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• The first lecture explored the thesis 
that reconfigurability is an integral 
design goal in multi-/many-core 
systems. 

Reconfigurability 
Issues in  
Multi-core 
Systems 

• The next two lectures explore the 
impact the multi-/many-core systems 
have on algorithms, programming 
language, compiler and operating 
system support and vice-versa. 

The Re-Design 
Imperative:  

Why Many-core 
Changes 

Everything 
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These lectures are intended to raise more 
questions than they answer 

A reminder from the first talk … 



The Core is the Logic Gate of the 

21st Century Anant Agarwal, MIT 

Agarwal proposes a corollary to Moore‟s law: 
The # of cores will double every 18 months 
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10s to 100s of 
cores/chip; the memory 
wall; the ILP complexity 
and performance wall, 
the power and thermal 
wall; the education wall 

Increasing 
complexity in a 
parallel world:  
development of 
algorithms; 
programming 
languages 
appropriate for the 
algorithm 
abstractions; 
compiler technology 

Increasing complexity of 
operating system support for 
a wide variety of system 
architectures using multi-
/many- core chips; differing 
run-time support for a variety 
of tool chains and 
architectures; testing parallel 
programs, recovering from 
errors. 
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In 2000, Intel transitioned from 
the Pentium 3 to the Pentium 4. 
The transistor count increased 
by 50%, but the performance 
only increased by 15%  



Multicore: the number of cores is such that conventional 
operating system techniques and programming 
approaches are still applicable 

Manycore: the number of cores is such that either 
conventional operating system techniques or 
programming approaches no longer apply, i.e., they do not 
scale and performance degrades 
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• Cellphones, electronic game devices, automobiles, trains, 
planes, display walls, medical devices, TVs, movies, digital 
cameras, tablets, laptops, desktops, workstations, servers, 
network switches/routers, datacenters, clouds, supercomputers 

multicore processors are increasingly being 
used in a wide range of systems and are 
having a significant impact on system 
design in multiple industries 

multicore changes much about software 
specification, development, testing, 
performance tuning, system packaging, 
deployment and maintenance 
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• Will multicore improve time-to-market, ease of 
upgrades, extension to new services? 

• Will embedded device development become 
more software or more hardware focused? 

• Will modeling, prototyping & evaluation 
methodologies and tools to determine how to 
exploit multicore technology be available? 

Some companies currently using 
ASICs, DSPs and FPGA are exploring 
replacing them using multicores 
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• Task level parallelism and data level parallelism 

Determine which key applications can 
benefit from multicore execution 

• Recode? Redesign? New algorithms? 
• Use of threads dominates current approaches. Does it scale? Is 

it the best approach? Testing parallel programs? 
• What languages, compilers, standards to use? Tool sets? 

Determine how to go about parallelizing them with 
the least amount of effort to increase performance 
and reduce power consumption 
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Using the least amount 

of resources 



Multicore, up to a certain number of cores, allows for 
traditional responses to accommodate the required 
changes in systems design, implementation, test, etc. 

Manycore, however, is a completely disruptive 
technology. Most contemporary operating systems 
have limited scalability and the tool chains for parallel 
program development are woefully inadequate 
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They didn‟t fail.  
They were just not 

commercial successes 

In fact, there is a good deal to 
learn from studying the 
algorithm, software and 

hardware and software insights 
gained with these systems. 



Previous parallel and massively parallel 
processors were enormously expensive. 
Furthermore, they  drew huge amounts of 
power, and required significant space, special 
cooling and complex programming 

Multicore and manycore processors are 
commodity processors at commodity prices 
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The challenge is in 
making multicore 

and manycore easy 
to use (i.e. hiding 
their complexity) 

and having 
programs exploit 
their resources 

Previous 
PPs/MPPs were 
very difficult to 

program, requiring 
experts writing 

thousands of lines 
of hand-crafted and 

ad-hoc code 

PROBLEM: 
PPs/MPPS are still 
difficult to program 

at all levels 
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• How to manage the resources of a set of heterogeneous chips with varied on-chip & off-chip 
interconnects, topologoes, interfaces and protocols 

