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The incessant market demand for higher and higher performance is forcing a continous 

growth in processor performance. This demand provokes ever increasing clock frequencies 

as well as an impressive evolution of the microarchitecture. In this paper we focus on 

major microarchitectural improvements that were introduced to achieve a more effective 

utilization of instruction level parallelism (ILP) in commercial, performance-oriented 

microprocessors. We will show that designers increased the throughput of the 

microarchitecture at the ILP level basically by subsequently introducing temporal, issue 

and intra-instruction parallelism in such a way that after exploiting parallelism along one 

dimension it became inevitable to utilize parallelism along a new dimension to further 

increase performance. Moreover, each basic technique used to implement parallel 

operation along a certain dimension inevitably resulted in processing bottlenecks in 

particular subsystems of the microarchitecture, whose elimination called for the 

introduction of additional innovative techniques. The sequence of basic and additional 

techniques introduced to increase the efficiency of the microarchitectures constitutes a 

fascinating framework for the evolution of microarchitectures, as presented in our paper. 
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I. INTRODUCTION 

 

Since the birth of microprocessors in 1971, the IC industry has successfully maintained 

an incredibly rapid increase in performance. For example, as Figure 1 indicates, the integer 

performance of the Intel family of microprocessors has been raised over the last 20 years 

by an astonishingly high rate of approximately two orders of magnitude per decade [1], [2].  
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Figure 1: Increase over time of the relative integer performance of Intel x86 processors 
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This impressive development and the underlying innovative techniques have inspired a 

number of overview papers [3]–[7]. These reviews emphasized either the techniques 

introduced or the quantitative aspects of the evolution. In contrast, our paper addresses 

qualitative aspects, i.e. the incentives and implications of the major steps in microprocessor 

evolution. 

With maturing techniques the “effective execution width” of the microarchitectures (in 

terms of executed instructions per cycle) approaches the available ILP (in terms of 

executable instructions per cycle). Recently this has given rise to development in two main 

directions: (a) the first approach is to utilize ILP more aggressively by means of more 

powerful optimizing compilers, trace processors [10]–[12] and innovative techniques as 

discussed in section V.E.; and (b) the other current trend is to also utilize parallelism at a 

higher-than-instruction (i.e. at the thread or process) level. This approach is marked by 

multiscalar processors [8], [9], symmetrical multithreading (SMT) [13], [14] and chip 

multiprocessing (CMP) [15], [16]. In our paper we concentrate on the progress achieved at 

the instruction level in commercial high performance microprocessors.1 

The remainder of our paper is structured as follows. In Section II we discuss and 

reinterpret the notion of absolute processor performance in order to more accurately reflect 

the performance impact of different kinds of parallel operations in the microarchitecture. 

Based on this discussion we then identify the main dimensions of processor performance. 

In subsequent Sections III through VI we review major techniques aimed at increasing 

                                                           
1 We note that computer manufacturers typically offer three product classes, (i) expensive high performance 
models designed as servers and workstations, (ii) basic models emphasizing both cost and performance, and 
finally (iii) low cost (value) models emphasizing cost over performance. For instance, Intel’s Xeon line 
exemplifies high performance models, the company’s Klamath, Deshutes, Katmai, Coppermine and Pentium 4 
cores represent basic models, whereas their Celeron processors are low cost (value) models. High performance 
models are obviously expensive, since all processor and system components must provide a high enough 
throughput, whereas low cost systems save cost by using less ambitious and less expensive parts or subsystems. 
In order to avoid a large number of multiple references to superscalar processors in the text and in the figures, we 
give all references to superscalars only in Figure 22. 
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processor performance along each of the main dimensions. From these, we point out the 

basic techniques that have become part of the mainstream evolution of microprocessors. 

We also identify the potential bottlenecks they induce, and highlight the techniques 

brought into use to cope with these bottlenecks. Section VII summarizes the main 

evolutionary steps of the microarchitecture of high performance microprocessors, followed 

by Section VIII, which sums up the decisive aspects of this evolution. 

 

II. THE DESIGN SPACE OF INCREASING PROCESSOR 

PERFORMANCE 

The results supplied by today’ s industry standard benchmarks, including the SPEC 

benchmark suite [17]–[19], Ziff-Davis’ s Winstone [20] and CPUmark [21] as well as 

BABCo’ s SYSmark [22], are all relative performance measures. This means that they give 

an indication of how fast a processor will run a set of applications under given conditions 

in comparison to a reference installation. These benchmarks are commonly used for 

processor performance comparisons, in microprocessor presentations and in articles 

discussing the quantitative aspects of the evolution.  

Unlike relative performance measures, absolute processor performance (PP) is usually 

interpreted as the average number of instructions executed by the processor per second. 

This score is typically given in units like MIPS (Million Instructions Per Second) or GIPS 

(Giga Instructions Per Second). Earlier synthetic benchmarks, like Whetstone [23] or 

Dhrystone [24], were also given as absolute measures.  

PP can be expressed as the product of clock frequency (fC) and the average number of 

instructions executed per clock cycle (IPC): 

 PP = fC * IPC (1) 
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IPC is also designated as the throughput and may be interpreted as the execution width 

of the processor (P).  

Absolute measures are appropriate for use when the performance potential of processors 

is discussed. However, absolute performance metrics are not suitable for the comparison of 

processor lines whose Instruction Set Architectures (ISA) differ. The reason is that 

instructions from different ISAs do not necessarily perform the same amount of 

computation. For making performance comparisons in these cases, relative performance 

measures are needed. 

As our paper focuses on the evolution of microarchitectures from a performance 

perspective, we will apply the notion of absolute processor performance. However, in 

order to identify the contribution of different sources of parallelism within the 

microarchitecture, in the following we will express IPC with internal operational 

parameters of the microarchitecture. Further on to take the impact of multi-operation 

instructions, such as SIMD instructions, into consideration, we will reinterpret the notion 

of absolute processor performance. 

In expression (1) IPC—i.e. the average number of instructions executed per cycle—

reflects the result of parallel instruction processing within the microarchitecture. Internal 

instruction parallelism may have however, two basic sources, pipelined instruction 

processing and superscalar instruction issue. As shown in the Annex (expression 13), 

parallelism arising from these two separate sources can be expressed as follows: 

 IPC = 1/CPI * ILP (2) 
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In Expression (2) CPI is the average time interval between two clock cycles in which 

instructions are issued, given in clock cycles. (For a more detailed explanation see the 

Annex.) Here instruction issue denotes the act of disseminating instructions from the 

instruction fetch/decode subsystem for further processing, as detailed in Section V. C. We 

note that in the literature this activity is often designated as dispatching instructions. For 

traditional microprogrammed processors CPI marks the average execution time (where CPI 

>> 1), whereas for ideal pipelined processors CPI equals 1. We emphasize that CPI reflects 

the temporal parallelism of instruction processing. 

ILP is the average number of instructions issued per issue interval. (For a more detailed 

explanation see again the Annex.) For a scalar processor ILP = 1, whereas for a superscalar 

one ILP > 1. This term indicates the issue parallelism of the processor. 

Furthermore, as the use of multi-operation instructions, such as SIMD instructions, has 

become a major trend, it is appropriate to reinterpret the notion of absolute processor 

performance, while taking into account the number of data operations processed by these 

instructions as well. This can be achieved by considering the average number of operations 

the processor executes per cycle (designated by OPC) rather than the average number of 

instructions processed per cycle (IPC). If we denote the average number of data operations 

executed by the instructions by OPI, then  

 

 OPC = IPC * OPI (3) 

 

For a traditional ISA, we assume OPI = 1. For ISAs including multi-operation 

instructions such as SIMD instructions, OPI > 1, whereas for VLIW (Very Large 

Instruction Word) architectures, OPI >> 1, as detailed in Section VI. We point out that OPI 

reveals the intra-instruction parallelism. 
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With expressions (2) and (3), the average number of operations executed per cycle 

(OPC) is: 

 

* CPI ILP OPI * (4) = OPC 
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Issue 
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Intra- instruction 
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1 

 

 

Finally, absolute processor performance, interpreted as the average number of 

operations executed per second (PPO) yields: 

P = * * 

1 
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Figure 2: Constituents of processor performance 

 

Here the clock frequency of the processor (fc) depends on the sophistication of IC 

fabrication technology as well as the way the microarchitecture is implemented. In 

pipelined designs, the minimum clock period and thus the maximum clock frequency is 

determined by the worst case propagation delay of the longest path in the pipelined stages. 

