 and execution 148 states
are shown for each thread, as well as pending states 150 and
partial execution 152 states.

[0171] Anembodiment ofthe present invention will now be
described that provides a new operation chaining reconfig-
urable scheduling algorithm (CRS) based on list scheduling,
which maximizes instruction level parallelism available in
distributed high performance instruction cell based reconfig-
urable systems. Unlike other typical scheduling methods, it
uses placement and routing, register assignment and
advanced operation chaining compilation techniques to gen-
erate higher performance scheduled code. Schedules using
this approach achieve at least equivalent throughput to VLIW
architectures but at much lower power consumption.

[0172] This embodiment of the present invention provides
an efficient operation chaining scheduling algorithm targeted
for reconfigurable systems. This Chaining Reconfigurable
Scheduling (CRS) algorithm is based on the list scheduling
algorithm and adopts the advanced operation chaining tech-
nique and considers the effects of register assignment, power
consumption, placement and routing delay against the
resource and time constraints. The CRS algorithm allows
high program throughput and low power consumption by
ensuring that the number of dependent and independent
instruction cells (ICs) is maximised at each scheduled step
and at the same time the total number of clock cycles of the
longest-path delay is minimised.

[0173] Differing from the traditional HLS process, this
embodiment of the present invention combines the schedul-
ing, routing, instruction cells binding and register allocation
together to suit the instruction cell-based architectures. This
embodiment of the present invention provides a new efficient
multi-objective scheduling optimisation to give both high
throughput performance and low power for new reconfig-
urable architectures.

[0174] Traditional list scheduling can not be directly used
on an instruction cell based architecture because:

[0175] 1) Efficient operation chaining is required to deal
with dependent instructions’ parallelism;

[0176] 2) Register allocation needs to be considered in the
scheduling algorithm;

[0177] 3) The scheduling algorithm should also take the
time effects of reconfigurable function unit and routing inter-
connection delay into account, which can change the data
path delay in reconfigurable devices.

[0178] FIG. 15 shows a flowchart of an embodiment of the
scheduling algorithm.

[0179] The scheduler generates 1502 a ready list and
selects 1504 an operation from the list for scheduling. Three
scheduling approaches are used to deal with the priority allo-
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cation mechanism. These are IPRS 1506, CPRS 1508 and
MPRS 1602. Inthe MPRS case, IPRS is used at this step 1510
of the algorithm combined with CPRS after register alloca-
tion at step 1530.

[0180] The part of the algorithm from 1506 to 1520 is used
for either scheduling or removing operations. If scheduling is
being performed 1512, then operation chaining is performed
1514 and the ready list is updated 1516. If 1518 more opera-
tions are available in the ready list and functional units are
available at this step, the next operation is selected 1504 from
the ready list.

[0181] If at step 1512, the part of the algorithm from 1506
to 1520 is determined to be used for register removal, then the
removal of scheduled operations is performed 1520 instead of
steps 1514 to 1518.

[0182] If 1522 there are not enough registers at this con-
figuration step (or clock cycle) then the removal of operations
is performed by looping back to steps 1506 to 1510 and, for
example, a flag is set to indicate to the decision test 1512 that
register removal is to be performed.

[0183] If at step 1522 there are enough registers, then reg-
ister allocation 1524 is performed, followed by no action in
the case of [IPRS 1526 and CPRS 1528, or followed by further
scheduling of operations using CPRS in the case of MPRS at
step 1530.

[0184] Using the three approaches for scheduling, it is pos-
sible to schedule the whole or sections of the code using the
most optimal technique to generate the configuration bits for
the target RICA architecture. The optimal scheduler output is
selected 1532 before the scheduler proceeds 1534 to the next
configuration step.

[0185] In order to illustrate a comparison of the CRS algo-
rithm with simple list scheduling, a further example of the
CRS algorithm is given below. It consists of a simple list
scheduling algorithm with the additional new lines marked
with a @.

