
1

DECISIVE ASPECTS IN THE EVOLUTION OF

MICROPROCESSORS

DEZSŐ SIMA, MEMBER, IEEE

The incessant market demand for higher and higher performance is forcing a continous

growth in processor performance. This demand provokes ever increasing clock frequencies

as well as an impressive evolution of the microarchitecture. In this paper we focus on

major microarchitectural improvements that were introduced to achieve a more effective

utilization of instruction level parallelism (ILP) in commercial, performance-oriented

microprocessors. We will show that designers increased the throughput of the

microarchitecture at the ILP level basically by subsequently introducing temporal, issue

and intra-instruction parallelism in such a way that after exploiting parallelism along one

dimension it became inevitable to utilize parallelism along a new dimension to further

increase performance. Moreover, each basic technique used to implement parallel

operation along a certain dimension inevitably resulted in processing bottlenecks in

particular subsystems of the microarchitecture, whose elimination called for the

introduction of additional innovative techniques. The sequence of basic and additional

techniques introduced to increase the efficiency of the microarchitectures constitutes a

fascinating framework for the evolution of microarchitectures, as presented in our paper.

2

Keywords - Processor performance, microarchitecture, ILP, temporal parallelism,

issue parallelism, intra-instruction parallelism

I. INTRODUCTION

Since the birth of microprocessors in 1971, the IC industry has successfully maintained

an incredibly rapid increase in performance. For example, as Figure 1 indicates, the integer

performance of the Intel family of microprocessors has been raised over the last 20 years

by an astonishingly high rate of approximately two orders of magnitude per decade [1], [2].

Relative

performance
integer

(SPECint92)

5

10

50

Year
86 8879 1980 81 82 83 84 85 87 89 1990 91 92 93 94 95 96 97 98 99

*

*

*

*
*

*

*
*

2

386/16

*

* *

*

*

* 8088/5

*0.5

100

8088/8

80286/10

80286/12

386/20
386/25

386/33

500

*

*

*
*1000

Date of first volume shipments
(P denotes Pentium)

20

200

1

0.2

*

*
*

*

*
* *

*

486/25
486/33

486/50 486-DX2/66

Pentium/66

Pentium/100 Pentium/120

Pentium Pro/200

PIII/500
PIII/600

486-DX4/100

Pentium/133 Pentium/166
Pentium/200

PII/300
PII/333

PII/400
PII/450 PIII/550

486-DX2/50
*

~ 100*/10years

Figure 1: Increase over time of the relative integer performance of Intel x86 processors

3

This impressive development and the underlying innovative techniques have inspired a

number of overview papers [3]–[7]. These reviews emphasized either the techniques

introduced or the quantitative aspects of the evolution. In contrast, our paper addresses

qualitative aspects, i.e. the incentives and implications of the major steps in microprocessor

evolution.

With maturing techniques the “effective execution width” of the microarchitectures (in

terms of executed instructions per cycle) approaches the available ILP (in terms of

executable instructions per cycle). Recently this has given rise to development in two main

directions: (a) the first approach is to utilize ILP more aggressively by means of more

powerful optimizing compilers, trace processors [10]–[12] and innovative techniques as

discussed in section V.E.; and (b) the other current trend is to also utilize parallelism at a

higher-than-instruction (i.e. at the thread or process) level. This approach is marked by

multiscalar processors [8], [9], symmetrical multithreading (SMT) [13], [14] and chip

multiprocessing (CMP) [15], [16]. In our paper we concentrate on the progress achieved at

the instruction level in commercial high performance microprocessors.1

The remainder of our paper is structured as follows. In Section II we discuss and

reinterpret the notion of absolute processor performance in order to more accurately reflect

the performance impact of different kinds of parallel operations in the microarchitecture.

Based on this discussion we then identify the main dimensions of processor performance.