This equals the product of the gate delay and the number of gates in the longest path of any 

pipelined stage. The gate delay depends mainly on the line width of the IC technology 

used, whereas the length of the longest path depends on the layout of the microarchitecture. 
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Very high clock rates presume very deeply pipelined designs, that is, pipelines with 

typically ten to twenty stages.  

The remaining three components of processor performance, i.e. the temporal, issue and 

the intra-instruction parallelism, are determined mainly by the efficiency of the processor 

level architecture, that is, by both the ISA and the microarchitecture of the processor (see 

Figure 2).  

Equation (5) provides an appealing framework for a discussion of the major possibilities 

in increasing processor performance. According to equation (5), the key possibilities for 

boosting processor performance are: (a) increasing the clock frequency and (b) 

introducing/increasing temporal, issue and intra-instruction parallelism, as summarized in 

Figure 3. 

P = * *
1
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Figure 3: Main possibilities to increase processor performance 

 

In subsequent sections we address each of these possibilities individually. 

 

III. INCREASING THE CLOCK FREQUENCY AND ITS 

IMPLICATIONS 
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A. The growth rate of the clock frequency of microprocessors 

 

As an example, Figure 4 illustrates the phenomenal increase in the clock frequency of 

the Intel x86 line of processors [1] over the past two decades. 
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Figure 4: Historical increase in the clock frequency of Intel x86 processors 

 

As Figure 4 indicates, the clock frequency was raised until the middle of the 1990s by 

approximately one order of magnitude per decade, and subsequently by about two orders 

of magnitude per decade. This massive frequency boost was achieved mainly by a 
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continuous downscaling of the chips through improved IC process technology, by using 

longer pipelines in the processors and by improving circuit layouts. 

Since processor performance may be increased either by raising the clock frequency or 

by increasing the efficiency of the microarchitecture or both (see Figure 2), Intel’ s example 

of how it increased the efficiency of the microarchitecture in its processors is very telling. 
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Figure 5: Increase in the efficiency of the microarchitecture of Intel’ s x86 line of processors 

 

As Figure 5 shows, the overall efficiency (performance at the same clock frequency) of 

Intel processors [1] was raised between 1985 and 1995 by about an order of magnitude. 

During this period, both the clock frequency and the efficiency of the microarchitecture 

were increased approximately 10 times per decade, resulting in a performance boost of 

approximately two orders of magnitude per decade. However, after the introduction of the 

Pentium Pro (and until the arrival of the Pentium 4), Intel continued to use basically the 

same processor core in all of its Pentium II and Pentium III processors. The enhancements 

introduced— including multimedia (MM) and 3D support (SSE), doubling the size of both 
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level 1 instruction and data caches, etc. made only a marginal contribution to the efficiency 

of the microarchitecture in general purpose applications, as reflected in SPEC benchmark 

figures (see Figure 5). During this period of time Intel’ s design philosophy obviously 

prefered boosting clock frequency over enhancing microarchitecture efficiency. This 

decision may have stemmed from a view often emphasized by computer resellers: PC 

buyers usually go for clock rates and benchmark metrics rather than efficiency metrics. 

We emphasize that the processor’ s clock frequency only indicates performance 

potential. Actual processor (or system) performance depends on the efficiency of the 

microarchitecture as well as on the characteristics of the application processed (as 

discussed in V.C.2). “Weak” components in the microarchitecture or in the entire system, 

such as an inadequate branch handling subsystem of the microarchitecture or a long 

latency cache in the system architecture may strongly impede performance. 

 

B. Implications of increasing the clock frequency 

When increasing processor performance, either by raising the clock frequency or by 

increasing the throughput of the microarchitecture or by both, designers are forced to 

enhance the system level architecture as well in order to avoid arising bottlenecks. System 

level enhancements address principally the bus, memory and I/O subsystems. Since the 

evolution of the system level architecture is a topic of its own, whose complexity is 

comparable to the evolution of the microarchitectures, we do not go into details here, but 

indicate only a few dimensions of this evolution and refer to the literature given. 

1) Enhancing the bus subsystem: For higher clock frequencies and for more effective 

microarchitectures, the bandwidth of the buses that connect the processor to the memory 

and the I/O subsystems needs to be increased for obvious reasons. This requirement has 

driven the evolution of front side processor buses (system buses), general purpose 
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peripheral buses (such as the ISA and the PCI buses), dedicated peripheral buses and ports 

intended to connect storage devices (IDE/ATA, SCSI standards), video (AGP), audio 

(AC’ 97) or low speed peripherals (USB bus, LPC port etc.). In order to exemplify the 

progress achieved, below is a diagram showing how the data width and the maximum 

clock frequency of major general purpose peripheral bus standards have evolved (see 

Figure 6).  
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Figure 6: Evolution of major general purpose periheral buses 

 

 

As depicted in the figure, the standardized 8/16-bit wide AT-bus, known as the ISA bus 

(International Standard Architecture) [25], was first extended to provide 32-bit data width 

(this extension is called the EISA bus [26]). The ISA bus was subsequently replaced by the 

PCI bus and its wider and faster versions, such as PCI versions 2, 2.1 [27] and the PCI-X 

proposal [28]. Figure 6 demonstrates that the maximum bus frequency was raised at 

roughly the same rate as the clock frequency of the processors.  

2) Enhancing the memory subsystem: Higher clock frequencies and more efficient 

microarchitectures both demand higher bandwidth and reduced load-use latencies (the time 

needed to use requested data) from the memory subsystem. There is an impressive 

evolution along many dimensions towards achieving these goals, including (a) use of 

enhanced main memory components, such as FPM DRAMs, EDO DRAMs, SDRAMs, 
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RDRAMs, DRDRAMs [29], (b) introducing and enhancing caches, through improved 

cache organization, increasing the number of cache levels, implementing higher cache 

capacities, using directly connected or on-die level 2 caches etc., [30], [31] and (c) 

introducing latency reduction or hiding techniques, such as software or hardware 

controlled data prefetch, [32], [33], lock-up free (non-blocking) caches, out-of-order loads, 

speculative loads etc., as outlined later in Section V.E.5.b.  

3) Enhancing the I/O subsystem: Concerning this point, we again do not delve into 

details, but rather just point out the spectacular evolution of storage devices (hard disks, 

CD-ROM players etc.) in terms of storage capacity and speed as well as the evolution of 

display devices in terms of their resolution etc. in order to better support more demanding 

recent applications such as multimedia, 3D graphics, etc. 

 

IV. INTRODUCTION OF TEMPORAL PARALLELISM AND ITS 

IMPLICATIONS 

  

A. Overview of possible approaches to introduce temporal parallelism 

 

A traditional von Neumann processor executes instructions in a strictly sequential 

manner as indicated in Figure 7. For sequential processing, CPI, i.e. the average length of 

the issue intervals, equals the average execution time of the instructions. In the figure CPI 

= 4. Usually CPI >> 1. 

Assuming a given ISA, CPI can be reduced by introducing some form of pipelining— in 

other words, by utilizing temporal parallelism. In this sense CPI reflects the extent of 
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temporal parallelism achieved in instruction processing, as already emphasized in Section 

II.  

Basically, there are three main possibilities to overlap the processing of subsequent 

instructions. These are as follows: (a) overlapping the fetch phases and the last processing 

phase(s) of the preceding instruction, (b) overlapping the execute phases of subsequent 

instructions processed in the same execution unit (EU) by means of pipelined execution 

units, or (c) overlapping all phases of instruction processing using pipelined processors, as 

shown in Figure 7. 

The arrows in the figure represent instructions to be executed. For illustration purposes 

we assume that instructions are processed in four subsequent phases, called the Fetch (F), 

Decode (D), Execute (E) and Write (W) phases. 
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The superscripts following machine or processor designations are references to the applicable machines 

or processors. 

Dates in this and all subsequent figures indicate the year of first shipment (in the case of mainframes) or 

that of first volume shipment (in the case of microprocessors). 

 

(a) Overlapping the fetch phases and the last phase(s) of the preceding instruction is 

called prefetching, a term coined in the early days of computing [34]. If the processor 

overlaps the fetch phases with the write phases, as indicated in Figure 7, the average 

execution time is reduced by one cycle compared to fully sequential processing. However, 

the execution of control transfer instructions (CTIs) lessens the achievable performance 

gain of instruction prefetching to less than one cycle per instruction, since CTIs divert 

instruction execution from the sequential path and thus render the prefetched instructions 

obsolete.  