Method CRS Scheduling
Input: Assembly Code representing operations to schedule,
Space machine description (resource, clock
cycle),
Routing delay generated by VPR algorithm;

Output: Fast and parallel Netlist

Begin

Step 1: construct control flow graph (CFG)

Step 2: construct data flow graph (DFG)

Step 3: rename to eliminate anti/output dependences

Step 4: assign priority to instructions based on cells
flexibility

Step 5: iteratively select & schedule instructions

Cycle =1;

Ready [Cycle] = Roots of DFG;

Ready [Cycle+1] =¢;

Scheduled [Cycle] =¢;

@Available_ Register[Cycle]={the output registers but not
used as input registers of basic block}

While (Ready Lists =¢) //All Ready[i] lists

If (Ready [Cycle] =¢) then

@ Initialise available hardware resource;
Cycle =Cycle + 1;

)
While (Ready [Cycle] =¢) {
@ Remove an op from Ready in priority order and a
series low power optimisation techniques are used
to select an op
If (3 free issue units of type(x) on cycle
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-continued

@ && operation can be chained in the same cycle) {
S (op) = Cycle;
F (op) = FinishTime (op);
Scheduled [Cycle] = Scheduled [Cycle] U {op};
For (each successor s of op in DFG) {
If (s is ready) then
Ready [Cycle] = Ready [Cycle] U s;

}

else
Ready [Cycle+1] = Ready [Cycle+1] U {op}

@If  (op uses register and each successor of op in
Scheduled [Cycle])
@then {//release register
Remove Register that saves the output of op and Put
it in available register list}
@ N = the number of registers are needed in this clock
cycle
@ A = the number of registers are available in this cycle
@ if (N<A)
@ Assign Register to save the output of op
@ else {
@ Remove some scheduled ops in terms of priority
until N =A;
@ Assign Register to save the output of op;}
O Further scheduling using CPRS (this step is only used
for MPRS)
@Calculate the longest critical path and variable clock
cycles
¥

@ Resource binding - using hamming distance.
End Method

[0186] As the design input of the scheduler is the assembly
code or other intermediate representation, a dependence
graph (DG) is generated by removing the registers to repre-
sent instruction dependences. Since a compiler for conven-
tional processors implements an advanced register allocation
algorithm to reuse the fixed number of physical registers, DG
may have false data dependence called output dependence
and anti-dependence.

[0187] Anoperation B is true dependent on operation A if B
reads a value that A produces. It is also called read after write
(RAW). An operation B is anti-dependent on operation A if B
writes a value to a register that is read by A, thereby destroy-
ing the value read by A. It is also called write after read
(WAR). An operation B is output dependent on operation A if
both A and B write the value to the same register. It is also
called write after write (WAW).

[0188] Register renaming is a technique for removing the
false dependencies by changing the name of the register
which causes the WAR/WAW conflict. However, this tech-
nique might cause register spilling. To overcome this prob-
lem, additional load and store instructions need to be used to
store the value that is expelled because of the lack of registers.
This will decrease performance and increase power con-
sumption because of increased memory accesses. Since the
function units in RICA are sequential chained in the same
clock cycle, the operation chaining technique reduces regis-
ters and memory usage.

[0189] Ifthe design entry in the CRS scheduling algorithm
is the compiled and scheduled assembly code, the scheduler
must handle the additional complexity such as removal of
unnecessary registers. Register allocation is performed after
scheduling in high-level synthesis. Since the scheduling and
chaining of operations affect the register allocation, the CRS
scheduling algorithm also considers the register assignment.
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[0190] The control flow graph is a fundamental data struc-
ture that is used to generate the correct data dependence
between two basic blocks and find the instruction parallelism
for different basic blocks. Firstly, the code is partitioned into
a set of basic blocks, which begin at a label or after jump
instruction. Basic blocks consist of CFG’s nodes. After that,
the CFG’s edges will be added from the current block to all
possible target basic blocks of the branch. The input/output
ports of CFG nodes are related with the input/output registers
of'basic block. The input registers save the values which have
been written by another basic block and will be read in this
basic block. The output registers save the values which are
calculated by this basic block and will be read in other basic
blocks. The available registers in the CLS scheduling only
include the output registers because the input registers may be
used by another basic block and should keep the same value.