In subsequent Sections III through VI we review major techniques aimed at increasing

1 We note that computer manufacturers typically offer three product classes, (i) expensive high performance
models designed as servers and workstations, (ii) basic models emphasizing both cost and performance, and
finally (iii) low cost (value) models emphasizing cost over performance. For instance, Intel’s Xeon line
exemplifies high performance models, the company’s Klamath, Deshutes, Katmai, Coppermine and Pentium 4
cores represent basic models, whereas their Celeron processors are low cost (value) models. High performance
models are obviously expensive, since all processor and system components must provide a high enough
throughput, whereas low cost systems save cost by using less ambitious and less expensive parts or subsystems.
In order to avoid a large number of multiple references to superscalar processors in the text and in the figures, we
give all references to superscalars only in Figure 22.

4

processor performance along each of the main dimensions. From these, we point out the

basic techniques that have become part of the mainstream evolution of microprocessors.

We also identify the potential bottlenecks they induce, and highlight the techniques

brought into use to cope with these bottlenecks. Section VII summarizes the main

evolutionary steps of the microarchitecture of high performance microprocessors, followed

by Section VIII, which sums up the decisive aspects of this evolution.

II. THE DESIGN SPACE OF INCREASING PROCESSOR

PERFORMANCE

The results supplied by today’ s industry standard benchmarks, including the SPEC

benchmark suite [17]–[19], Ziff-Davis’ s Winstone [20] and CPUmark [21] as well as

BABCo’ s SYSmark [22], are all relative performance measures. This means that they give

an indication of how fast a processor will run a set of applications under given conditions

in comparison to a reference installation. These benchmarks are commonly used for

processor performance comparisons, in microprocessor presentations and in articles

discussing the quantitative aspects of the evolution.

Unlike relative performance measures, absolute processor performance (PP) is usually

interpreted as the average number of instructions executed by the processor per second.

This score is typically given in units like MIPS (Million Instructions Per Second) or GIPS

(Giga Instructions Per Second). Earlier synthetic benchmarks, like Whetstone [23] or

Dhrystone [24], were also given as absolute measures.

PP can be expressed as the product of clock frequency (fC) and the average number of

instructions executed per clock cycle (IPC):

 PP = fC * IPC (1)

5

IPC is also designated as the throughput and may be interpreted as the execution width

of the processor (P).

Absolute measures are appropriate for use when the performance potential of processors

is discussed. However, absolute performance metrics are not suitable for the comparison of

processor lines whose Instruction Set Architectures (ISA) differ. The reason is that

instructions from different ISAs do not necessarily perform the same amount of

computation. For making performance comparisons in these cases, relative performance

measures are needed.

As our paper focuses on the evolution of microarchitectures from a performance

perspective, we will apply the notion of absolute processor performance. However, in

order to identify the contribution of different sources of parallelism within the

microarchitecture, in the following we will express IPC with internal operational

parameters of the microarchitecture. Further on to take the impact of multi-operation

instructions, such as SIMD instructions, into consideration, we will reinterpret the notion

of absolute processor performance.

In expression (1) IPC—i.e. the average number of instructions executed per cycle—

reflects the result of parallel instruction processing within the microarchitecture. Internal

instruction parallelism may have however, two basic sources, pipelined instruction

processing and superscalar instruction issue. As shown in the Annex (expression 13),

parallelism arising from these two separate sources can be expressed as follows:

 IPC = 1/CPI * ILP (2)

6

In Expression (2) CPI is the average time interval between two clock cycles in which

instructions are issued, given in clock cycles. (For a more detailed explanation see the

Annex.) Here instruction issue denotes the act of disseminating instructions from the

instruction fetch/decode subsystem for further processing, as detailed in Section V. C. We

note that in the literature this activity is often designated as dispatching instructions. For

traditional microprogrammed processors CPI marks the average execution time (where CPI

>> 1), whereas for ideal pipelined processors CPI equals 1. We emphasize that CPI reflects

the temporal parallelism of instruction processing.

ILP is the average number of instructions issued per issue interval. (For a more detailed

explanation see again the Annex.) For a scalar processor ILP = 1, whereas for a superscalar

one ILP > 1. This term indicates the issue parallelism of the processor.