(b) The next possibility is to overlap the execution phases of subsequent instructions 

processed in the same pipelined execution unit (EUs) [35], [36]. Pipelined EUs execute a 

new instruction ideally in every new clock cycle, provided that subsequent instructions are 

independent. Clearly, pipelined EUs are very effective in processing vectors.  

(c) Finally, the ultimate solution to exploit temporal parallelism is to extend pipelining 

to all phases of instruction processing, as indicated in Figure 7 [37], [38]. Fully pipelined 

instruction processing ideally results in a one cycle mean time between subsequent 

instructions (CPI = 1), provided that the instructions processed are free of dependencies. 

The related processors are known as pipelined processors, and contain one or more 

pipelined EUs. 

We note that even in pipelined instruction processing the execution phase of some 

complex instructions, such as division or square root calculation, is not pipelined for the 
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sake of implementation efficiency. This fact and the occurrence of dependencies between 

subsequent instructions result in CPI values higher than 1 in real pipelined processors. 

Although both prefetching and overlapping of the execution phases of subsequent 

instructions already represent a partial solution to parallel execution, processors providing 

these techniques alone are usually not considered to be instruction level parallel processors 

(ILP processors). On the other hand, pipelined processors are considered to belong to the 

ILP processor category.  

Temporal parallelism was introduced first in mainframes (in the form of prefetching) in 

the early 1960’ s (see Figure 7). In microprocessors, prefetching arrived two decades later 

with the advent of 16-bit micros [39], [40]. Subsequently, pipelined microprocessors 

emerged and became the main road of the evolution because of their highest performance 

potential among the alternatives discussed [41] - [43]. They came into widespread use in 

the second half of the 1980s, as shown in Figure 8. We point out that pipelined 

microprocessors represent the second major step on the main road of microprocessor 

evolution. In fact, the very first step of this evolution was increasing the word length 

gradually from 4 bits to 16 bits, as exemplified by the Intel processors 4004, [44], 8008, 

8080 and 8086 [45]. This evolution gave rise to the introduction of a new ISA for each 

wider word length until 16-bit ISAs arrived. For this reason, while focusing on 

performance issues, we discuss the evolution of the microarchitecture of microprocessors 

beginning with 16-bit processors. 
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Figure 8: The introduction of pipelined microprocessors 

 

B. Implications of the introduction of pipelined instruction processing 

 

1) Overview: Pipelined instruction processing calls for higher memory bandwidth and 

smart processing of CTI’ s (control transfer instructions), as detailed below. The basic 

techniques needed to avoid processing bottlenecks due to the requirements mentioned 

above are caches and speculative branch processing. 

2) The demand for higher memory bandwidth and the introduction of caches: A 

pipelined processor fetches a new instruction in every new clock cycle, provided that 

subsequent instructions are independent. This fact means that higher memory bandwidth is 

required for fetching instructions in comparison to sequential processing. Furthermore, 

pipelined instruction processing also increases the frequency of load and store instructions 

and, in the case of CISC architectures, the frequency of referenced memory operands. 

Consequently, pipelined instruction processing requires higher memory bandwidth for both 

instructions and data. As the memory is typically slower than the processor, the increase of 

the memory bandwidth requirement of pipelined instruction processing accelerated and 

inevitably brought about the introduction of caches, an innovation pioneered in the IBM 
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360/85 [46] in 1968. With caches, frequently used program segments (cycles) can be held 

in fast memory, which allows instruction and data requests to be served at a higher rate. 

Caches came into widespread use in microprocessors in the second half of the 1980s, 

essentially along with the introduction of pipelined instruction processing (see Figure 9). 

As the performance of microprocessors is increasing by a rate of about two orders of 

magnitude per decade (see Section A), there is a continuous demand to raise the 

performance of the memory subsystem as well. As a consequence, the enhancement of 

caches and their connection to the processor has remained one of the focal points of 

microprocessor evolution for more than one decade now. 
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Figure 9: The introduction of caches and speculative branch processing 

 

3) Performance degradation caused by unconditional CTI’s and the introduction of 

speculative branch processing: The main problem with pipelined processing of 

unconditional CTI’s is as follows. If the processor executes CTI’ s in a straightforward 

way, then by the time it recognizes a CTI in the decode stage, it will already have fetched 
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the next sequential instruction. As the unconditional CTI directs the processor to branch, 

the next instruction to be executed is the branch target instruction rather than the next 

sequential one, which is already fetched. Then this sequential instruction needs to be 

canceled and at least one wasted cycle, also known as a bubble, appears. 

Conditional CTIs can cause even more wasted cycles. Consider here that for each 

conditional CTI the processor needs to know the specified condition prior to deciding 

whether to issue the next sequential instruction or to fetch and issue the branch target 

instruction. Thus each unresolved conditional branch would basically lock up the issue of 

instructions until the processor can decide whether the sequential path or the branch target 

path needs to be followed. Consequently, if a conditional CTI refers to the result of a long 

latency instruction, such as a division, dozens of wasted cycles would occur. 

Speculative execution of branches or briefly speculative branching [47]–[50] can 

remedy this problem. Speculative branching requires the microarchitecture to make a guess 

for the outcome of each conditional branch and resume instruction processing along the 

estimated path. Assuming the use of this technique, conditional branches no longer hinder 

instruction issue, as demonstrated in Figure 10. Notice that in the figure the speculation 

goes only until the next conditional branch. 
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Figure 10: The principle of speculative execution assuming speculation along a single conditional branch 

 

Later, when the specified condition becomes known, the processor checks the guess 

made. For a correct guess it acknowledges the instructions processed. Otherwise it cancels 

incorrectly executed instructions and resumes execution along the correct path.  

In order to exploit the intrinsic potential of pipelined instruction processing, designers 

introduced both caches and speculative branch processing at about the same time, as Figure 

9 demonstrates. 

4) Limits of utilizing temporal parallelism: With the massive incorporation of temporal 

parallelism into instruction processing, the average length of issue intervals can be reduced 

to almost one clock cycle. However, CPI = 1 marks the absolute limit achievable through 

temporal parallelism. Any further substantial performance increase calls for the 

introduction of parallel operation along another dimension. There are two possibilities for 



21 

this: either to introduce issue parallelism or intra-instruction parallelism. Following the 

evolutionary path of microprocessors, we first discuss the former alternative. 

V. THE INTRODUCTION OF ISSUE PARALLELISM AND ITS 

IMPLICATIONS  

 

A. The introduction of issue parallelism  

Issue parallelism, also known as superscalar instruction issue [5], [51], [52], refers to 

the capability of the processor to issue multiple decoded instructions per clock cycle from 

the decode unit for further processing. The peak rate of instructions issued per clock cycle 

is called the issue rate (nir). 

After designers exhausted the full potential of pipelined instruction processing around 

1990 the introduction of issue parallelism became the main option of increasing processor 

performance. Due to their higher performance over pipelined processors, superscalars 

rapidly began to dominate all major processor lines, as Figure 11 shows. 
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Intel 960 960KA/KB 960CA (3)

M 88000 MC 88100 MC 88110 (2)

HP PA PA 7000 PA7100 (2)

SPARC MicroSparc SuperSparc (3)

Mips R R 40001,2 R 8000 (4)

Am 29000 29000 sup (4)
29040

IBM Power Power1(4)
RS/6000

DEC α α21064(2)

PowerPC PPC 601 (3)
PPC 603 (3)

87 88 89 90 91 92 93 94 95 96

CISC processors

RISC processors

Intel x86 i486 Pentium(2)

M 68000 M 68040 M 68060 (2)

Gmicro Gmicro/100p Gmicro500(2)

AMD K5 K5 (4)

CYRIX M1 M1 (2)

1 We do not take into account the low cost R 4200 (1992) since superscalar architectures are intended to extend the performance of the high-end models of a particular line.
2 We omit processors offered by other manufactures than MIPS Inc., such as the R 4400 (1994) from IDT, Toshiba and NEC.

denotes superscalar processors.
The figures in brackets denote the issue rate of the processors.

 

 

Figure 11: The appearance of superscalar processors 

B. Overall implications of superscalar issue 

 

The main components of processor performance were identified in expression (5). Here 

issue parallelism is expressed by the average number of instructions issued per issue 

interval (ILP) rather than by the average number of instructions issued per clock cycle  

(IPC). However, assuming both pipelined instruction processing and superscalar 

instruction issue, the average length of issue intervals (CPI) approaches one cycle. Thus for 

superscalar processors ILP in expression (5) roughly equals the average number of 

instructions issued per clock cycle (IPC):  

IPC ~ ILP 

Unlike pipelined processors that issue at most one instruction per cycle for execution, 

superscalars issue up to nir instructions per cycle, as illustrated in Figure 12. As a 

consequence, superscalars must be able to fetch nir times as much instructions and memory 
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data and must store nir times as much memory data per cycle (tc) than pipelined processors. 

