
Bruce Shriver
University of Tromsø, Norway

November 2010

Óbuda University, Hungary

• The first lecture explored the thesis
that reconfigurability is an integral
design goal in multi-/many-core
systems.

Reconfigurability
Issues in
Multi-core
Systems

• The next two lectures explore the
impact the multi-/many-core systems
have on algorithms, programming
language, compiler and operating
system support and vice-versa.

The Re-Design
Imperative:

Why Many-core
Changes

Everything

2

3

?

?

These lectures are intended to raise more
questions than they answer

A reminder from the first talk …

The Core is the Logic Gate of the

21st Century Anant Agarwal, MIT

Agarwal proposes a corollary to Moore‟s law:
The # of cores will double every 18 months

4

4 16 64

256

1024

0

200

400

600

800

1000

1200

2002 2005 2008 2011 2014

Ready or

not, here

they come!

10s to 100s of
cores/chip; the memory
wall; the ILP complexity
and performance wall,
the power and thermal
wall; the education wall

Increasing
complexity in a
parallel world:
development of
algorithms;
programming
languages
appropriate for the
algorithm
abstractions;
compiler technology

Increasing complexity of
operating system support for
a wide variety of system
architectures using multi-
/many- core chips; differing
run-time support for a variety
of tool chains and
architectures; testing parallel
programs, recovering from
errors.

5

In 2000, Intel transitioned from
the Pentium 3 to the Pentium 4.
The transistor count increased
by 50%, but the performance
only increased by 15%

Multicore: the number of cores is such that conventional
operating system techniques and programming
approaches are still applicable

Manycore: the number of cores is such that either
conventional operating system techniques or
programming approaches no longer apply, i.e., they do not
scale and performance degrades

6

• Cellphones, electronic game devices, automobiles, trains,
planes, display walls, medical devices, TVs, movies, digital
cameras, tablets, laptops, desktops, workstations, servers,
network switches/routers, datacenters, clouds, supercomputers

multicore processors are increasingly being
used in a wide range of systems and are
having a significant impact on system
design in multiple industries

multicore changes much about software
specification, development, testing,
performance tuning, system packaging,
deployment and maintenance

7

• Will multicore improve time-to-market, ease of
upgrades, extension to new services?

• Will embedded device development become
more software or more hardware focused?

• Will modeling, prototyping & evaluation
methodologies and tools to determine how to
exploit multicore technology be available?

Some companies currently using
ASICs, DSPs and FPGA are exploring
replacing them using multicores

8

• Task level parallelism and data level parallelism

Determine which key applications can
benefit from multicore execution

• Recode? Redesign? New algorithms?
• Use of threads dominates current approaches. Does it scale? Is

it the best approach? Testing parallel programs?
• What languages, compilers, standards to use? Tool sets?

Determine how to go about parallelizing them with
the least amount of effort to increase performance
and reduce power consumption

9

Using the least amount

of resources

Multicore, up to a certain number of cores, allows for
traditional responses to accommodate the required
changes in systems design, implementation, test, etc.

Manycore, however, is a completely disruptive
technology. Most contemporary operating systems
have limited scalability and the tool chains for parallel
program development are woefully inadequate

10

Ardent

Convex

Goodyear
MPP KSR

Floating
Point

Systems

Illiac IV

Burroughs
D825

Synapse
N+1

Inmos

Thinking
Machines

TM-1

Kendel
Square

Research

MasPar

11

They didn‟t fail.
They were just not

commercial successes

In fact, there is a good deal to
learn from studying the
algorithm, software and

hardware and software insights
gained with these systems.