Furthermore, as the use of multi-operation instructions, such as SIMD instructions, has

become a major trend, it is appropriate to reinterpret the notion of absolute processor

performance, while taking into account the number of data operations processed by these

instructions as well. This can be achieved by considering the average number of operations

the processor executes per cycle (designated by OPC) rather than the average number of

instructions processed per cycle (IPC). If we denote the average number of data operations

executed by the instructions by OPI, then

 OPC = IPC * OPI (3)

For a traditional ISA, we assume OPI = 1. For ISAs including multi-operation

instructions such as SIMD instructions, OPI > 1, whereas for VLIW (Very Large

Instruction Word) architectures, OPI >> 1, as detailed in Section VI. We point out that OPI

reveals the intra-instruction parallelism.

7

With expressions (2) and (3), the average number of operations executed per cycle

(OPC) is:

* CPI ILP OPI * (4) = OPC

Temporal
parallelism

Issue
parallelism

Intra- instruction
parallelism

1

Finally, absolute processor performance, interpreted as the average number of

operations executed per second (PPO) yields:

P = * *

1

CPI * OPI ILP PO f c

Sophistication of the
technology/implementation
of the microarchitecture

Efficiency of the processor level
architecture

(ISA/microarchitecture)

(5)

Figure 2: Constituents of processor performance

Here the clock frequency of the processor (fc) depends on the sophistication of IC

fabrication technology as well as the way the microarchitecture is implemented. In

pipelined designs, the minimum clock period and thus the maximum clock frequency is

determined by the worst case propagation delay of the longest path in the pipelined stages.

This equals the product of the gate delay and the number of gates in the longest path of any

pipelined stage. The gate delay depends mainly on the line width of the IC technology

used, whereas the length of the longest path depends on the layout of the microarchitecture.

8

Very high clock rates presume very deeply pipelined designs, that is, pipelines with

typically ten to twenty stages.

The remaining three components of processor performance, i.e. the temporal, issue and

the intra-instruction parallelism, are determined mainly by the efficiency of the processor

level architecture, that is, by both the ISA and the microarchitecture of the processor (see

Figure 2).

Equation (5) provides an appealing framework for a discussion of the major possibilities

in increasing processor performance. According to equation (5), the key possibilities for

boosting processor performance are: (a) increasing the clock frequency and (b)

introducing/increasing temporal, issue and intra-instruction parallelism, as summarized in

Figure 3.

P = * *
1

CPI * OPIILPPO fc

Raising
the clock
frequency

increasing
of temporal
parallelism

increasing increasing

parallelism parallelism
of issue of intra-instruction

Introduction/ Introduction/ Introduction/

Figure 3: Main possibilities to increase processor performance

In subsequent sections we address each of these possibilities individually.

III. INCREASING THE CLOCK FREQUENCY AND ITS

IMPLICATIONS

9

A. The growth rate of the clock frequency of microprocessors

As an example, Figure 4 illustrates the phenomenal increase in the clock frequency of

the Intel x86 line of processors [1] over the past two decades.

5

10

50

Year

*

*
*

*

2

8088

*

100

386

Pentium

Date of first volume shipments

Clock

MHz
frequency

500

1000

20

200

*

486-DX2

79 1980 81 82 83 84 85 86 87 88 89 1990 91 92 93 94 95 96 97 98 9978

3µ3µ3µ3µ

* 1.5µ1.5µ1.5µ1.5µ

*

*
*

*

*
486 0.8µ0.8µ0.8µ0.8µ

*

* * *

*

0.35µ0.35µ0.35µ0.35µ

*

* *
*
*

0.25µ0.25µ0.25µ0.25µ

Pentium II
** *Pentium III

*

286

*

Pentium Pro

1

1µ1µ1µ1µ

0.6µ0.6µ0.6µ0.6µ
486-DX4

~10*/10years

~100*/10years

Figure 4: Historical increase in the clock frequency of Intel x86 processors

As Figure 4 indicates, the clock frequency was raised until the middle of the 1990s by

approximately one order of magnitude per decade, and subsequently by about two orders

of magnitude per decade. This massive frequency boost was achieved mainly by a

10

continuous downscaling of the chips through improved IC process technology, by using

longer pipelines in the processors and by improving circuit layouts.

Since processor performance may be increased either by raising the clock frequency or

by increasing the efficiency of the microarchitecture or both (see Figure 2), Intel’ s example

of how it increased the efficiency of the microarchitecture in its processors is very telling.