In other words, superscalars require nir times higher memory bandwidth than pipelined 

processors at the same clock frequency. As clock frequencies of processors are rapidly 

increasing over time as well (see Figure 4), superscalars that arrived after pipelined 

processors, definitely need a highly enhanced memory subsystem compared to those used 

with pipelined processors, as already emphasized while discussing the main road of 

microarchitecture evolution in Section III.B.2. 

 

Pipelined
instruction processing

instruction processing
Superscalar

(n  =3)i

t

t
tc

 

  

Figure 12: Contrasting pipelined instruction processing with superscalar processing  

(arrows indicate instructions) 

 

Superscalar issue also impacts branch processing. There are two reasons for this. First, 

branches occur up to nir times more frequently with superscalar instruction issue than with 

scalar pipelined processing. Second, each wasted cycle that arises during branch 

processing can restrict multiple instructions from being issued. Consequently, superscalar 

processing requires more accurate branch speculation or, in general, more advanced 

branch handling than is used with pipelined processing. Thus superscalar instruction issue 

also gave rise to an impressive evolution of the branch handling subsystem. For an 

overview of the progress achieved so far we refer to [49], [53] - [55]. 
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C. The direct issue scheme and the resulting issue bottleneck  

 

1) The principle of the direct issue scheme: While issuing multiple instructions per 

cycle early superscalars typically used some variants of the direct issue scheme in 

conjunction with a simple branch speculation [52]. Direct issue means that decoded 

instructions are issued immediately, i.e. without buffering, to the execution units (EU’ s), as 

shown in Figure 13. 

The issue process itself can best be described by introducing the concept of the 

instruction window (issue window). The instruction window, whose width equals the issue 

rate (nir), contains the last nir entries of the instruction buffer. The instructions held in the 

window are decoded and checked for dependencies. Executable instructions are issued 

from the instruction window directly to free EU’ s, whereas dependent instructions remain 

in the window until existing dependencies become resolved. Variants of this scheme differ 

on two aspects: how dependent instructions affect the issue of subsequent executable 

instructions held in the window [49], [52] and how the window is shifted after issuing 

instructions. 
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(a): Simplified structure of a superscalar microarchitecture                           (b): The issue process 

       that employs the direct issue scheme and has an issue rate of three 

 

Figure 13: Principle of the direct issue scheme 

 

In Figure 13b we demonstrate the direct issue scheme for an issue rate of three (nir = 3) 

with the following two assumptions: (a) the processor issues instructions in order, meaning 

that a dependent instruction blocks the issue of all subsequent independent instructions 

from the window, and (b) the processor needs to issue all instructions from the window 

before shifting it along the instruction stream. Examples of processors that issue 

instructions this way are the Power1, the PA7100, and the SuperSparc. In the figure we 

assume that in cycle ci the instruction window holds instructions i1–i3. If in cycle ci 

instructions i1 and i3 are free of dependencies, but i2 depends on instructions that are still in 

execution, only instruction i1 can be issued in cycle ci, but both i2 and i3 will be withheld in 

the window, since i2 is dependent and blocks the issue of any subsequent instruction. Let us 

assume that in the next cycle (ci+1) i2 becomes executable. Then in cycle ci+1 instructions i2 

and i3 will be issued for execution as well. In the next cycle (ci+2) the window is shifted by 

three along the instruction stream, so it then holds the subsequent three instructions (i4–i6) 

and the issue process resumes in a similar way.  

2) The throughput of superscalar microarchitectures that use the direct issue scheme: 

As far as the throughput (IPC) of the microarchitecture is concerned, the microarchitecture 

may best be viewed as a chain of subsystems linked together via buffers. Instructions are 

processed in the microarchitecture by flowing through the subsystems in a pipelined 

fashion. These subsystems are typically responsible for fetching, decoding and/or issuing, 
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executing and finally retiring (i.e. completing in program order) instructions. The kind and 

number of subsystems depend on the microarchitecture  in question.  

A simplified execution model of a superscalar RISC processor that employs the direct 

issue scheme is shown in Figure 14 below. Basically, the microarchitecture consists of a 

front and a back end that are connected by the instruction window. The front end consists 

of the fetch and decode subsystems, and its task is to „fill” the instruction window. 
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Figure 14: Simplified execution model of a superscalar RISC processor that employs direct issue 

 

The instruction window is „depleted” by the back end of the microarchitecture that also 

takes care of executing the issued instructions. The back end contains the issue, execute 

and retire subsystems. The issue subsystem forwards executable instructions from the 

instruction window to the execute subsystem. The execute subsystem performs the 
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operations required, where referenced register operands are supplied from the architectural 

register file to the EU’ s. Finally, executed instructions are completed by the retire 

subsystem in program order and the results generated are sent either to the architectural 

register file or to the memory. 

We note that the microarchitecture of advanced CISC processors shows some 

differences in comparison to RISC processors. Advanced CISC’ s usually convert CISC 

instructions into simple RISC-like internal operations. Denoted differently in different 

processor lines (e.g. “µops”  in Intel’ s Pentium Pro and subsequent models, “RISC86 

operations”  in AMD’ s K5–K7, and “ROP’ s”  in Cyrix’ s M3), these internal operations are 

executed by a RISC kernel. For CISC processors the retire subsystem also performs a 

“reconversion”  by completing those internal operations that belong to the same CISC 

instruction together. Thus the execution model of RISC processors is basically valid for 

CISC processors as well. 

Let us now discuss the notions of throughput and the “width”  of the microarchitecture in 

relation to the execution model presented. 

 Each subsystem has a maximum throughput in terms of the maximum number of 

instructions that may be performed per cycle. Maximum throughput values of each 

subsystem are disignated as the fetch, decode, issue, execution and the retire rate, 

respectively, as indicated in Figure 14. Now, the maximum throughput of a subsystem or 

of the entire microarchitecture can be interpreted as its width. Therefore, the width of the 

fetch, decode, issue, execute and retire subsystems is represented by their respective rates. 

Clearly, the width of the entire microarchitecture is determined by the smallest value of its 

subsystems. This notion is analogous to the notion of “word length of a processor”  that 

indicates the characteristic length of instructions and the data processed.  
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In fact, the width of a subsystem only indicates its performance potential. When 

running an application, subsystems have actually less throughput, since they usually 

operate under worse than ideal conditions. For instance, branches decrease the actual 

throughput of the fetch subsystem; or the actual throughput of the issue subsystem depends 

on the number of parallel executable instructions available in the window from one cycle 

to the next. In any application, the smallest throughput of any subsystem will be the 

bottleneck that determines the resulting throughput (IPC) of the entire microarchitecture. 

 

3) The issue bottleneck of the direct issue scheme: In each cycle some instructions in the 

instruction window are available for parallel execution, while others are locked by 

dependencies. As EU’ s finish the execution of instructions, existing dependencies become 

resolved and formerly dependent instructions become available for parallel execution. 

Clearly, a crucial point for the throughput of the microarchitecture is the average number 

of instructions that are available for parallel execution in the instruction window per cycle. 

In the direct issue scheme all data or resource dependencies occurring in the instruction 

window block instruction issue. This actually limits the average number of issued 

instructions per cycle (ILP) to about two in general purpose applications [56], [57]. 

Obviously, when the microarchitecture is confined to issue only up to approx. two 

instructions per cycle on average, its throughput is also limited to about two instructions 

per cycle, no matter how wide other subsystems of the microarchitecture are. 

Consequently, the direct issue scheme leads to an issue bottleneck that severely limits the 

maximum throughput of the microarchitecture.    

In accordance with this restriction, early superscalars usually have an issue rate of two 

to three (as indicated in Figure 11). Consequently, their execution subsystems typically 
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consist of either two pipelines (Intel’ s Pentium, Cyrix’ s M1) or two to four dedicated 

pipelined EU’ s (such as e.g. in DEC’ s (now Compaq’ s) Alpha 21064).  

In order to increase the throughput of the microarchitecture, designers had to remove the 

issue bottleneck and at the same time increase the throughput of all relevant subsystems of 

the microarchitecture. In the subsequent section we focus on the first topic, while the 

second issue is discussed in Section E. 

 

D. Basic techniques introduced to remove the issue bottleneck and to increase the 

number of parallel executable instructions in the instruction window.  