Previous parallel and massively parallel
processors were enormously expensive.
Furthermore, they drew huge amounts of
power, and required significant space, special
cooling and complex programming

Multicore and manycore processors are
commodity processors at commodity prices

12

The challenge is in
making multicore

and manycore easy
to use (i.e. hiding
their complexity)

and having
programs exploit
their resources

Previous
PPs/MPPs were
very difficult to

program, requiring
experts writing

thousands of lines
of hand-crafted and

ad-hoc code

PROBLEM:
PPs/MPPS are still
difficult to program

at all levels

13

• How to manage the resources of a set of heterogeneous chips with varied on-chip & off-chip
interconnects, topologoes, interfaces and protocols

Diversity at All Levels

• How to effectively use 10s, 100s and 1000s of heterogeneous cores

Performance

• How to use the least amount of power and generate the least amount of heat while achieving
the highest possible performance

Power and Thermal

• How to meet reliability and availability requirements with systems made of hundreds of billions
of transistors

Reliability and Availability

• How to meet increasingly demanding security and privacy requirements

Security and Privacy

14

Application
Developer

Architecture and
Microarchitecture

Computer Science and
Engineering
Education

And, don‟t forget about dynamic
reconfigurability; i.e. self-monitoring and

fault tolerant systems

Very high neighborhood bandwidth

Bandwidth quickly decreases beyond the neighborhood

Neighborhood protection issues

Neighborhood isolation

Proximity to I/O impacts performance & power consumption

15

Common denominator of these observations

They are Spatial Issues

Shared-memory kernel on every processor
(monolithic)

OS required data structures protected by
locks, semaphores, monitors, etc.

The OS and the applications share the same
memory hierarchy -- caches, TLBs, etc.

16

Real Time
OS

Embedded
OS

SMP OS Microkernel
OS

17

• How many CPU cores, GPU cores, FPGA cores, DPS cores, etc.

What is a “good” mix of various types of
cores for a multi-/manycore chip for
workloads with specific characteristics?

• Shared bus, point-to-point, crossbar, mesh, etc. Consider, for
example, the differences between the 8-socket Opteron, the 8-
socket Nehalem, the NVidia Fermi, and the Tilera Gx

What different types of interconnects and
topologies should co-exist on-chip?

What resources should be allocated to and
used by applications and OS services?
When should they be allocated?

18

How should an OS
be structured for

multicore systems so
that it is scalable to

manycores and
accommodate

heterogeneity and
hardware diversity?

What are the
implications of this

structure for the
underlying manycore

architecture and
microarchitecture as

well as that of the
individual cores?

19

Do the answers change based on the targeted
domain of the OS – for example, real-time or
embedded or conventional SMP processing?

Disco and
Cellular
Disco

Corey

Exokernel

fos

Extended
Minix 3

Multikernel /
Barrelfish

apple core
microgrid

OS

Hive

Tornado
and K42

20

We‟ll talk about some of what has been learned in
two of these research projects but, before we do,
we‟ll talk about Amdahl's Law and threads for a few
minutes

21

22

The speedup of a program using multiple processors in
parallel is limited by the time needed to execute the
“sequential portion” of the program (i.e., the portion of
the code that cannot be parallelized).

Example, if a program requires 10 hours to execute
using one processor and the sequential portion of the
code requires 1 hour to execute, then no matter how
many processors are devoted to the parallelized
execution of the program, the minimum execution
time cannot be less than the 1 hour devoted to the
sequential code.

23

In “Amdahl‟s Law in the Multicore
Era” (2008), Hill and Marty
conclude, “Obtaining optimal
multicore performance will require
further research in both extracting
more parallelism and making
sequential cores faster.”

However, Amdahl said something
very similar in 1967: “A fairly

obvious conclusion at this point is
that the effort expended on

achieving high parallel processing
rates is wasted unless it is

accompanied by achievements in
sequential processing rates of

very nearly the same magnitude.”