Diversity at All Levels 

• How to effectively use 10s, 100s and 1000s of heterogeneous cores  

Performance 

• How to use the least amount of power and generate the least amount of heat while achieving 
the highest possible performance  

Power and Thermal 

• How to meet reliability and availability requirements with systems made of hundreds of billions 
of transistors 

Reliability and Availability  

• How to meet increasingly demanding security and privacy requirements 

Security and Privacy 
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Application 
Developer 

Architecture and 
Microarchitecture 

Computer Science and 
Engineering 
Education 

And, don‟t forget about dynamic 
reconfigurability; i.e. self-monitoring and 

fault tolerant systems 



Very high neighborhood bandwidth 

Bandwidth quickly decreases beyond the neighborhood 

Neighborhood protection issues 

Neighborhood isolation 

Proximity to I/O impacts performance & power consumption 

15 

Common denominator of these observations 

They are Spatial Issues 



Shared-memory kernel on every processor 
(monolithic) 

OS required data structures protected by 
locks, semaphores, monitors, etc. 

The OS and the applications share the same 
memory hierarchy -- caches, TLBs, etc. 
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Real Time 
OS 

Embedded 
OS 

SMP OS Microkernel 
OS 
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• How many CPU cores, GPU cores, FPGA cores, DPS cores, etc. 

What is a “good” mix of various types of 
cores for a multi-/manycore chip for 
workloads with specific characteristics?  

• Shared bus, point-to-point, crossbar, mesh, etc. Consider, for 
example, the differences between the 8-socket Opteron, the 8-
socket Nehalem, the NVidia Fermi,  and the Tilera Gx 

What different types of interconnects and 
topologies should co-exist on-chip? 

What resources should be allocated to and 
used by applications and OS services? 
When should they be allocated? 
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How should an OS 
be structured for 

multicore systems so 
that it is scalable to 

manycores and 
accommodate 

heterogeneity and 
hardware diversity? 

What are the 
implications of this 

structure for the 
underlying manycore 

architecture and 
microarchitecture as 

well as that of the 
individual cores? 
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Do the answers change based on the targeted 
domain of the OS – for example, real-time or 
embedded or conventional SMP processing? 
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We‟ll talk about some of what has been learned in 
two of these research projects but, before we do, 
we‟ll talk about Amdahl's Law and threads for a few 
minutes 
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The speedup of a program using multiple processors in 
parallel is limited by the time needed to execute the 
“sequential portion” of the program (i.e., the portion of 
the code that cannot be parallelized). 

Example, if a program requires 10 hours to execute 
using one processor and the sequential portion of the 
code requires 1 hour to execute, then no matter how 
many processors are devoted to the parallelized 
execution of the program, the minimum execution 
time cannot be less than the 1 hour devoted to the 
sequential code. 
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In “Amdahl‟s Law in the Multicore 
Era” (2008), Hill and Marty 
conclude, “Obtaining optimal 
multicore performance will require 
further research in both extracting 
more parallelism and making 
sequential cores faster.” 

However, Amdahl said something 
very similar in 1967: “A fairly 

obvious conclusion at this point is 
that the effort expended on 

achieving high parallel processing 
rates is wasted unless it is 

accompanied by achievements in 
sequential processing rates of 

very nearly the same magnitude.” 
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Manycore Lecture Resources/2008 Hill Amdahl's Law in the Multicore Era.pdf
Manycore Lecture Resources/2008 Hill Amdahl's Law in the Multicore Era.pdf
Manycore Lecture Resources/1967 Amdahl Validity.pdf


“Amdahl‟s law and the corollary we offer for multicore hardware seek to 
provide insight to stimulate discussion and future work. Nevertheless, 
our specific quantitative results are suspect because the real world is 
much more complex. Currently, hardware designers can‟t build cores 
that achieve arbitrary high performance by adding more resources, nor 
do they know how to dynamically harness many cores for sequential 
use without undue performance and hardware resource overhead. 
Moreover, our models ignore important effects of dynamic and static 
power, as well as on- and off-chip memory system and interconnect 
design. Software is not just infinitely parallel and sequential. Software 
tasks and data movements add overhead. It‟s more costly to develop 
parallel software than sequential software. Furthermore, scheduling 
software tasks on asymmetric and dynamic multicore chips could be 
difficult and add overhead.” (Hill and Marty) 
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“Reevaluating Amdahl‟s law in the multicore era” (2010) 