1) Overview: The issue bottleneck can be addressed primarily by using dynamic 

instruction scheduling. However, in order to effectively capitalize on this technique, 

dynamic instruction scheduling is usually augmented by register renaming. Furthermore, 

the processor is assumed to make use of speculative execution of branches, a technique 

already introduced in pipelined processors. 

2) Dynamic instruction scheduling: The key technique used to remove the issue 

bottleneck is dynamic instruction scheduling, also known as shelving [4], [5], [58]. 

Dynamic instruction scheduling means buffered instruction issue. It presumes the 

availability of dedicated buffers, called issue buffers (or “ reservation stations”  in specific 

implementations) in front of the EU’ s, as shown e.g. in Figure 152. With dynamic 

instruction scheduling the processor first issues the instructions into available issue buffers 

without checking either for data or control dependencies or for busy EU’ s. As data 

                                                           
2 Here we note that beyond individual reservation stations that serve individual EU’ s as shown in Figure 15, 
there are a number of other solutions to implement dynamic instruction scheduling [49], [58]. For instance, the 
prevailing solution is either to use group reservation stations serving EU’ s of the same type (e.g. fixed point 
units) or to have centralized reservation stations (unified reservation stations), as implemented in Intel’ s Pentium 
Pro, Pentium II and Pentium III processors. 
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dependencies or busy execution units no longer restrict the flow of instructions, the issue 

bottleneck of the direct issue scheme is removed. 

With dynamic instruction scheduling the processor is able to issue as many instructions 

into the issue buffers as its issue rate (usually 4) in each cycle, provided that no hardware 

restrictions occur. Possible hardware restrictions include missing free issue buffers or 

datapath width limitations. Nevertheless, in a well-designed microarchitecture the 

hardware restrictions mentioned will not severely impede the throughput of the issue 

subsystem. Issued instructions remain in the issue buffers until they become free of 

dependencies and can be dispatched for execution. 
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Decode/Dispatch
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issue buffers (reservation stations)

Shelved not dependent

for execution to the EUs.
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dispatch
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Figure 15: The principle of dynamic instruction scheduling, assuming that the processor has individual 

issue buffers (called reservation stations) in front of the execution units. 

 

Dynamic instruction scheduling improves the throughput of the front end of the 

microarchitecture not only by removing the issue bottleneck of the direct issue scheme but 
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also by significantly widening the instruction window. Under the direct issue scheme the 

processor attempts to find executable instructions in a small instruction window whose 

width equals the processor’ s issue rate (usually 2–3). In contrast, when dynamic instruction 

scheduling is used, the processor scans the issue buffers for executable instructions. This 

way the width of the instruction window is determined by the total capacity of all issue 

buffers available, while its actual width equals the total number of instructions held in the 

window (which may change dynamically from one cycle to the next). As processors 

usually contain dozens of issue buffers, dynamic instruction scheduling greatly widens the 

instruction window in most cases compared to the direct issue scheme. Since the processor 

will find in a wider window on average more parallel executable instructions per clock 

cycle than in a smaller one, dynamic scheduling increases the throughput of the front end 

of the microarchitecture even more. 

3) Register renaming: This is another technique used to increase the efficiency of 

dynamic instruction scheduling. Register renaming removes false data dependencies, i.e. 

write after read (WAR) and write after write (WAW) dependencies between register 

operands of subsequent instructions. If the processor uses renaming, it allocates to each 

destination register a rename buffer that temporarily holds the result of the instruction. It 

also tracks current register allocations, fetches source operands from renamed and/or 

architectural registers, writes the results from the rename buffers into the addressed 

architectural registers and finally reclaims rename buffers that are no longer needed. 

Renaming must also support a recovery mechanism for erroneously speculated branches or 

interrupts accepted [4], [5], [49]. 

The processor renames destination and source registers of instructions during instruction 

issue. As renaming removes all false register data dependencies between the instructions 
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held in the instruction window, it considerably increases the average number of 

instructions available in the instruction window for parallel execution per cycle.  

Figure 16 tracks the introduction of dynamic instruction scheduling and renaming in 

major superscalar lines. As indicated, early superscalars (the “ first wave” ) typically made 

use of the direct issue scheme. A few subsequent processors introduced either renaming 

alone (like the PowerPC 602 or the M1) or dynamic instruction scheduling alone (such as 

the MC88110, R8000). In general, however, dynamic instruction scheduling and renaming 

emerged together in a “ second wave”  of superscalars in the mid-1990’ s.  
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Figure 16: Introduction of dynamic instruction issue and renaming in superscalar processors 
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4) Advanced speculative branching: Wide instruction windows, however, require 

speculation along multiple conditional branches— called deep speculation— in order to 

avoid stalling instruction issue due to multiple consecutive conditional branches. However, 

the deeper branch speculation (i.e. the more consecutive branches a guessed path may 

involve), the higher the penalty for wrong guesses in terms of wasted cycles. As a 

consequence, dynamic instruction scheduling calls for deep speculation and highly 

accurate branch prediction. For this reason, the design of effective branch prediction 

techniques has been a major cornerstone in the development of high performance 

superscalars. For more details of advanced branch speculation techniques we refer to the 

literature [53] - [55].  

5) The throughput of superscalar microarchitectures that use dynamic instruction 

scheduling and renaming: RISC processors providing dynamic instruction scheduling and 

renaming are usually four instructions wide by design, which means that their fetch rate, 

decode rate, rename rate, dispatch rate and retire rate all equal four instructions per cycle.  

In Figure 17 we show a simplified execution model of superscalar RISC processors that 

use dynamic instruction scheduling and renaming. In this model the front end of the 

microarchitecture contains the fetch, decode, rename and the issue subsystems. The front 

end feeds instructions into the issue buffers constituting the instruction window.  
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Figure 17: Simplified execution model of a superscalar RISC processor that employs both dynamic 

instruction scheduling and renaming 

 

Executable instructions are dispatched from the window to available EU’ s by the 

dispatch subsystem. Referenced register operands are supplied either during instruction 

issue or during instruction dispatch. The execute subsystem performs the operations as 

required. Register results and fetched memory data are forwarded to the rename registers 

that temporarily hold all register results. Finally, executed instructions are retired in 

program order by the retire subsystem. Register results are copied at this stage from 

rename registers to the corresponding architectural registers, and memory data are 

forwarded to the data cache in program order. 
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 We note that dispatch rates are typically higher than issue rates, as indicated in Figure 

17. In most cases, the dispatch rate is five to eight instructions per cycle (see Table 1). 

There are two reasons for this: (a) to sustain a high enough execution width even though 

complex instructions that often have much higher repetition rates than one cycle (like 

division, square root etc.); and (b) to provide ample execution resources (EU’ s) for a wide 

variety of possible mixes of dispatched instructions. Execution rates are usually even 

higher than dispatch rates, because multiple multi-cycle EU’ s are typically able to operate 

in parallel, but for cost reasons they often share the same bus, which allows only one 

instruction to be issued to them per cycle. 

 

 

Processors/year of
volume shipment

Issue rate
(instr./cycle)

Dispath rate a
(instr./cycle)

PowerPC 603 (1993) 3 3

PowerPC 604 (1995) 4 6

Power2 (1993) 4/6
b

10

Nx586 (1994) 3/4 c,d 3/4 c,d

K5 (1995) 4
d

5 d

PentiumPro (1995) 3

PM1 (Sparc 64) (1995) 4

5 d

8

PA8000 (1996) 4 4

R10000 (1996) 4 5

Alpha 21264 (1998) 4 6

a  Because of address calculations performed separately, the given numbers
are usually to be interpreted as operations/cycle. For instance, the Power2
performs maximum 10 operations/cycle, which corresponds to 8 instr./cycle.b The issue rate is 4 for sequential mode and 6 for target mode.

c Both rates are 3 without an optional FP-unit (labelled Nx587) and 4 with it.
d Both rates refer to RISC operations (rather than to the native CISC

operations) performed by the superscalar RISC core.

Comparison of issue and dispatch rates of recent superscalar processors

 

 

Table 1: Issue and dispatch rates of superscalar processors 
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As far as advanced CISC processors with dynamic instruction scheduling and renaming 

are concerned, they typically decode up to three CISC instructions per clock cycle and 

usually perform an internal conversion to RISC-like operations, as discussed earlier. As 

x86 CISC instructions generate on average approx. 1.2–1.5 RISC-like instructions [59], the 

front end of advanced CISC processors has roughly the same width than that of advanced 

RISC processors in terms of RISC-like operations.  