[0191] Three methods are adopted in the CRS scheduling
algorithm, and the output code with the minimal number of
clock cycles (highest throughout) or lowest power consump-
tion is selected as scheduler’s output.

[0192] The first method is called the critical-path reconfig-
urable scheduling (CPRS). In this context, the longest path
from a node to an output node of the DFG is called its critical
path. The maximum of all critical path lengths gives a lower
bound value of the total time necessary to execute the remain-
ing part of the schedule. Operations with higher priority have
smaller mobility that is defined as the length of schedule
interval (mobility=as late as possible (ALAP)—as soon as
possible (ASAP)). Therefore, in CPRS scheduling, nodes
with the greatest critical-path lengths are selected to be sched-
uled at cycle t.

[0193] The second method is called independent instruc-
tion priority reconfigurable scheduling (IPRS). In IPRS,
nodes are selected to be scheduled at cycle t if they minimally
increase the critical path of this clock cycle compared to other
available nodes.

[0194] Finally, the third method called mixed priority
reconfigurable scheduling (MPRS) is also used in the CRS
scheduler, which combines the CPRS and IPRS algorithm. In
MPRS, nodes are firstly scheduled using IPRS method, and
the CPRS algorithm is executed again after register allocation
(A line marked with a [(Jin FIG. 1 is adopted only for MPRS).
The CPRS algorithm will generate the minimal execution
time for fixed clock system. Since the CRS algorithm adopts
variable clock cycles, the CPRS scheduling method may
result in longer execution time compared to the IPRS sched-
uling. As the CRS algorithm combines with register alloca-
tion, the finite amount of register may limit IPRS method. The
MPRS scheduling may generate better scheduling than the
CPRS and IPRS scheduling.

[0195] These scheduling techniques will be illustrated
using the example shown in FIG. 16. Assuming the architec-
ture provides 5 operational elements that can execute 3xADD
and 2xREG simultaneously and the addition is executed in
one clock cycle, the ASAP and AL AP times for each adder
162 are shown in square brackets, e.g. 164, 166, in FIG. 16.
Table 1 below compares three different CRS algorithm to see
how they impact on the number of clock cycles needed to run
the function of FIG. 16.
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TABLE 1
Comparisons of Schedulers (3 adders and 2
registers)
Execution CPRS IPRS MPRS
Step Cycles SC. Cycles SC. Cycles SC.
1 2 [1,2,5] 1 [1,2] 2 [1,2,5]
2 2 [3, 6] 1 [5,3] 2 [3, 6]
3 2 [4,8,7] 1 [6] 2 [4,8,7]
4 1 9] 2 [4,8,7] 1 9]
5 1 9]
ET 7 6 7

[0196] InTables1to 3, ET refers to the total clock cycles of
execution times and SC refers to scheduled cells. Table 1
shows that the CPRS scheduling generates longer ET than the
IPRS scheduling, and the same ET as the MPRS scheduling.
However, the ET of the different algorithms is heavily depen-
dent on machine description. Tables 2 and 3 below give the
different scheduling results based on the different machine-
description.