24

Manycore Lecture Resources/2008 Hill Amdahl's Law in the Multicore Era.pdf
Manycore Lecture Resources/2008 Hill Amdahl's Law in the Multicore Era.pdf
Manycore Lecture Resources/1967 Amdahl Validity.pdf

“Amdahl‟s law and the corollary we offer for multicore hardware seek to
provide insight to stimulate discussion and future work. Nevertheless,
our specific quantitative results are suspect because the real world is
much more complex. Currently, hardware designers can‟t build cores
that achieve arbitrary high performance by adding more resources, nor
do they know how to dynamically harness many cores for sequential
use without undue performance and hardware resource overhead.
Moreover, our models ignore important effects of dynamic and static
power, as well as on- and off-chip memory system and interconnect
design. Software is not just infinitely parallel and sequential. Software
tasks and data movements add overhead. It‟s more costly to develop
parallel software than sequential software. Furthermore, scheduling
software tasks on asymmetric and dynamic multicore chips could be
difficult and add overhead.” (Hill and Marty)

25

“Reevaluating Amdahl‟s law in the multicore era” (2010)

“Our study shows that multicore architectures are
fundamentally scalable and not limited by Amdahl's
law. In addition to reevaluating the future of multicore
scalability, we identify what we believe will ultimately
limit the performance of multicore systems: the
memory wall.”

26

Manycore Lecture Resources/2010 Sun and Chen Reevaluating Amdahl's Law.pdf

“We have only studied symmetric multicore
architectures where all the cores are identical.
The reason is that asymmetric systems are much
more complex than their symmetric counterparts.
They are worth exploring only if their symmetric
counterparts cannot deliver satisfactory
performance.”

27

Manycore Lecture Resources/2010 Sun and Chen Reevaluating Amdahl's Law.pdf

28

 12 threads
 AMD Magny Cours, 12

cores
 Intel Sandy Bridge, 6 cores

 16 threads
 Intel Xeon 7500, 8 cores

 32 threads
 IBM Power 7, 8 cores
 Niagara 1, 8 cores

 64 threads
 Niagara 2, 8 cores

 100s of threads
 2012 estimates: 20+ cores

29

GPUs are already running 1000s of

threads in parallel!

GPUs are manycore processors well
suited to data-parallel algorithms

The data-parallel portions of an
application execute on the GPU as
kernels running many cooperative
threads

GPU threads are very lightweight
compared to CPU threads

GPU threads run and exit (non-
persistent)

Feedback-Driven Threading:
Power-Efficient and High-
Performance Execution of
Multi-threaded Workloads
on CMPs by M. Suleman,
Qureshi & Patt

They challenge
setting the

of threads =

of cores

They develop a
run-time method to
estimate the best
number of threads

30

Manycore Lecture Resources/2008 Suleman et all Feedback Driven Threading.pdf
Manycore Lecture Resources/2008 Suleman et all Feedback Driven Threading.pdf
Manycore Lecture Resources/2008 Suleman et all Feedback Driven Threading.pdf
Manycore Lecture Resources/2008 Suleman et all Feedback Driven Threading.pdf
Manycore Lecture Resources/2008 Suleman et all Feedback Driven Threading.pdf
Manycore Lecture Resources/2008 Suleman et all Feedback Driven Threading.pdf
Manycore Lecture Resources/2008 Suleman et all Feedback Driven Threading.pdf
Manycore Lecture Resources/2008 Suleman et all Feedback Driven Threading.pdf
Manycore Lecture Resources/2008 Suleman et all Feedback Driven Threading.pdf
Manycore Lecture Resources/2008 Suleman et all Feedback Driven Threading.pdf
Manycore Lecture Resources/2008 Suleman et all Feedback Driven Threading.pdf
Manycore Lecture Resources/2008 Suleman et all Feedback Driven Threading.pdf

Assign as many threads as there are
cores scalable applications only

• Performance may max out earlier wasting cores
• Adding more threads may increase power

consumption and heat
• Adding more threads may actually increase

execution time

And not for applications that don‟t

31

• Example: use of critical sections to
synchronize access to shared data
structures

Synchronization-Limited
Workloads

• Example: use of an off-chip bus to access
shared memory or a co-processor

Bandwidth Limited Workloads

32

Code that accesses a shared resource which must not be
concurrently accessed by more than one thread of
execution