Another interesting consideration is how the introduction of dynamic instruction 

scheduling and renaming contributes to increasing the efficiency of microarchitectures. In 

Figure 18 we show the relative cycle-by-cycle performance of processors in terms of their 

SPECint95 scores standardized to 100 MHz. Designs using dynamic scheduling and 

renaming are identified by outlined processor designations. As this figure demonstrates, 

superscalars featuring dynamic scheduling and renaming have a true advantage over 

microarchitectures using direct issue. Models comparable in this respect are e.g. Pentium 

vs. Pentium Pro, PowerPC 601 vs. PowerPC 604, PA7100 vs. PA8000, R8000 (which 

“ shelves”  only FP instructions) and R10000 or Alpha 21064 vs. Alpha 21264. These 

comparisons are slightly distorted due to the fact that designs with dynamic instruction 

scheduling are typically wider than microarchitectures with direct issue. In order to include 

this aspect, we also indicate the issue rates of the processors after the processor 

designations in brackets (see Figure 18). 

We note that the UltraSparc superscalar family is the only line that has not yet 

introduced dynamic scheduling and renaming. In order to reduce time-to-market, designers 

ruled out a “ shelved”  design at the beginning of the design process [60]. This caps the 

cycle-by-cycle throughput of the UltraSparc line well below comparable advanced RISC 
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designs that make use of both dynamic scheduling and renaming (such as the R12000, the 

PA 8200 and PA8500 or the Alpha 21264).  
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Figure 18: Efficiency of microarchitectures 

 

Finally, we point out one important feature characterizing the internal operation of 

superscalars that use dynamic instruction scheduling, renaming and speculative branch 

processing. If all these techniques are used, only RAW dependencies between register 

operands as well as memory data dependencies restrict the processor from executing 

instructions in parallel from the instruction window (not considering any obvious hardware 

limitations). Consequently, the microarchitecture executes instructions with register 

operands (and literals) internally according to the dataflow principle of operation. Then 
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basically only producer-consumer type register data dependencies set the dataflow limit of 

execution. 
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E.  Approaches to increase the throughput of particular subsystems of superscalar 

microarchitectures 

 

1) Overview: Raising the throughput of the microarchitecture is a real challenge, as it 

requires a properly orchestrated enhancement of all subsystems involved. In addition to 

dynamic instruction scheduling and renaming there are a number of techniques that have 

been used or proposed to increase the throughput of particular subsystems. Below we give 

an overview of these possibilities.  

2) Increasing the throughput of the instruction fetch subsystem: Ideally, the instruction 

fetch subsystem supplies instructions for processing at the fetch rate. However, conditional 

branches or cache misses may interrupt the continuous stream of instructions for a large 

number of cycles. Designers introduced a handful of advanced techniques to cope with 

these challenges, including: (a) more intricate branch handling schemes, as already 

discussed, (b) diverse techniques to access branch target paths as quickly as possible using 

Branch History Tables, Branch Target Buffers, Subroutine Return Stacks etc. [49], (c) 

various instruction prefetch schemes to reduce latencies incurred by cache misses [33], and 

(d) trace caches [10], [11], [12]. Current processors improve the throughput of the fetch 

subsystem by continuously refining these techniques.  

3) Increasing the throughput of the decode subsystem: With superscalar instruction 

issue, multiple instructions need to be decoded per cycle, so decoding becomes much more 

complex than in scalar processors. Moreover, assuming dynamic instruction scheduling 

and renaming, a time critical path arises that consists of decoding, renaming and issuing 

the instructions to the issue buffers. A variety of checks need to be carried out along this 

path to see whether there are enough empty rename or issue buffers, or whether required 

buses are wide enough to forward multiple instructions into the same buffer, etc. As a 
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consequence, higher issue rates (3 or higher) can unduly lengthen this time critical path. 

Pipelined instruction processing segments this path into decode, rename and issue 

subtasks, where each subtask takes one or more clock cycles (pipeline stages) to perform 

the particular subtasks mentioned. If, assuming higher issue rates, the time to perform one 

of the subtasks becomes longer, either the clock frequency must be lowered or additional 

clock cycle slots (pipeline stages) need to be included, which unfortunately also increases 

the penalty for mispredicted branches. An appropriate technique to avoid lengthened 

decode times with higher issue rates is known as predecoding [49]. 

The fundamental idea behind predecoding is to reduce the complexity of the decode 

stage by partially decoding instructions while fetching them into the instruction buffer, as 

indicated in Figure 19. The results of predecoding may include identified instruction types, 

recognized branches, determined instruction length (in the case of a CISC processor), etc.  
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Figure 19: The basic idea behind predecoding 
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Predecoding appeared with the second wave of superscalars approximately in the mid-

1990s, and soon became a standard feature in both RISC and CISC processors. We note 

that trace processors also predecode instructions to alleviate the complexity of the time 

critical decode–rename–issue path [10] - [12]. 

4) Increasing the throughput of the dispatch subsystem: In order to increase the 

throughput of the dispatch subsystem, either the dispatch rate needs to be raised or the 

instruction window widened. 

(a) Raising the dispatch rate, i.e. the maximum number of instructions that can be 

dispatched per cycle, is the “ brute force”  solution to increase the throughput of the dispatch 

subsystem. It requires more execution resources, such as EU’ s, datapaths and more 

complex logic to select executable instructions from the window. Table 1 indicates the 

dispatch rates of various superscalar processors. 

(b) Widening the instruction window is a more subtle approach to raise the throughput 

of the dispatch subsystem. This approach is motivated by the expectation that more parallel 

executable instructions per cycle can be found in a wider instruction window than in a 

smaller one. This is the reason why recent processors typically have wider instruction 

windows (by providing more issue buffers) than earlier ones, as shown in Table 2. 

However, a wider window requires deeper and more accurate branch speculation, as we 

emphasized earlier. 
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Processor
Width of the
instr. window

RISC processor

CISC processor

3

12

12

15

42

36

20

48

56

35

20

48

20

24

54

56

56

PowerPC 603 (1993)

PowerPC 604 (1995)

PowerPC 620 (1996)

Power3 (1998)

PA8500 (1999)

PA8000(1996)

Alpha 21264 (1998)

PM1 (Sparc64) (1995)

R10000 (1996)

K5 (1995)

K6 (1996) 

K7 (1998)

Nx586 (1994)

M3 (2000)

Pentium II (1997)

PentiumPro (1995)

R12000 (1998)

 

 

Table 2: Width of the instruction window in superscalar processors that use dynamic 

instruction issue 

 

Finally, we note that parallel optimizing compilers also contribute to increase the 

average number of parallel executable instructions available in the window per cycle. 

As our paper focuses on the microarchitecture itself and does not discuss compiler 

issues, readers interested in this topic are referred to the literature [61] - [62].  

5) Increasing the throughput of the execution subsystem: There are three chief ways to 

increase the throughput of the execution subsystem: (a) increasing the execution rate of the 

processor by providing more EU’ s that are able to operate simultaneously; (b) reducing the 

repetition rates of EU’ s (i.e. the number of cycles needed until an EU can accept a new 

instruction for execution); and (c) shortening the execution latency of EU’ s (i.e. the 

number of cycles needed until the result of an instruction becomes available to a 

subsequent instruction). Below we will discuss only the last issue mentioned. 
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If the processor performs both dynamic instruction scheduling and renaming, then 

decoded, issued and renamed instructions wait for execution in the issue buffers, i.e. in the 

instruction window. Clearly, the earlier existing RAW dependencies are resolved in the 

instruction window, the more instructions will be available for parallel execution on the 

average per cycle. This calls for shortening the execution latencies of instructions. 

Subsequently, we review techniques used or proposed to achieve this objective either a) for 

register instructions or b) for load/store instructions. 

a) Shortening the execution latencies of register instructions. Basically, the following 

two techniques are used to achieve this goal. 

(i) Result forwarding provides a bypass from the outputs of EU’ s to their inputs in order 

to make the results immediately available for subsequent instructions, as indicated in 

Figure 20. This way execution latencies can be shortened by the time needed to first write 

the results into the specified destination register and then to read them from there for a 

subsequent instruction.  

 

EU

Reg. File

Inputs

From

Cache

Load forwarding

Result forwarding

 

 

Figure 20: The principle of result and load forwarding 

 

However, implementing result forwarding requires a relatively large number of 

buses, since a separate bus is needed from the output ports of each EU to the input ports 
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of all EU’ s that may need the results. This technique has already been introduced in 

pipelined processors, such as the i486, and now it is a mature, established technique 

widely used in superscalars.  