TABLE 2
Comparisons of Schedulers (4 adders and 2
registers)
Execution CPRS IPRS MPRS
Step Cyc SC. Cyc SC. Cyc SC.
1 2 [1,2,5,3] 1 [1,2] 1 1,2,5,3]
2 2 [6,4,8,7] 2 [5,3, 6] 1 [6,4,8,7]
3 1 9] 3 [4,8,7,9] 2 9]
ET 5 6 5
TABLE 3
Comparisons of Schedulers (5 adders and 5
registers)
Execution CPRS IPRS MPRS
Step Cyc SC. Cyc SC. Cyc SC.
1 3 [1,2,5,3, 2 [1,2,3,4,5] 2 [1,2,3,4,5]
6]
2 3 [4,8,79] 3 [6,7,8,9] 3 [6,7,8,9]
ET 5 5
[0197] As shown in Tables 1 and 2, the CPRS algorithm

results in longer (Table 1) or shorter (Table 2) ET than the
IPRS algorithm, which is caused by the number of registers.
Otherwise, the IPRS algorithm generates the shorter ET time
if there are enough registers (Table 3). As the functional
resources only include adders in this example, the results
using the MPRS algorithm is either the same as CPRS (Table
1-2) or the same as IPRS (Table 3). However, when applied to
a greater variation in resource as in a reconfigurable instruc-
tion cell based machine, it generates different results. The
compiler will schedule the input code using all methods and
select an appropriate output code for their requirement.

[0198] For each basic block, a data flow graph (DFG),
which represents data dependence among the number of
operations, is used as an input to the CRS scheduling algo-
rithm. One limitation of running a design on processors is the

11
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number of operations that can be executed in a single cycle.
To maximise the number of operations executed in a single
cycle, operation chaining and variable clock cycle are added
to the CRS scheduling algorithm. It reduces the total number
of registers usage, decreases the power consumption by
reducing memory access, and increases throughput by vari-
able clock cycles. When chaining an operation, scheduling
algorithms must consider not only the operation’s impact on
the critical path but also the programmable routing delay. The
scheduling algorithm in the tool flow includes pre-scheduling
and post-scheduling. The pre-scheduling algorithm considers
the operation and estimated routing time effects on the critical
path. The Netlist after pre-scheduling will be fed into a stan-
dard placement and routing tool such as VPR. The corre-
sponding routing information given by VPR tool or other
routing tools is used to provide more accurate timing infor-
mation to post-scheduling algorithm in order to generate the
Netlist that met design requirement. The CRS algorithm is
used in the first phase for performance optimization. After
that, the resource binding is generated by using Hamming
distance as our power cost model to estimate the transition
activity in instruction cell configuration bus. Hamming dis-
tance is the number of bit differences between two binary
strings. The resource binding scheme with the minimum
Hamming distance is chosen to reduce the power consump-
tion.

[0199] Benchmark tests are conducted using different CLS
scheduling algorithms (CPRS, IPRS and MPRS) and may be
targeted on the reconfigurable instruction cell based architec-
ture of the present invention to demonstrate the performance
of each CLS algorithm. Table 4 below shows the execution
time and energy consumption where the benchmarks are run-
ning on the architecture at the same frequency (125 MHz) and
the same hardware resources are used. The power consump-
tion values for our reconfigurable architecture are obtained
after post-layout simulation by the Synopsys PrimePower
using UMC 0.13 pm technology.