Efficiency
of the microarchitecture
(SPECint92/100 MHz)

0.5

1

2

1985 86 87 88 89 90 91 92 93 94 95 96 97 98 99

Year of first volume shipment

x

x

x

x x x

i386

i486
Pentium

Pentium Pro

Pentium II

Pentium III

~10*/10 years

Year

1.5

Figure 5: Increase in the efficiency of the microarchitecture of Intel’ s x86 line of processors

As Figure 5 shows, the overall efficiency (performance at the same clock frequency) of

Intel processors [1] was raised between 1985 and 1995 by about an order of magnitude.

During this period, both the clock frequency and the efficiency of the microarchitecture

were increased approximately 10 times per decade, resulting in a performance boost of

approximately two orders of magnitude per decade. However, after the introduction of the

Pentium Pro (and until the arrival of the Pentium 4), Intel continued to use basically the

same processor core in all of its Pentium II and Pentium III processors. The enhancements

introduced— including multimedia (MM) and 3D support (SSE), doubling the size of both

11

level 1 instruction and data caches, etc. made only a marginal contribution to the efficiency

of the microarchitecture in general purpose applications, as reflected in SPEC benchmark

figures (see Figure 5). During this period of time Intel’ s design philosophy obviously

prefered boosting clock frequency over enhancing microarchitecture efficiency. This

decision may have stemmed from a view often emphasized by computer resellers: PC

buyers usually go for clock rates and benchmark metrics rather than efficiency metrics.

We emphasize that the processor’ s clock frequency only indicates performance

potential. Actual processor (or system) performance depends on the efficiency of the

microarchitecture as well as on the characteristics of the application processed (as

discussed in V.C.2). “Weak” components in the microarchitecture or in the entire system,

such as an inadequate branch handling subsystem of the microarchitecture or a long

latency cache in the system architecture may strongly impede performance.

B. Implications of increasing the clock frequency

When increasing processor performance, either by raising the clock frequency or by

increasing the throughput of the microarchitecture or by both, designers are forced to

enhance the system level architecture as well in order to avoid arising bottlenecks. System

level enhancements address principally the bus, memory and I/O subsystems. Since the

evolution of the system level architecture is a topic of its own, whose complexity is

comparable to the evolution of the microarchitectures, we do not go into details here, but

indicate only a few dimensions of this evolution and refer to the literature given.

1) Enhancing the bus subsystem: For higher clock frequencies and for more effective

microarchitectures, the bandwidth of the buses that connect the processor to the memory

and the I/O subsystems needs to be increased for obvious reasons. This requirement has

driven the evolution of front side processor buses (system buses), general purpose

12

peripheral buses (such as the ISA and the PCI buses), dedicated peripheral buses and ports

intended to connect storage devices (IDE/ATA, SCSI standards), video (AGP), audio

(AC’ 97) or low speed peripherals (USB bus, LPC port etc.). In order to exemplify the

progress achieved, below is a diagram showing how the data width and the maximum

clock frequency of major general purpose peripheral bus standards have evolved (see

Figure 6).

88 199089 91 92 93 94 1995

ISA EISA PCI PCI v. 2 PCI v. 2.1

8.33 MHz 8.33 MHz 33 MHz 33 MHz 66 MHz
8/16-bit 32-bit 32-bit 64-bit 64-bit

96 97 98 99

PCI - X
(proposed)

133 MHz
64-bit

1987

Figure 6: Evolution of major general purpose periheral buses

As depicted in the figure, the standardized 8/16-bit wide AT-bus, known as the ISA bus

(International Standard Architecture) [25], was first extended to provide 32-bit data width

(this extension is called the EISA bus [26]). The ISA bus was subsequently replaced by the

PCI bus and its wider and faster versions, such as PCI versions 2, 2.1 [27] and the PCI-X

proposal [28]. Figure 6 demonstrates that the maximum bus frequency was raised at

roughly the same rate as the clock frequency of the processors.