(ii) Exceeding the dataflow limit of execution for multi-cycle register operations, such 

as division. This can be achieved by using intricate techniques like value prediction [63] - 

[66] or value reuse [67] - [71]. These are current research topics. 

b) Shortening the execution latencies of load/store instructions. This requirement is a 

crucial point for increasing the throughput of the microarchitecture for two reasons: first, 

load/store instructions represent approximately 25–35 % of all instructions [72], and 

second, the memory subsystem is typically slower than the processor’ s pipeline. There are 

three major approaches to address this problem: (i) using load forwarding, (ii) introducing 

out of order loads, and (iii) exceeding the dataflow limit of execution imposed by load 

operations.  

 (i) Load forwarding is a technique similar to result forwarding described above. It cuts 

load latencies (i.e. the time needed until the result of a load operation becomes available to 

a subsequent instruction) by immediately forwarding fetched data to the input ports of the 

EU’ s, as indicated in Figure 20. This technique is also widely used in current superscalars.  

(ii) Out of order execution of loads is a technique to bypass younger, already executable 

loads over older loads and stores not yet ready for execution. This technique effectively 

contributes to reducing delays caused by load misses. Out of order execution of loads can 

be implemented in a number of ways. Speculative loads (PowerPC 620, R10000, Sparc64, 

Nx586) and store forwarding (Nx586, Cyrix’ s 686 MX, M3, K-3, UltraSparc3) are 

implementation alternatives already employed in current processors, whereas dynamically 

speculated loads [73] - [75] and speculative store forwarding [50] are new alternatives that 

have been proposed. 
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(iii) It is also possible to exceed the dataflow limit caused by load operations, either by 

load value prediction [50], [75] or by load value reuse [85], [69], [75]. These issues are 

recent research topics. 

Finally, we emphasize that the overall design of a microarchitecture calls for 

discovering and removing possible bottlenecks in individual subsystems. This task usually 

requires a tedious, iterative cycle-by-cycle simulation on a number of benchmark 

applications.  

6) Limits of utilizing issue parallelism: Obviously, it is rather impractical to widen the 

microarchitecture beyond the extent of available instruction level parallelism. As general-

purpose programs have on average no more than about 4–8 parallel executable instructions 

per cycle [77] and recent microarchitectures are already at least four-wide designs, not 

much room seems to remain for performance increase through widening the 

microarchitecture even further, at least for general purpose applications.  

    

VI. INTRODUCTION OF INTRA-INSTRUCTION PARALLELISM 

A. Key approaches to introduce intra-instruction parallelism 

The last major possibility to increase processor performance at the instruction level is to 

introduce multiple data operations within instructions. This type of parallelism is called 

intra-instruction parallelism. Three different approaches exist for the implementation of 

multiple-data-operation instructions: (a) dual-operation instructions, (b) SIMD instructions 

and (c) VLIW instructions, as indicated in Figure 21. Its introduction requires, however, 

either an extension of the ISA by adding instructions that perform multiple data operations 

and an appropriate enhancement of the microarchitecture to enable their execution (for the 

approaches (a) and (b)) or a completely new ISA (for (c)).  
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Dual-operation
instructions instructions

SIMD
instructions

VLIW

Possible approaches to introduce
intra-instuction parallelism

ISA-extension

OPI :  Average number of operations per instruction

Narrow
VLIWs

Wide
VLIWs

OPIn 2 2/4/8/16/32 (2/3; for gen.use) (~n*10)

(i=a*b+c) (MM-support)

i: O2 O1 O1O4 O3 O2i: i:
Om Om-1 O1O3 O2O1O3 O2i:

Dedicated use General use/Dedicated use

OPI >11+ε >>1

New ISA

i: O2 O1

2/4

(3D-support)

FX-SIMD FP-SIMD

OPIn :  Number of operations per instruction

Dedicated use
(2-8; for DSPs)

(for gen.use)

 

 

Figure 21: Possibilities to introduce intra-instruction parallelism 

 

(a) Dual-operation instructions comprise, as their name suggests, two different data 

operations within the same instruction. The most widely used one is the multiply-add 

instruction (“ multiply-and-accumulate”  or “ fused multiply-add”  instruction) that calculates 

the dot product (x = a * b + c) for floating-point data.  

Multiply-add instructions were introduced in the early 1990’ s in the POWER [78], 

PowerPC [79], PA-RISC [80] and MIPS-IV [81] ISA’ s and in the respective 

microprocessor models. However, this instruction is only useful for numeric computations, 

and thus it only marginally increases the average number of operations executed per 

instruction (OPI) in general purpose applications. Other examples of dual-operation 

instructions include fused load/op, shift & add, etc. instructions. 
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(b) SIMD instructions allow the same operation to be performed on more than one set of 

operands. E.g. in Intel’ s MMX multimedia extension [82], the 

PADDW   MM1, MM2 

SIMD instruction performs four fixed point additions on the four 16-bit operand pairs 

held in the 64-bit registers MM1 and MM2. 

As Figure 21 indicates, SIMD instructions may refer either to fixed point or to floating 

point data. Fixed point SIMD instructions enhance multimedia applications, i.e. multiple 

(2/4/8/16/32) operations on display pixels, whereas floating point SIMD instructions 

accelerate 3D graphics by executing (usually) two floating point operations 

simultaneously.  

Fixed point SIMD instructions were pioneered in 1993–1994 in the MC88110 and  PA-

7100LC processors, as shown in Figure 22. Driven by the proliferation of multimedia 

applications, SIMD extensions (such as AltiVec from Motorola [83], MVI from Compaq 

[84], MDMX from MIPS [85], MAX-2 from Hewlett-Packard [86], VIS from Sun [87] and 

MMX from Intel [82]) soon became a standard feature of most established processor 

families. Floating point SIMD extensions, such as 3DNow! from AMD, CYRIX and IDT 

[88] and SSE from Intel [89] emerged in 1998 in order to support 3D applications. They 

were implemented in the K6-2, K6-3 and Pentium III processors, followed later by the G4 

and K7, as indicated in Figure 22.  
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Clearly, multimedia and 3D support will boost processor performance mostly in 

dedicated applications. For instance, based on Media Benchmark ratings Intel stated a per 

cycle performance gain of about 37 % from multimedia support in its Pentium II over 

Pentium Pro [132]. Intel has also published figures demonstrating that its 3D-enabled 

Pentium III has a cycle by cycle performance gain of approx. 61% over Pentium II running 

the 3D Lighting and Transformation Test of the 3D WinBench99 benchmark suite [133]. 

On the other hand, multimedia and 3D support results in only a rather modest performance 

gain for general purpose applications measured in terms of SPECint92 benchmark ratings 

normed to the same clock frequency. For instance, the Pentium II offers only a 3–5 % 

performance increase over the Pentium Pro at the same clock frequency, whereas Pentium 

III shows a similarly slight benefit over Pentium II at the same clock frequency [1].  

(c) The third major possibility to introduce intra-instruction parallelism is the VLIW 

(Very Long Instruction Word) approach. In VLIW’ s, different fields of the same 

instruction word control simultaneously operating EU’ s of the microarchitecture. As a 

consequence, VLIW processors with a large number of EU’ s need very long instruction 

words, hence the name. For instance, Multiflow’ s TRACE VLIW machine used 256-bit to 

1024-bit long instruction words to specify 7 to 28 simultaneous operations within the same 

instruction word [134]. 

Unlike superscalars, VLIW’ s are scheduled statically. This means that the compiler 

takes all responsibilities for resolving all types of dependencies. To be able to do so, the 

compiler needs intimate knowledge of the microarchitecture concerning the number, types, 

repetition rates and latencies of the EU’ s, load-use latencies of the caches etc. On the one 

hand, this results in a complex and technology-dependent compiler, while on the other 

hand it leads to reduced hardware complexity as opposed to comparable superscalar 
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designs. In addition, the compiler is expected to perform aggressive parallel optimization 

in order to find enough executable operations for high throughput. 

VLIW proposals emerged as paper designs in the first half of the 1980’ s (Polycyclic 

architecture [135], ELI-512 [136]), followed by two commercial machines in the second 

half of the 1980s (Multiflow’ s TRACE [134] and Cydrome’ s Cydra-5 [137]). We will term 

these traditional designs as wide VLIW’s, since they incorporate a large number of EU’ s, 

typically in the range of 10 or more. 