“Our study shows that multicore architectures are 
fundamentally scalable and not limited by Amdahl's 
law. In addition to reevaluating the future of multicore 
scalability, we identify what we believe will ultimately 
limit the performance of multicore systems: the 
memory wall.” 
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Manycore Lecture Resources/2010 Sun and Chen Reevaluating Amdahl's Law.pdf


“We have only studied symmetric multicore 
architectures where all the cores are identical. 
The reason is that asymmetric systems are much 
more complex than their symmetric counterparts. 
They are worth exploring only if their symmetric 
counterparts cannot deliver satisfactory 
performance.” 
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Manycore Lecture Resources/2010 Sun and Chen Reevaluating Amdahl's Law.pdf
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 12 threads 
 AMD Magny Cours, 12 

cores 
 Intel Sandy Bridge, 6 cores 

 16 threads 
 Intel Xeon 7500, 8 cores 

 32 threads 
 IBM Power 7, 8 cores 
 Niagara 1, 8 cores 

 64 threads 
 Niagara 2, 8 cores 

 100s of threads 
 2012 estimates: 20+ cores 
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GPUs are already running 1000s of 

threads in parallel! 

 
GPUs are manycore processors well 
suited to data-parallel algorithms 
 
The data-parallel portions of an 
application execute on the GPU as 
kernels running many cooperative 
threads 
 
GPU threads are very lightweight 
compared to CPU threads 
 
GPU threads run and exit (non-
persistent) 



Feedback-Driven Threading: 
Power-Efficient and High-
Performance Execution of 
Multi-threaded Workloads 
on CMPs by M. Suleman, 
Qureshi & Patt 

They challenge 
setting the 

# of threads =  

# of cores 

They develop a 
run-time method to 
estimate the best 
number of threads 
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Assign as many threads as there are 
cores scalable applications only 

• Performance may max out earlier wasting cores 
• Adding more threads may increase power 

consumption and heat 
• Adding more threads may actually increase 

execution time 

And not for applications that don‟t 
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• Example: use of critical sections to 
synchronize access to shared data 
structures 

Synchronization-Limited 
Workloads 

• Example: use of an off-chip bus to access 
shared memory or a co-processor 

Bandwidth Limited Workloads 
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Code that accesses a shared resource which must not be 
concurrently accessed by more than one thread of 
execution 

A synchronization mechanism is required at the entry and 
exit of the critical section to ensure exclusive use, e.g., a 
lock or a semaphore 

Critical sections are used: (1) To ensure a shared resource can only 
be accessed by one process at a time and (2) When a multithreaded 
program must update multiple related variables without other threads 
making conflicting changes  
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The execution time inside the critical section 
increases with the number of threads 

The execution time outside the critical section 
decreases with the number of threads 
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More threads, execution time decreases but 
the bandwidth demands increase 

Increasing the number of threads increases 
the need to use off-chip bandwidth 
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User of application 

Programmer who writes the application 

Compiler that generates code to execute 
the application (static and/or dynamic) 

Operating system that provides resources 
for the running application 
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Train: Run a 
portion of the code 

to analyze the 
application 
behavior 

Compute: Choose 
# of threads based 

on this analysis 

Execute: Run the 
full program 
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Synchronization-
Aware Threading 

Measure time 
inside and outside 

critical section 
using the cycle 

counter 

Reduces both 
power and 

execution time 

Bandwidth-
Aware Threading 

Measure 
bandwidth usage 

using performance 
counters 

Reduces power 
without increasing 

execution time 

Combination of 
Both 

Train for both SAT 
and BAT 

SAT + BAT 
reduces both 

power and 
execution time 
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Assumes only one thread/core, i.e. no SMT on a 
core 

Bandwidth assumptions ignore cache contention 
and data sharing 

Single program in execution model 

Dynamic nature of the workload in systems not 
accounted for 
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How could application heartbeats (or a 
similar technology) be used to extend the 
scope of these results? 
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Manycore Lecture Resources/2009 Eastep et al Application Heartbeats.pdf
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Wentzlaff and Agarwal, in their 2008 MIT report are 
motivated to propose FOS are driven by the usual 
issues 