2) Enhancing the memory subsystem: Higher clock frequencies and more efficient

microarchitectures both demand higher bandwidth and reduced load-use latencies (the time

needed to use requested data) from the memory subsystem. There is an impressive

evolution along many dimensions towards achieving these goals, including (a) use of

enhanced main memory components, such as FPM DRAMs, EDO DRAMs, SDRAMs,

13

RDRAMs, DRDRAMs [29], (b) introducing and enhancing caches, through improved

cache organization, increasing the number of cache levels, implementing higher cache

capacities, using directly connected or on-die level 2 caches etc., [30], [31] and (c)

introducing latency reduction or hiding techniques, such as software or hardware

controlled data prefetch, [32], [33], lock-up free (non-blocking) caches, out-of-order loads,

speculative loads etc., as outlined later in Section V.E.5.b.

3) Enhancing the I/O subsystem: Concerning this point, we again do not delve into

details, but rather just point out the spectacular evolution of storage devices (hard disks,

CD-ROM players etc.) in terms of storage capacity and speed as well as the evolution of

display devices in terms of their resolution etc. in order to better support more demanding

recent applications such as multimedia, 3D graphics, etc.

IV. INTRODUCTION OF TEMPORAL PARALLELISM AND ITS

IMPLICATIONS

A. Overview of possible approaches to introduce temporal parallelism

A traditional von Neumann processor executes instructions in a strictly sequential

manner as indicated in Figure 7. For sequential processing, CPI, i.e. the average length of

the issue intervals, equals the average execution time of the instructions. In the figure CPI

= 4. Usually CPI >> 1.

Assuming a given ISA, CPI can be reduced by introducing some form of pipelining— in

other words, by utilizing temporal parallelism. In this sense CPI reflects the extent of

14

temporal parallelism achieved in instruction processing, as already emphasized in Section

II.

Basically, there are three main possibilities to overlap the processing of subsequent

instructions. These are as follows: (a) overlapping the fetch phases and the last processing

phase(s) of the preceding instruction, (b) overlapping the execute phases of subsequent

instructions processed in the same execution unit (EU) by means of pipelined execution

units, or (c) overlapping all phases of instruction processing using pipelined processors, as

shown in Figure 7.

The arrows in the figure represent instructions to be executed. For illustration purposes

we assume that instructions are processed in four subsequent phases, called the Fetch (F),

Decode (D), Execute (E) and Write (W) phases.

Mainframes

Microprocessors

Introduction of temporal parallelism
(Reduction of CPI)

Sequential
processing

Overlapping the fetch
 and further phases

Overlapping the execute
phases through pipelining

Overlapping
all phases

i i

+1 i i

+3 i i

+2 i i

E E E 1 2 3

i i +1 i i
F D E W F D E W i i

+1 i i F D E W

+2 i i

i i

+1 i i

+3 i i

+2 i i

F E W D

Early
mainframes

Prefetching Pipelined
processors

Pipelined
EUs

i80286 (1982) 39

M68020 (1985) 40

Stretch (1961) 34 IBM 360/91 (1967)
CDC 7600 (1969)

35

36
Atlas (1963) 37

IBM 360/91 (1967)
38

R2000 (1988) 41

i80386 (1985) 42

M68030 (1988) 43

F D

Figure 7: Main approaches to achieve temporal parallelism

(F: fetch phase, D: decode phase, E: execute phase, W: write phase)

15

The superscripts following machine or processor designations are references to the applicable machines

or processors.

Dates in this and all subsequent figures indicate the year of first shipment (in the case of mainframes) or

that of first volume shipment (in the case of microprocessors).

(a) Overlapping the fetch phases and the last phase(s) of the preceding instruction is

called prefetching, a term coined in the early days of computing [34]. If the processor

overlaps the fetch phases with the write phases, as indicated in Figure 7, the average

execution time is reduced by one cycle compared to fully sequential processing. However,

the execution of control transfer instructions (CTIs) lessens the achievable performance

gain of instruction prefetching to less than one cycle per instruction, since CTIs divert

instruction execution from the sequential path and thus render the prefetched instructions

obsolete.

(b) The next possibility is to overlap the execution phases of subsequent instructions

processed in the same pipelined execution unit (EUs) [35], [36]. Pipelined EUs execute a

new instruction ideally in every new clock cycle, provided that subsequent instructions are

independent. Clearly, pipelined EUs are very effective in processing vectors.