A synchronization mechanism is required at the entry and
exit of the critical section to ensure exclusive use, e.g., a
lock or a semaphore

Critical sections are used: (1) To ensure a shared resource can only
be accessed by one process at a time and (2) When a multithreaded
program must update multiple related variables without other threads
making conflicting changes

33

The execution time inside the critical section
increases with the number of threads

The execution time outside the critical section
decreases with the number of threads

34

More threads, execution time decreases but
the bandwidth demands increase

Increasing the number of threads increases
the need to use off-chip bandwidth

35

User of application

Programmer who writes the application

Compiler that generates code to execute
the application (static and/or dynamic)

Operating system that provides resources
for the running application

36

Train: Run a
portion of the code

to analyze the
application
behavior

Compute: Choose
of threads based

on this analysis

Execute: Run the
full program

37

Synchronization-
Aware Threading

Measure time
inside and outside

critical section
using the cycle

counter

Reduces both
power and

execution time

Bandwidth-
Aware Threading

Measure
bandwidth usage

using performance
counters

Reduces power
without increasing

execution time

Combination of
Both

Train for both SAT
and BAT

SAT + BAT
reduces both

power and
execution time

38

Assumes only one thread/core, i.e. no SMT on a
core

Bandwidth assumptions ignore cache contention
and data sharing

Single program in execution model

Dynamic nature of the workload in systems not
accounted for

39

How could application heartbeats (or a
similar technology) be used to extend the
scope of these results?

40

Manycore Lecture Resources/2009 Eastep et al Application Heartbeats.pdf

41

Wentzlaff and Agarwal, in their 2008 MIT report are
motivated to propose FOS are driven by the usual
issues

• Design complexity of contemporary μPs
• Inability to detect and exploit additional parallelism that has a substantive

performance impact
• Power and thermal considerations limit increasing clock frequencies

μP performance is no longer on an
exponential growth path

SMPs are not scalable due to structural
issues

42

Manycore Lecture Resources/2008 Wentzlaff and Agarwal MIT Report.pdf

Fine grain locks

Efficient cache coherence for shared data
structures and locks

Execute the OS across the entire machine
(monolithic)

Each processor contains the working set of the
applications and the SMP

43

Minimize the portions of the code that require fine
grain locking

As the number of cores grows, 2 to 4 to 6 to 8 to
etc., incorporating fine grain locking is a challenging
and error prone process

These code portions are shared with large numbers
of cores and 100s/1000s of threads in manycore
systems: .

44

ASSUME that the probability more than
one thread will contend for a lock is
proportional to the number of executing
threads

THEN as the # of executing threads/core
increases significantly, lock contention
increases likewise

THIS IMPLIES the number of locks must
increase proportionately to maintain
performance

45

46

This figure is taken from 2008, The Case for a Factored
Operating system (fos), MIT Report, Wentzlaff and Agarwal

Manycore Lecture Resources/2008 Wentzlaff and Agarwal MIT Report.pdf
Manycore Lecture Resources/2008 Wentzlaff and Agarwal MIT Report.pdf
Manycore Lecture Resources/2008 Wentzlaff and Agarwal MIT Report.pdf
Manycore Lecture Resources/2008 Wentzlaff and Agarwal MIT Report.pdf

Increasing the # of locks is time
consuming and error prone

Locks can cause deadlocks via difficult
to identify circular dependencies

There is a limit to the granularity. A lock
for each word of shared data?

47

Reduces hit rate for applications and, subsequently, single stream
performance

Implies the cache system on each core must contain the shared
working set of the OS and the set of executing applications

Executing OS code & application code on the same core

48

49

Both of these figures are taken from a 2009 article, “Factored Operating
Systems (fos): The Case for a Scalable Operating System for Multicores,”
by Wentzlaff and Agarwal, a 2009 article which is an enhanced version of
the original 2008 MIT report.