• Design complexity of contemporary μPs 
• Inability to detect and exploit additional parallelism that has a substantive 

performance impact 
• Power and thermal considerations limit increasing clock frequencies 

μP performance is no longer on an 
exponential growth path 

SMPs are not scalable due to structural 
issues 
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Manycore Lecture Resources/2008 Wentzlaff and Agarwal MIT Report.pdf


Fine grain locks 

Efficient cache coherence for shared data 
structures and locks 

Execute the OS across the entire machine 
(monolithic) 

Each processor contains the working set of the 
applications and the SMP 
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Minimize the portions of the code that require fine 
grain locking 

As the number of cores grows, 2 to 4 to 6 to 8 to 
etc., incorporating fine grain locking is a challenging 
and error prone process 

These code portions are shared with large numbers 
of cores and 100s/1000s of threads in manycore 
systems: .   
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ASSUME that the probability more than 
one thread will contend for a lock is 
proportional to the number of executing 
threads  

THEN as the # of executing threads/core 
increases significantly, lock contention 
increases likewise 

THIS IMPLIES the number of locks must 
increase proportionately to maintain 
performance 
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This figure is taken from 2008, The Case for a Factored 
Operating system (fos), MIT Report, Wentzlaff and Agarwal 

Manycore Lecture Resources/2008 Wentzlaff and Agarwal MIT Report.pdf
Manycore Lecture Resources/2008 Wentzlaff and Agarwal MIT Report.pdf
Manycore Lecture Resources/2008 Wentzlaff and Agarwal MIT Report.pdf
Manycore Lecture Resources/2008 Wentzlaff and Agarwal MIT Report.pdf


Increasing the # of locks is time 
consuming and error prone 

Locks can cause deadlocks via difficult 
to identify circular dependencies 

There is a limit to the granularity. A lock 
for each word of shared data? 
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Reduces hit rate for applications and, subsequently, single stream 
performance 

Implies the cache system on each core must contain the shared 
working set of the OS and the set of executing applications 

Executing OS code & application code on the same core 
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Both of these figures are taken from a 2009 article, “Factored Operating 
Systems (fos): The Case for a Scalable Operating System for Multicores,” 
by Wentzlaff and Agarwal, a 2009 article which is an enhanced version of 
the original 2008 MIT report. 

Manycore Lecture Resources/2009 Wentzlaff FOS.pdf
Manycore Lecture Resources/2009 Wentzlaff FOS.pdf
Manycore Lecture Resources/2009 Wentzlaff FOS.pdf
Manycore Lecture Resources/2009 Wentzlaff FOS.pdf


“It is doubtful that future multicore processors will have 
efficient full-machine cache coherence as the abstraction 
of a global shared memory space is inherently a global 
shared structure.” (Wentzlaff and Agarwal) 

“While coherent shared memory may be inherently 
unscalable in the large, in a small application, it can be 
quite useful. This is why fos provides the ability for 
applications to have shared memory if the underlying 
hardware supports it.” (Wentzlaff and Agarwal) 
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Avoid the use of hardware locks 

Separate the operating system resources from the 
application execution resources 

Avoid global cache coherent shared memory 
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Space multiplexing replaces time multiplexing 

OS is factored into function specific services 
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Inspired by distributed Internet services model 

Each OS service is designed like a distributed internet server 

Each OS service is composed of multiple server processes 
which are spatially distributed across a multi-manycore chip 

Each server process is allocated to a specific core eliminating 
time-multiplexing cores 

The server processes collaborate and exchange information via 
message passing to provide the overall OS service 
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As noted, each OS system service consists of 
collaborating servers 

OS kernel services also use this approach 
For example, physical page allocation, scheduling, memory 
management, naming, and hardware multiplexing 

Therefore, all system services and kernel 
services run on top of a microkernel 

OS code is not executed on the same cores that 
are executing applications code  

54 



Platform dependent 

A portion of the microkernel executes on each 
processor core 

Implements a machine dependent communication 
infrastructure (API); message passing based 

Controls access to resources (provides protection 
mechanisms) 

Maintains a name cache to determine the location 
(physical core number) of the destination of messages 
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The applications and the OS system services 
operate on separate cores on top of the microkernel  