(c) Finally, the ultimate solution to exploit temporal parallelism is to extend pipelining

to all phases of instruction processing, as indicated in Figure 7 [37], [38]. Fully pipelined

instruction processing ideally results in a one cycle mean time between subsequent

instructions (CPI = 1), provided that the instructions processed are free of dependencies.

The related processors are known as pipelined processors, and contain one or more

pipelined EUs.

We note that even in pipelined instruction processing the execution phase of some

complex instructions, such as division or square root calculation, is not pipelined for the

16

sake of implementation efficiency. This fact and the occurrence of dependencies between

subsequent instructions result in CPI values higher than 1 in real pipelined processors.

Although both prefetching and overlapping of the execution phases of subsequent

instructions already represent a partial solution to parallel execution, processors providing

these techniques alone are usually not considered to be instruction level parallel processors

(ILP processors). On the other hand, pipelined processors are considered to belong to the

ILP processor category.

Temporal parallelism was introduced first in mainframes (in the form of prefetching) in

the early 1960’ s (see Figure 7). In microprocessors, prefetching arrived two decades later

with the advent of 16-bit micros [39], [40]. Subsequently, pipelined microprocessors

emerged and became the main road of the evolution because of their highest performance

potential among the alternatives discussed [41] - [43]. They came into widespread use in

the second half of the 1980s, as shown in Figure 8. We point out that pipelined

microprocessors represent the second major step on the main road of microprocessor

evolution. In fact, the very first step of this evolution was increasing the word length

gradually from 4 bits to 16 bits, as exemplified by the Intel processors 4004, [44], 8008,

8080 and 8086 [45]. This evolution gave rise to the introduction of a new ISA for each

wider word length until 16-bit ISAs arrived. For this reason, while focusing on

performance issues, we discuss the evolution of the microarchitecture of microprocessors

beginning with 16-bit processors.

17

x86

M68000

MIPS R

1980 81 82 83 84 85 86 87 88 89 1990 91 92

80386 80486

68030 68040

R3000 R6000 R4000

Pipelined processors

R2000

68020

80286

Figure 8: The introduction of pipelined microprocessors

B. Implications of the introduction of pipelined instruction processing

1) Overview: Pipelined instruction processing calls for higher memory bandwidth and

smart processing of CTI’ s (control transfer instructions), as detailed below. The basic

techniques needed to avoid processing bottlenecks due to the requirements mentioned

above are caches and speculative branch processing.

2) The demand for higher memory bandwidth and the introduction of caches: A

pipelined processor fetches a new instruction in every new clock cycle, provided that

subsequent instructions are independent. This fact means that higher memory bandwidth is

required for fetching instructions in comparison to sequential processing. Furthermore,

pipelined instruction processing also increases the frequency of load and store instructions

and, in the case of CISC architectures, the frequency of referenced memory operands.

Consequently, pipelined instruction processing requires higher memory bandwidth for both

instructions and data. As the memory is typically slower than the processor, the increase of

the memory bandwidth requirement of pipelined instruction processing accelerated and

inevitably brought about the introduction of caches, an innovation pioneered in the IBM

18

360/85 [46] in 1968. With caches, frequently used program segments (cycles) can be held

in fast memory, which allows instruction and data requests to be served at a higher rate.

Caches came into widespread use in microprocessors in the second half of the 1980s,

essentially along with the introduction of pipelined instruction processing (see Figure 9).

As the performance of microprocessors is increasing by a rate of about two orders of

magnitude per decade (see Section A), there is a continuous demand to raise the

performance of the memory subsystem as well. As a consequence, the enhancement of

caches and their connection to the processor has remained one of the focal points of

microprocessor evolution for more than one decade now.

x86

M68000

MIPS R

1980 81 82 83 84 85 86 87 88 89 1990 91 92

80386 80486

68030 68040

R3000 R6000 R4000

C(8),Spe

C(1/4,1/4) C(4,4),Spe

C(4,4) C(4,4) C(16) C(8,8),Spe

pipelined (scalar ILP)

C(n) cache (universal cache, size in kB)