TABLE 4

Comparison of Different Scheduling Methods

Execution Energy
Bench- Times (ul)
mark Method (us) consumption
2D-DCT CPRS 2.352 0.1309
IPRS 2.192 0.108
MPRS 2.192 0.112
FIR CPRS 1.998 0.263
IPRS 1.98 0.248
MPRS 1.98 0.249
IR CPRS 0.194 0.015
IPRS 0.186 0.0154
MPRS 0.188 0.0156
Min- CPRS 9.286 1.59
Error IPRS 9.086 1.519
MPRS 9.286 1.529
OFDM CPRS 42.496 0.7980
IPRS 43.224 0.8003
MPRS 41.6 0.7905
Viterbi CPRS 501.488 0.2296
IPRS 452.162 0.225
MPRS 452.1 0.227
Dhry- CPRS 283.046 1.004
stone IPRS 281.08 0.878
MPRS 282.06 0.925
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[0200] From Table 4, we can see that for all the benchmarks
the CPRS, IPRS and MPRS algorithms achieve slightly dif-
ferent execution times and power consumption values. Here,
scheduled code can be selected by the end user’s design
criteria, e.g. power, throughput. In order to provide the high
throughput, the output code with the lowest execution time is
selected. The optimal solution is heavily dependent on appli-
cations; it may be generated by CPRS, IPRS or MPRS algo-
rithm. This has been illustrated in Table 4 below. In most
benchmarks, the CPRS scheduling algorithm provides less
register usage but however it has higher energy consumption
compared to other scheduling algorithms. From scheduling
and simulation analysis, the code generated by the CPRS
scheduling algorithm has longer combinational logic path
than other algorithms, which results in high power consump-
tion. However, the CPRS algorithm provides less energy con-
sumption in some cases. Once again, energy consumption is
dependent on applications. The compiler will schedule the
input code using all methods and select an appropriate output
code for their requirement. The CLS scheduling algorithm
provides the potential lower energy consumption and a simi-
lar throughput compared to others DSP/VLIW processor
[0201] Aspects of the present invention provide an instruc-
tion cell-based reconfigurable computing architecture for low
power applications. For the development of RICA, a top-
down approach was adopted that revealed the key design
decision for a flexible, easy to program, low power architec-
ture. These features make RICA an architecture that inher-
ently solves the main design requirements of modern low
power devices.

[0202] By designing the silicon fabric in a similar way to
reconfigurable arrays but with a closer equivalence to high
level program software the present invention achieves the
same high performance as coarse-grain FPGA architectures,
and the same flexibility, low cost and programmability as
DSPs. Although the RICA architecture is similar to a CPU,
the use of an IC-based reconfigurable core as a datapath gives
important advantages over DSP and VLIWs, such as more
support for parallel processing. The reconfigurable core can
execute a block containing both independent and dependent
assembly instructions in the same clock cycle, which prevents
the dependent instructions from limiting the amount of ILP in
the program. Other improvements over DSP architectures
include reduced memory access by eliminating the central-
ized register file and the use of distributed memory elements
to allow parallel register access.

[0203] Results show that RICA significantly outperforms
FPGA based implementation while providing straightfor-
ward high-level reprogrammability. In initial performance
results it also delivers up to 6 times less power consumption
when compared to leading VLIW and low-power DSPs pro-
Cessors.

[0204] Further modifications and improvements may be
added without departing from the scope of the invention
herein described.

1. A processor for executing program instructions having
datapaths of both dependent and independent program
instructions, the processor comprising:

an interconnection network;

a heterogeneous plurality of instruction cells each con-

nected to the interconnection network;

a decoding module adapted to receive configuration

instructions, each instruction encoding the mapping of
at least one of a datapath of dependent program instruc-
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tions and a datapath of independent program instruc-
tions to a circuit of the instruction cells and further
adapted to decode a configuration instruction and con-
figure at least some of the interconnection network and
instruction cells, thereby mapping the datapath to the
circuit of the instruction cells and executing the program
instructions.

2. The processor of claim 1 wherein the decoding module
is adapted to configure at least some of the interconnection
network and instruction cells by connecting at least some of
the instruction cells in series through the interconnection
network.

3. The processor of any of claims 1 and 2 wherein the
decoding module is further adapted to receive configuration
instructions encoding the mapping the datapaths of a plurality
of program threads to a corresponding plurality of indepen-
dent circuits of the instruction cells and further adapted to
decode a configuration instruction and configure at least some
of the interconnection network and instruction cells, thereby
mapping the datapaths of the plurality of program threads to
the corresponding plurality of circuits of the instruction cells
and contemporaneously executing the program threads inde-
pendently of each other.

4. The processor of any previous claim wherein the pro-
cessor further comprises a clock module adapted to provide a
clock signal having clock cycles and the decoding module is
operable to decode the configuration instruction so as to con-
figure at least some of the interconnection network and
instruction cells each clock cycle.