Manycore Lecture Resources/2009 Wentzlaff FOS.pdf
Manycore Lecture Resources/2009 Wentzlaff FOS.pdf
Manycore Lecture Resources/2009 Wentzlaff FOS.pdf
Manycore Lecture Resources/2009 Wentzlaff FOS.pdf

“It is doubtful that future multicore processors will have
efficient full-machine cache coherence as the abstraction
of a global shared memory space is inherently a global
shared structure.” (Wentzlaff and Agarwal)

“While coherent shared memory may be inherently
unscalable in the large, in a small application, it can be
quite useful. This is why fos provides the ability for
applications to have shared memory if the underlying
hardware supports it.” (Wentzlaff and Agarwal)

50

Avoid the use of hardware locks

Separate the operating system resources from the
application execution resources

Avoid global cache coherent shared memory

51

Space multiplexing replaces time multiplexing

OS is factored into function specific services

52

Inspired by distributed Internet services model

Each OS service is designed like a distributed internet server

Each OS service is composed of multiple server processes
which are spatially distributed across a multi-manycore chip

Each server process is allocated to a specific core eliminating
time-multiplexing cores

The server processes collaborate and exchange information via
message passing to provide the overall OS service

53

As noted, each OS system service consists of
collaborating servers

OS kernel services also use this approach
For example, physical page allocation, scheduling, memory
management, naming, and hardware multiplexing

Therefore, all system services and kernel
services run on top of a microkernel

OS code is not executed on the same cores that
are executing applications code

54

Platform dependent

A portion of the microkernel executes on each
processor core

Implements a machine dependent communication
infrastructure (API); message passing based

Controls access to resources (provides protection
mechanisms)

Maintains a name cache to determine the location
(physical core number) of the destination of messages

55

56

The applications and the OS system services
operate on separate cores on top of the microkernel

Combining multiple cores to behave like a
more powerful core

The “cluster” is a “core”

57

Algorithms, programming models, compilers,
operating systems and computer architectures and
microarchitectures have no concept of space

Underlying uniform access assumption: a wire
provides an instantaneous connections between
points on an integrated circuit

Assumption is no longer valid: the energy spent in
driving the wires and the latency (the time to get from
here to there) must now be taken into consideration

58

59

60

“Commodity computer systems contain more and more
processor cores and exhibit increasingly diverse architectural
tradeoffs, including memory hierarchies, interconnects,
instruction sets and variants, and IO configurations. Previous
high-performance computing systems have scaled in specific
cases, but the dynamic nature of modern client and server
workloads, coupled with the impossibility of statically
optimizing an OS for all workloads and hardware variants
pose serious challenges for operating system structures.”

“We argue that the challenge of future multicore hardware is
best met by embracing the networked nature of the machine,
rethinking OS architecture using ideas from distributed
systems.”

61

Manycore Lecture Resources/2009 Baumann et al Multikernel.pdf
Manycore Lecture Resources/2009 Baumann et al Multikernel.pdf
Manycore Lecture Resources/2009 Baumann et al Multikernel.pdf
Manycore Lecture Resources/2009 Baumann et al Multikernel.pdf
Manycore Lecture Resources/2009 Baumann et al Multikernel.pdf
Manycore Lecture Resources/2009 Baumann et al Multikernel.pdf
Manycore Lecture Resources/2009 Baumann et al Multikernel.pdf
Manycore Lecture Resources/2009 Baumann et al Multikernel.pdf
Manycore Lecture Resources/2009 Baumann et al Multikernel.pdf
Manycore Lecture Resources/2009 Baumann et al Multikernel.pdf

Organize the OS as a distributed
system

Implement the OS in a hardware-
neutral way

View “state” as replicated

62

63

“The principal impact on clients is that they now invoke
an agreement protocol (propose a change to system
state, and later receive agreement or failure notification)
rather than modifying data under a lock or transaction.
The change of model is important because it provides a
uniform way to synchronize state across heterogeneous
processors that may not coherently share memory.”