C(n/m) cache (instruction/data cache, size in kB)
Spe Speculative execution of branches

C(0,1/4)

R2000

68020

80286

Figure 9: The introduction of caches and speculative branch processing

3) Performance degradation caused by unconditional CTI’s and the introduction of

speculative branch processing: The main problem with pipelined processing of

unconditional CTI’s is as follows. If the processor executes CTI’ s in a straightforward

way, then by the time it recognizes a CTI in the decode stage, it will already have fetched

19

the next sequential instruction. As the unconditional CTI directs the processor to branch,

the next instruction to be executed is the branch target instruction rather than the next

sequential one, which is already fetched. Then this sequential instruction needs to be

canceled and at least one wasted cycle, also known as a bubble, appears.

Conditional CTIs can cause even more wasted cycles. Consider here that for each

conditional CTI the processor needs to know the specified condition prior to deciding

whether to issue the next sequential instruction or to fetch and issue the branch target

instruction. Thus each unresolved conditional branch would basically lock up the issue of

instructions until the processor can decide whether the sequential path or the branch target

path needs to be followed. Consequently, if a conditional CTI refers to the result of a long

latency instruction, such as a division, dozens of wasted cycles would occur.

Speculative execution of branches or briefly speculative branching [47]–[50] can

remedy this problem. Speculative branching requires the microarchitecture to make a guess

for the outcome of each conditional branch and resume instruction processing along the

estimated path. Assuming the use of this technique, conditional branches no longer hinder

instruction issue, as demonstrated in Figure 10. Notice that in the figure the speculation

goes only until the next conditional branch.

20

Instructions other than conditional branches
Conditional branches

Basic

block

Basic

block

guessed path

The processor makes a guess
for the outcome of the branch

and keeps on issuing instructions

along the guessed path.

The processor waits for the
resolution of the speculation made.

If the guess was correct, it
resumes instruction issue, else

it cancels all instructions executed
and resumes execution along

the alternative path.

Figure 10: The principle of speculative execution assuming speculation along a single conditional branch

Later, when the specified condition becomes known, the processor checks the guess

made. For a correct guess it acknowledges the instructions processed. Otherwise it cancels

incorrectly executed instructions and resumes execution along the correct path.

In order to exploit the intrinsic potential of pipelined instruction processing, designers

introduced both caches and speculative branch processing at about the same time, as Figure

9 demonstrates.

4) Limits of utilizing temporal parallelism: With the massive incorporation of temporal

parallelism into instruction processing, the average length of issue intervals can be reduced

to almost one clock cycle. However, CPI = 1 marks the absolute limit achievable through

temporal parallelism. Any further substantial performance increase calls for the

introduction of parallel operation along another dimension. There are two possibilities for

21

this: either to introduce issue parallelism or intra-instruction parallelism. Following the

evolutionary path of microprocessors, we first discuss the former alternative.

V. THE INTRODUCTION OF ISSUE PARALLELISM AND ITS

IMPLICATIONS

A. The introduction of issue parallelism

Issue parallelism, also known as superscalar instruction issue [5], [51], [52], refers to

the capability of the processor to issue multiple decoded instructions per clock cycle from

the decode unit for further processing. The peak rate of instructions issued per clock cycle

is called the issue rate (nir).

After designers exhausted the full potential of pipelined instruction processing around

1990 the introduction of issue parallelism became the main option of increasing processor

performance. Due to their higher performance over pipelined processors, superscalars

rapidly began to dominate all major processor lines, as Figure 11 shows.

22

Intel 960 960KA/KB 960CA (3)

M 88000 MC 88100 MC 88110 (2)

HP PA PA 7000 PA7100 (2)

SPARC MicroSparc SuperSparc (3)

Mips R R 40001,2 R 8000 (4)

Am 29000 29000 sup (4)
29040

IBM Power Power1(4)
RS/6000

DEC α α21064(2)

PowerPC PPC 601 (3)
PPC 603 (3)

87 88 89 90 91 92 93 94 95 96

CISC processors

RISC processors

Intel x86 i486 Pentium(2)

M 68000 M 68040 M 68060 (2)

Gmicro Gmicro/100p Gmicro500(2)

AMD K5 K5 (4)

CYRIX M1 M1 (2)

1 We do not take into account the low cost R 4200 (1992) since superscalar architectures are intended to extend the performance of the high-end models of a particular line.
2 We omit processors offered by other manufactures than MIPS Inc., such as the R 4400 (1994) from IDT, Toshiba and NEC.

denotes superscalar processors.
The figures in brackets denote the issue rate of the processors.