5. The processor of claim 4 wherein the clock module is
adapted to provide a variable clock cycle.

6. The processor of any of claims 4 and 5 wherein the clock
module is adapted to provide an enable signal.

7. The processor of claim 6 wherein the enable signal is
provided to an enable input of an instruction cell.

8. The processor of any of claims 4 to 7 wherein the clock
module is adapted to provide a plurality of clock signals.

9. The processor of claim 8 wherein at least some of the
plurality of clock signals are separately provided to a plurality
of instruction cells.

10. The processor of any of claims 4 to 9 wherein the
decoding module is further adapted to decode a configuration
instruction so as to configure a clock signal.

11. The processor of claim 10 wherein the decoding mod-
ule is further adapted to decode a configuration instruction so
as to configure the clock cycle.

12. The processor of any of claims 10 and 11 wherein the
active period of the clock signal is configured.

13. The processor of any of claims 10 to 12 wherein the
duty cycle of the clock signal is configured.

14. The processor of any previous claim wherein the pro-
cessor further comprises a program counter and an interface
to a configuration memory, the configuration memory being
adapted to store the configuration instructions, and at least
one of the instruction cells comprises an execution flow con-
trol instruction cell adapted to manage the program counter
and the interface so as to provide one of the configuration
instructions to the decoding module each clock cycle.

15. The processor of claim 14 wherein the enable signal is
provided to an enable input of the execution flow control
instruction cell.

16. The processor of any previous claim wherein at least
one of the instruction cells comprises a register instruction
cell operable to change its output each clock cycle.
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17. The processor of claim 16 wherein the enable signal is
provided to an enable input of the register instruction cell.

18. The processor of any of claims 16 and 17 wherein the
enable signal is provided both to an enable input of the execu-
tion flow control instruction cell and to an enable input of the
register instruction cell.

19. The processor of any previous claim wherein the pro-
cessor further comprises at least one input/output port and at
least one of the instruction cells comprises an input/output
register instruction cell adapted to access the at least one
input/output port.

20. The processor of any previous claim wherein the pro-
cessor further comprises at least one stack and at least one of
the instruction cells comprises a stack register instruction cell
adapted to access the at least one stack.

21. The processor of any previous claim wherein at least
one of the instruction cells comprises a memory instruction
cell adapted to access a data memory location.

22. The processor of claim 21 wherein the data memory
location comprises a multi-port memory location.

23. The processor of any of claims 21 and 22 wherein a pair
or more of memory instruction cells are adapted to access in
the same clock cycle a pair or more of data memory locations
clocked at a higher frequency than the frequency of the clock
cycle.

24. The processor of any of claims 4 to 23 wherein the
decoding module is further adapted to decode a configuration
instruction so as to configure the clock signal dependent on
the configuration of a clock signal decoded from a previous
configuration instruction.

25. The processor of any previous claim wherein at least
one of the instruction cells comprises a multiplex instruction
cell adapted to route data between instruction cells.

26. The processor of any previous claim wherein at least
one of the instruction cells comprises a combinatorial logic
instruction cell.

27. The processor of any previous claim wherein the func-
tion of an instruction cell corresponds to a program instruc-
tion.

28. The processor of any of claims 14 to 27 wherein the
circuit of instruction cells comprises a set of instruction cells
including one execution flow control instruction cell.

29. A compiler for generating configuration instructions
for the processor of any previous claim, the compiler com-
prising:

a front end module adapted to receive the program instruc-
tions and to identify the datapaths of the program
instructions; and

a scheduling module adapted to map the datapaths of both
dependent and independent program instructions as cir-
cuits of the instruction cells; and

a mapping module adapted to encode the configuration of
circuits of instruction cells as configuration instructions
and adapted to output the configuration instructions.

30. The compiler of claim 29 wherein the program instruc-
tions comprise assembler code output from a high level com-
piler.

31. The compiler of claim 29 wherein the program instruc-
tions comprise source code of a high level language.

32. The compiler of any of claims 29 to 31 wherein the
scheduling module is further adapted to schedule the program
instructions according to their interdependency.