64

From Baumann er al, “Your computer is already a
distributed system. Why isn‟t your OS?”

Manycore Lecture Resources/2009 Baumann et al Distributed OS.pdf
Manycore Lecture Resources/2009 Baumann et al Distributed OS.pdf
Manycore Lecture Resources/2009 Baumann et al Distributed OS.pdf
Manycore Lecture Resources/2009 Baumann et al Distributed OS.pdf

• Messages decouple OS communication structure from the
hardware inter-core communications mechanisms

Separation of “method” and
“mechanism”

• Heterogeneous cores
• Non-coherent interconnects
• Split-phase operations by decoupling requests from

responses and thus aids concurrency
• System diversity (e.g., Tile-Gx and the Intel 80-core)

Transparently supports

65

66

Conclude: Messages Cost Less than Memory

67

“A separate question concerns whether future multicore
designs will remain cache-coherent, or opt instead for a
different communication model (such as that used in the
Cell processor). A multikernel seems to oer the best
options here. As in some HPC designs, we may come to
view scalable cache-coherency hardware as an
unnecessary luxury with better alternatives in software”

“On current commodity hardware, the cache coherence
protocol is ultimately our message transport.”

68

From Baumann er al, “Your computer is already a
distributed system. Why isn‟t your OS?”

Manycore Lecture Resources/2009 Baumann et al Distributed OS.pdf
Manycore Lecture Resources/2009 Baumann et al Distributed OS.pdf
Manycore Lecture Resources/2009 Baumann et al Distributed OS.pdf
Manycore Lecture Resources/2009 Baumann et al Distributed OS.pdf

Challenging FOS and the Multikernel?

69

In “An Analysis of Linux Scalability to Many
Cores” (2010), Boyd-Wickizer et al study the
scaling of Linux using a number of web
service applications that are:
• Designed for parallel execution
• Stress the Linux core
• MOSBENCH = Exim mail server, memcached (a high-

performance distributed caching system), Apache (an
HTTP server), serving static files, PostageSQL (an object-
relational database system), gmake, the Psearchy file
indexer, and a multicore MapReduce library (Google‟s
framework for distributed computing on large data sets)

70

Manycore Lecture Resources/2010 Wickizer at al Linux Scalability.pdf
Manycore Lecture Resources/2010 Wickizer at al Linux Scalability.pdf

MOSBENCH applications can scale well to 48 cores
with modest changes to the applications and to the
Linux core

“The cost of thread and process creation seem likely
to grow with more cores”

“If future processors don‟t provide high-performance
cache coherence, Linux‟s shared-memory intensive
design may be an impediment to performance.”

71

72

http://www.tilera.com/
http://www.tilera.com/

DDC is a fully coherent shared cache system
across an arbitrarily-sized array of tiles

Does not use (large) centralized L2 or L3 caches to
avoid power consumption and system bottlenecks

DDC‟s distributed L2 caches can be coherently
shared among other tiles to evenly distributing the
cache system load

73

Instead of a bus, the TILE64 uses a non-blocking, cut-through
switch on each processor core

The switch connects the core to a two dimensional on-chip
mesh network called the “Intelligent Mesh” - iMesh™

The combination of a switch and a core is called a 'tile„

iMesh provides each tile with more than a terabit/sec of
interconnect bandwidth

Multiple parallel meshes separate different transaction types
and provide more deterministic interconnect throughput

74

 I‟ll let MDE speak for itself

75

Manycore Lecture Resources/2010 Tilera MDE.pdf

76

http://techresearch.intel.com/ProjectDetails.aspx?Id=1
http://techresearch.intel.com/ProjectDetails.aspx?Id=1

77

Lessons Learned from the 80-core Tera-Scale
Research Processor, by Dighe et all

1. The network consumes almost a third of the total

power, clearly indicating the need for a new
approach

2. Fine-grained power management and low-power
design power techniques enable peak energy of
19.4 GFLOPS/Watt and a 2X reduction in
standby leakage power, and