Combining multiple cores to behave like a 
more powerful core 

The “cluster” is a “core” 
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Algorithms, programming models, compilers, 
operating systems and computer architectures and 
microarchitectures have no concept of space 

Underlying uniform access assumption: a wire 
provides an instantaneous connections between 
points on an integrated circuit 

Assumption is no longer valid: the energy spent in 
driving the wires and the latency (the time to get from 
here to there) must now be taken into consideration 
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“Commodity computer systems contain more and more 
processor cores and exhibit increasingly diverse architectural 
tradeoffs, including memory hierarchies, interconnects, 
instruction sets and variants, and IO configurations. Previous 
high-performance computing systems have scaled in specific 
cases, but the dynamic nature of modern client and server 
workloads, coupled with the impossibility of statically 
optimizing an OS for all workloads and hardware variants 
pose serious challenges for operating system structures.” 

“We argue that the challenge of future multicore hardware is 
best met by embracing the networked nature of the machine, 
rethinking OS architecture using ideas from distributed 
systems.” 
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Organize the OS as a distributed 
system 

Implement the OS in a hardware-
neutral way 

View “state” as replicated 
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“The principal impact on clients is that they now invoke 
an agreement protocol (propose a change to system 
state, and later receive agreement or failure notification) 
rather than modifying data under a lock or transaction. 
The change of model is important because it provides a 
uniform way to synchronize state across heterogeneous 
processors that may not coherently share memory.” 
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From Baumann er al, “Your computer is already a 
distributed system. Why isn‟t your OS?” 

Manycore Lecture Resources/2009 Baumann et al Distributed OS.pdf
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• Messages decouple OS communication structure from the 
hardware inter-core communications mechanisms  

Separation of “method” and 
“mechanism” 

• Heterogeneous cores 
• Non-coherent interconnects 
• Split-phase operations by decoupling requests from 

responses and thus aids concurrency 
• System diversity (e.g., Tile-Gx and the Intel 80-core) 

Transparently supports 
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Conclude: Messages Cost Less than Memory 
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“A separate question concerns whether future multicore 
designs will remain cache-coherent, or opt instead for a 
different communication model (such as that used in the 
Cell processor). A multikernel seems to oer the best 
options here. As in some HPC designs, we may come to 
view scalable cache-coherency hardware as an 
unnecessary luxury with better alternatives in software” 

“On current commodity hardware, the cache coherence 
protocol is ultimately our message transport.” 
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From Baumann er al, “Your computer is already a 
distributed system. Why isn‟t your OS?” 

Manycore Lecture Resources/2009 Baumann et al Distributed OS.pdf
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Challenging FOS and the Multikernel? 
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In “An Analysis of Linux Scalability to Many 
Cores” (2010), Boyd-Wickizer et al study the 
scaling of Linux using a number of web 
service applications that are: 
• Designed for parallel execution 
• Stress the Linux core 
• MOSBENCH = Exim mail server, memcached (a high-

performance distributed caching system), Apache (an 
HTTP server), serving static files, PostageSQL (an object-
relational database system), gmake, the Psearchy file 
indexer, and a multicore MapReduce library (Google‟s 
framework for distributed computing on large data sets) 
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Manycore Lecture Resources/2010 Wickizer at al Linux Scalability.pdf
Manycore Lecture Resources/2010 Wickizer at al Linux Scalability.pdf


MOSBENCH applications can scale well to 48 cores 
with modest changes to the applications and to the 
Linux core 

“The cost of thread and process creation seem likely 
to grow with more cores” 

“If future processors don‟t provide high-performance 
cache coherence, Linux‟s shared-memory intensive 
design may be an impediment to performance.” 
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http://www.tilera.com/
http://www.tilera.com/


DDC is a fully coherent shared cache system 
across an arbitrarily-sized array of tiles 

Does not use (large) centralized L2 or L3 caches to 
avoid power consumption and system bottlenecks 

DDC‟s distributed L2 caches can be coherently 
shared among other tiles to evenly distributing the 
cache system load 
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Instead of a bus, the TILE64 uses a non-blocking, cut-through 
switch on each processor core 