33. The compiler of any of claims 29 to 32 wherein at least
one of the front end module and scheduling module are fur-
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ther adapted to map access to registers for the storage of
temporary results into interconnections between instruction
cells.

34. The compiler of any of claims 29 to 33 wherein the
scheduling module is further adapted to map a datapath of the
program instructions that will be executed in a single clock
cycle.

35. The compiler of any of claims 29 to 34 wherein the
scheduling module is further adapted to map the datapaths of
aplurality of program threads as a corresponding plurality of
contemporaneous circuits of the instruction cells.

36. The compiler of any of claims 29 to 35 wherein the
scheduling module is further adapted to map the datapaths
using operation chaining.

37. The compiler of any of claims 29 to 36 wherein the
scheduling module is further adapted to use operation chain-
ing while scheduling a single clock cycle.

38. The compiler of any of claims 29 to 37 wherein the
scheduling module is further adapted to use operation chain-
ing while processing each ready list of a plurality of ready
lists.

39. The compiler of any of claims 29 to 38 wherein the
scheduling module is further adapted to map the datapaths
using register allocation.

40. The compiler of claim 39 wherein the scheduling mod-
ule is further adapted to use register allocation while sched-
uling a single clock cycle.

41. The compiler of any of claims 39 and 40 wherein the
scheduling module is further adapted to use register alloca-
tion while processing each ready list of a plurality of ready
lists.

42. The compiler of any of claims 29 to 41 wherein the
scheduling module is further adapted to map the datapaths
using a plurality of scheduling algorithms.

43. The compiler of claim 42 wherein the scheduling mod-
ule is further adapted to map the datapaths by using the output
selected from one of the plurality of scheduling algorithms.

44. A method of executing program instructions, the
method including the steps of:

identifying datapaths in program instructions having data-

paths of both dependent and independent instructions;
and

configuring at least some of an interconnection network

and a heterogeneous plurality of instruction cells,
wherein each instruction cell is connected to the inter-
connection network, by connecting at least some of the
instruction cells in series through the interconnection
network thereby mapping the datapaths of both depen-
dent and independent program instructions and execut-
ing the program instructions.

45. The method of claim 44 further including the step of
providing a clock signal having clock cycles to at least one of
the instruction cells, wherein the step of configuring the
instruction cells is performed each clock cycle.

46. The method of any of claims 44 and 45 wherein the step
of configuring further includes the step of configuring the
subsequent clock cycle.

47. The method of any of claims 44 to 46 wherein the active
period of the clock cycle is configured.

48. The method of any of claims 44 to 47 wherein the duty
cycle of the clock signal is configured.

49. The method of any of claims 44 to 48 wherein the step
of configuring at least some of the interconnection network
and the instruction cells includes the steps of:
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mapping the datapaths of both dependent and independent
program instructions as circuits of the instruction cells;

encoding the configuration of the circuits of instruction
cells as configuration instructions; and

decoding the configuration instructions so as to configure

the at least some of the interconnection network and the
instruction cells.

50. The method of claim 49 wherein the step of mapping
includes the step of scheduling the program instructions
according to their interdependency.

51. The method of any of claims 49 and 50 wherein the step
of mapping includes the step of mapping access to registers
for the storage of temporary results into interconnections
between instruction cells.

52. The method of any of claims 49 to 51 wherein the step
of mapping includes the step of mapping a datapath of the
program instructions that will be executed in a single clock
cycle.
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53. A computer program comprising program instructions,
which, when loaded into a computer, constitute the compiler
of any of claims 29 to 43.

54. The computer program of claim 53 embodied on a
storage medium, stored in a computer memory or carried on
an electrical or optical carrier signal.

55. A computer program comprising program instructions
for causing a computer to perform the method of any of
claims 44 to 52.

56. The computer program of claim 55 embodied on a

storage medium, stored in a computer memory or carried on
an electrical or optical carrier signal.