3. The tiled design methodology quadruples design
productivity without compromising design quality.

Manycore Lecture Resources/2009 Dighe et al Intel 80-core Lessons.pdf
Manycore Lecture Resources/2009 Dighe et al Intel 80-core Lessons.pdf
Manycore Lecture Resources/2009 Dighe et al Intel 80-core Lessons.pdf
Manycore Lecture Resources/2009 Dighe et al Intel 80-core Lessons.pdf
Manycore Lecture Resources/2009 Dighe et al Intel 80-core Lessons.pdf
Manycore Lecture Resources/2009 Dighe et al Intel 80-core Lessons.pdf
Manycore Lecture Resources/2009 Dighe et al Intel 80-core Lessons.pdf

78

Manycore Lecture Resources/2009 NVIDIA_Fermi_Arch.pdf
Manycore Lecture Resources/2009 NVIDIA_Fermi_Arch.pdf

Architecture paradigms and programming languages for efficient
programming of multiple CORES

EU Funded

Self-adaptive Virtual Processor (SVP) execution model

“The cluster is the processor” –the concept of place (a cluster)
allocated for the exclusive use of a thread (space sharing)

79

http://www.apple-core.info/
http://www.apple-core.info/
http://www.apple-core.info/
http://www.apple-core.info/

80

?

?

Increase the resource size (chip area) only if
for every 1% increase in core area there is at
least a 1% increase in core performance, i.e.,
Kill (the resource growth) If Less than Linear
(performance improvement is realized)
• The KILL Rule applies to all multicore resources,

e.g., issue-width, cache size, on chip levels of
memory, etc.

KILL Rule implies many caches have been
sized “well beyond diminishing returns”

81

Communication requires less cycles & energy
than cache (10X) or memory accesses (100X)

• Stream algorithms: read values, compute, deliver results
• Dataflow: arrival of all required data triggers computation, deliver

results

Develop algorithms that are communication
centric rather than memory centric

Use frameworks that allow the expression of
parallelism at all levels of abstraction

82

Do existing complex cores make “good” cores for
multi-/manycore?

When do bigger L1, L2 and L3 caches increase
performance? Minimize power consumption?

What % of interconnect latency is due to wire
delay?

What programming models are appropriate for
developing multi-/manycore applications?

83

Latency arises from coherency
protocols and software overhead

• Minimize memory accesses
• Support direct access to the core-to-core

interconnect (bus, ring, mesh, etc.)
• Eliminate or greatly simplify protocols

Ways to reduce the latency to a
few cycles

84

What programming models can we used for specific hybrid
organizations?

What should a library of “build block” programs look like for specific
hybrid organizations?

Should you be able to run various operating systems of different
“clusters” of cores – i.e., when and where does virtualization make
sense in a manycore environment?

How can you determine if your “difficult to parallelize” application will
consume less power running on many small cores versus running on a
couple of small cores?

85

They can be

Decomposed into
independent tasks

Structured to operate on
independent sets of data

Some applications -- large scale simulations, genome
sequencing, search and data mining, and image
rendering and editing - can scale to 100s of processors

86

By and large, however, the set of easily
parallelizable applications is small.

87

Data parallelism is when several processors in a mutiprocessor
system execute the same code, in parallel, on different parts of the
data. This is sometimes referred to as SIMD processing.

Task parallelism is achieved when several processors in a
multiprocessor system execute a different thread (or process) on the
same or different data. Different execution threads communicate with
one another as they execute to pass data from one thread to the
another as part of the overall program execution. In the general case,
this is called MIMD processing.

When multiple autonomous processors simultaneously execute the
same program at independent points, rather than in the lockstep on
different data that data parallelism requires it is referred to as SPMD
processing.

Applications often employ multiple types of parallelism.
88