Wide VLIW’ s disappeared from the market fairly quickly, which was partly due to their 

deficiencies— technological sensitivity of compilers, wasted memory fetch bandwidth 

owing to sparsely populated instruction words, etc. [4]— as well as to the onus of their 

manufacturers being start-up companies. 

The reduced hardware complexity of VLIW designs versus superscalar designs and the 

progress achieved in compiler technology have led to a revival of VLIW’ s in the late 

1990’ s, both for DSP and general purpose applications. VLIW-based DSP’s, such as 

Philips’  TM1000 TriMedia processors [138], TI’ s TMS320C6000 cores [139], the SC140 

core from Motorola and Lucent [140] and ADI’ s TigerSharc [141] are intended for 

multimedia applications. We have good reason to term these designs as narrow VLIW’s in 

contrast to the earlier VLIW designs mentioned above. 

General purpose narrow VLIW’s with 3–4 operations per instruction have recently 

emerged on the horizon, including Intel’ s Itanium (a. k. a. Merced) [142] that implements 

the EPIC (Explicitly Parallel Instruction Computing) VLIW philosophy, Sun’ s MAJC 

processor units used in their MCP chips [143] and Transmeta’ s Crusoe processors [144], 

which have become rivals of superscalars. 

In summary, out of the above approaches designed to introduce intra-instruction 

parallelism only traditional wide VLIW’ s and general purpose narrow VLIW’ s are able to 
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perform considerably more than one operation per instruction (OPI>>1) on average for 

general purpose applications. On the other hand, dual-operation and SIMD instructions as 

well as DSP-oriented VLIW’ s are intended for dedicated applications. 

VII. THE MAIN ROAD OF THE MICROARCHITECTURE EVOLUTION 

As pointed out before, the main road of the microarchitecture evolution is marked by an 

increasing utilization of available instruction level parallelism. This took place while 

designers introduced one after another temporal, issue and intra-instruction parallelism in 

new microarchitectures (see Figure 23). This sequence has been determined basically by 

the objective to boost performance while maintaining upward compatibility with preceding 

models. Nevertheless, the price to be paid for increased performance is decreasing 

efficiency of hardware utilization. 

In this respect we point out that scalar pipelined processors that only make use of 

temporal parallelism exhibit the best hardware utilization, since in essence all stages of 

their pipelines are always used to process instructions. Superscalar processors that also 

utilize issue parallelism make less efficient use of their hardware resources due to the 

availability of multiple (parallel) execution paths.  SIMD hardware extensions— which also 

enable architectures to exploit intra-instruction parallelism— are the least utilized, as they 

are used only for MM and 3D applications. In summary, higher per cycle throughput 

necessarily leads to higher hardware redundancy, as indicated in Figure 23.  
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Figure 23: Main road of the evolution of microarchitectures 

We note that beyond the above discussed evolutionary scenario, a second scenario was 

also open for the development of microarchitectures.  

Evolutionary scenario (Superscalar approach)a.

b. Radical scenario (VLIW approach)

Introduction

temporal
parallelism

and increase of
Introduction

issue
parallelism

and increase of

Introduction

temporal
parallelism

and increase of

Introduction

intra-instructions
parallelism

and increase of

Introduction

intra-instructions
parallelism

and increase of

 

Figure 24: Possible scenarios for the development of processors 

In this second scenario, the introduction of temporal parallelism is followed 

immediately by the debut of intra-instruction parallelism in the form of VLIW instructions, 

as indicated in Figure 24. Clearly, introducing multiple data operations per instruction 
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instead of issuing and executing multiple instructions per clock cycle is a competitive 

alternative of boosting throughput. However, in contrast to the evolutionary scenario that 

preserves upward compability, this scenario represents in a sense a quite “radical” path, 

since the introduction of multi-operation VLIW instructions demands a completely new 

ISA. This is the key reason why this alternative, pioneered by wide VLIW’ s at the end of 

the 1980’ s, turned out to be a dead end. 

VIII. CONCLUSIONS 

As we pointed out in our paper, microarchitectures evolved at the instruction level 

basically in three consecutive cycles, following a twisting upward curve not unlike a spiral 

with three windings. Each cycle added a new dimension of parallelism to the 

microarchitecture by means of a new basic technique. However, once a basic technique 

enhances a particular subsystem of the microarchitecture, other subsystems become the 

bottleneck of processor performance. Consequently, the introduction of a new basic 

technique eventually calls for several additional techniques to resolve these new 

bottlenecks. Each cycle ends up when the additional techniques, introduced to augment the 

basic technique, enable it to achieve its full potential. This, however, gives rise to a new 

cycle in which a new dimension of parallel operation must be introduced to the 

microarchitecture in order to increase processor performance even further. 

In particular, temporal parallelism was the first to make its debut with pipelined 

processors, as Figure 25 shows. The emergence of pipelined instruction processing 

stimulated the introduction of caches and of speculative branch processing. Thus the entire 

potential of temporal parallelism could be exhausted. For further performance increase, 

issue parallelism became utilized next via the introduction of superscalar processors. 

Superscalars evolved in two waves, differing basically in the effective width of the 
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microarchitecture. First wave superscalars made use of direct (unbuffered) instruction 

issue, accompanied by advanced branch processing and a more powerful memory 

subsystem. The issue bottleneck inherent to the direct issue scheme basically limited the 

microarchitecture to a two-wide design. However, the demand for still higher throughput 

called for widening the microarchitecture. This gave rise to a second wave of superscalars 

featuring dynamic instruction scheduling (buffered instruction issue), register renaming 

and several additional techniques to widen particular subsystems, as outlined in the paper. 

Finally, having exhausted the extent of instruction level parallelism available in general 

purpose programs, intra-instruction parallelism has been introduced with SIMD 

instructions. However, this enhancement, effective primarily in emerging multimedia and 

3D applications, required a considerable extension of the ISA. 
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Figure 25: Major steps in the evolution of microprocessors 

 

All the decisive aspects mentioned above constitute a framework that explains the main 

road of the microarchitecture evolution, including the sequence of major innovations 

encountered. 
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ANNEX 

The throughput of the processor (TOPC). To express the throughput of the processor 

(TOPC) with the operational parameters of the microarchitecture, we assume the following 

model of processor operation (see Figure 26). 

In the figure, the arrows indicate decoded instructions issued for processing.  

Instructions
issued
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Figure 26: Assumed model of processor operation 

 

(a) We assume that the processor operates in cycles, issuing in each cycle 0, 1...ni 

instructions, where ni is the issue rate of the processor. 

(b) We allow instructions to include more than one operation.  

(c) Out of the cycles needed to execute a given program, we focus on those in which the 

processor issues at least one instruction. We call these cycles issue cycles, and denote them 

by cj, j = 1...m. The issue cycles cj subdivide the execution time of the program into issue 

intervals sj, j = 1...m, such that each issue interval begins with an issue cycle and lasts until 
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the next issue cycle begins. s1 is the first issue interval, whereas sm is the last one belonging 

to the given program.  

(d) We describe the operation of the processor using a set of three parameters which are 

given for each of the issue intervals sj., j = 1...m. The set of the parameters chosen is as 

follows (see Figure 26): 

 

nj
IPL  = the number of instructions issued at the beginning of the issue  interval sj,     j = 

1...m, 

n OPI = the average number of operations included in the instructions, which are issued 

in the issue interval sj, j = 1...m, 

nj
CPI  = the length of the issue interval sj in cycles, j = 1...m. Here nm

CPI is the length of 

the last issue interval, which is interpreted as the number of cycles to be elapsed until the 

processor is ready to issue instructions again. 

Then, in issue interval sj the processor issues nj
OPC operations per cycle, where: 

 

n
n n

OPC
ILP OPI

n CPI

= *
j

j

j
j

(6)
 

 

Now let us consider nj
OPC as a stochastic variable, which is derived from the stochastic 

variables nj
ILP, n j

OPI and nj
CPI, as indicated in (6). Assuming that the stochastic variables 

involved are independent, the throughput of the processor  (TOPC), which is the average 

value of nOPC ( n OPC), can be calculated from the averages of the three stochastic variables 

included, as indicated below: 
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n =
OPC *

nn1/n
CPI ILP OPI* (7)T =OPC

Temporal
parallelism 

Issue
parallelism

Intra-instruction
parallelism  

 

Finally, we rename the terms introduced above for better readability as follows: 

 

 

 

 

= T OPC (11) OPC  

Thus we obtain for the average number of operations processed per cycle (OPC): 

 

 

 

As according to expression (3) OPC = IPC * OPI, it follows from (3) and (12) that 

 

= * 1/CPI ILP (13) IPC 
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