The switch connects the core to a two dimensional on-chip 
mesh network called the “Intelligent Mesh” - iMesh™  

The combination of a switch and a core is called a 'tile„ 

iMesh provides each tile with more than a terabit/sec of 
interconnect bandwidth 

Multiple parallel meshes separate different transaction types 
and provide more deterministic interconnect throughput 
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 I‟ll let MDE speak for itself 
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Manycore Lecture Resources/2010 Tilera MDE.pdf
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http://techresearch.intel.com/ProjectDetails.aspx?Id=1
http://techresearch.intel.com/ProjectDetails.aspx?Id=1


77 

Lessons Learned from the 80-core Tera-Scale 
Research Processor, by Dighe et all 
 
1. The network consumes almost a third of the total 

power, clearly indicating the need for a new 
approach 

2. Fine-grained power management and low-power 
design power techniques enable peak energy of 
19.4 GFLOPS/Watt and a 2X reduction in 
standby leakage power, and 

3. The tiled design methodology quadruples design 
productivity without compromising design quality.  

Manycore Lecture Resources/2009 Dighe et al Intel 80-core Lessons.pdf
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Manycore Lecture Resources/2009 NVIDIA_Fermi_Arch.pdf
Manycore Lecture Resources/2009 NVIDIA_Fermi_Arch.pdf


Architecture paradigms and programming languages for efficient 
programming of multiple CORES 

EU Funded 

Self-adaptive Virtual Processor (SVP) execution model 

“The cluster is the processor” –the concept of place (a cluster) 
allocated for the exclusive use of a thread (space sharing) 
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http://www.apple-core.info/
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Increase the resource size (chip area) only if 
for every 1% increase in core area there is at 
least a 1% increase in core performance, i.e., 
Kill (the resource growth) If Less than Linear 
(performance improvement is realized) 
• The KILL Rule applies to all multicore resources, 

e.g., issue-width, cache size, on chip levels of 
memory, etc. 

KILL Rule implies many caches have been 
sized “well beyond diminishing returns” 
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Communication requires less cycles & energy 
than cache (10X) or memory accesses (100X) 

• Stream algorithms: read values, compute, deliver results 
• Dataflow: arrival of all required data triggers computation, deliver 

results 

Develop algorithms that are communication 
centric rather than memory centric 

Use frameworks that allow the expression of 
parallelism at all levels of abstraction 
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Do existing complex cores make “good” cores for 
multi-/manycore? 

When do bigger L1, L2 and L3 caches increase 
performance? Minimize power consumption? 

What % of interconnect latency is due to wire 
delay? 

What programming models are appropriate for 
developing multi-/manycore applications? 
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Latency arises from coherency 
protocols and software overhead 

• Minimize memory accesses 
• Support direct access to the core-to-core 

interconnect (bus, ring, mesh, etc.) 
• Eliminate or greatly simplify protocols 

Ways to reduce the latency to a 
few cycles 
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What programming models can we used for specific hybrid 
organizations? 

What should a library of “build block” programs look like for specific 
hybrid organizations? 

Should you be able to run various operating systems of different 
“clusters” of cores – i.e., when and where does virtualization make 
sense in a manycore environment? 

How can you determine if your “difficult to parallelize” application will 
consume less power running on many small cores versus running on a 
couple of small cores? 
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They can be  

Decomposed into 
independent tasks 

Structured to operate on 
independent sets of data 

Some applications -- large scale simulations, genome 
sequencing, search and data mining, and image 
rendering and editing - can scale to 100s of processors 
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By and large, however, the set of easily 
parallelizable applications is small. 
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Data parallelism is when several processors in a mutiprocessor 
system execute the same code, in parallel, on different parts of the 
data. This is sometimes referred to as SIMD processing. 

Task parallelism is achieved when several processors in a 
multiprocessor system execute a different thread (or process) on the 
same or different data. Different execution threads communicate with 
one another as they execute to pass data from one thread to the 
another as part of the overall program execution. In the general case, 
this is called MIMD processing. 

When multiple autonomous processors simultaneously execute the 
same program at independent points, rather than in the lockstep on 
different data that data parallelism requires it is referred to as SPMD 
processing. 

Applications often employ multiple types of parallelism. 
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