Figure 11: The appearance of superscalar processors

B. Overall implications of superscalar issue

The main components of processor performance were identified in expression (5). Here

issue parallelism is expressed by the average number of instructions issued per issue

interval (ILP) rather than by the average number of instructions issued per clock cycle

(IPC). However, assuming both pipelined instruction processing and superscalar

instruction issue, the average length of issue intervals (CPI) approaches one cycle. Thus for

superscalar processors ILP in expression (5) roughly equals the average number of

instructions issued per clock cycle (IPC):

IPC ~ ILP

Unlike pipelined processors that issue at most one instruction per cycle for execution,

superscalars issue up to nir instructions per cycle, as illustrated in Figure 12. As a

consequence, superscalars must be able to fetch nir times as much instructions and memory

23

data and must store nir times as much memory data per cycle (tc) than pipelined processors.

In other words, superscalars require nir times higher memory bandwidth than pipelined

processors at the same clock frequency. As clock frequencies of processors are rapidly

increasing over time as well (see Figure 4), superscalars that arrived after pipelined

processors, definitely need a highly enhanced memory subsystem compared to those used

with pipelined processors, as already emphasized while discussing the main road of

microarchitecture evolution in Section III.B.2.

Pipelined
instruction processing

instruction processing
Superscalar

(n =3)i

t

t
tc

Figure 12: Contrasting pipelined instruction processing with superscalar processing

(arrows indicate instructions)

Superscalar issue also impacts branch processing. There are two reasons for this. First,

branches occur up to nir times more frequently with superscalar instruction issue than with

scalar pipelined processing. Second, each wasted cycle that arises during branch

processing can restrict multiple instructions from being issued. Consequently, superscalar

processing requires more accurate branch speculation or, in general, more advanced

branch handling than is used with pipelined processing. Thus superscalar instruction issue

also gave rise to an impressive evolution of the branch handling subsystem. For an

overview of the progress achieved so far we refer to [49], [53] - [55].

24

C. The direct issue scheme and the resulting issue bottleneck

1) The principle of the direct issue scheme: While issuing multiple instructions per

cycle early superscalars typically used some variants of the direct issue scheme in

conjunction with a simple branch speculation [52]. Direct issue means that decoded

instructions are issued immediately, i.e. without buffering, to the execution units (EU’ s), as

shown in Figure 13.

The issue process itself can best be described by introducing the concept of the

instruction window (issue window). The instruction window, whose width equals the issue

rate (nir), contains the last nir entries of the instruction buffer. The instructions held in the

window are decoded and checked for dependencies. Executable instructions are issued

from the instruction window directly to free EU’ s, whereas dependent instructions remain

in the window until existing dependencies become resolved. Variants of this scheme differ

on two aspects: how dependent instructions affect the issue of subsequent executable

instructions held in the window [49], [52] and how the window is shifted after issuing

instructions.

Icache

I-buffer

Instr. window (3)

Decode,
check,
issue

Dependent instructions
block instruction issue

EU EU EU

Issue

Executable instructions
Dependent instructions
Issue

C
i

C i+1

C
i+2

i4i5i6

i1i2i3

Instr. window

i2i3

Cycles

25

(a): Simplified structure of a superscalar microarchitecture (b): The issue process

 that employs the direct issue scheme and has an issue rate of three

Figure 13: Principle of the direct issue scheme

In Figure 13b we demonstrate the direct issue scheme for an issue rate of three (nir = 3)

with the following two assumptions: (a) the processor issues instructions in order, meaning

that a dependent instruction blocks the issue of all subsequent independent instructions

from the window, and (b) the processor needs to issue all instructions from the window

before shifting it along the instruction stream. Examples of processors that issue

instructions this way are the Power1, the PA7100, and the SuperSparc. In the figure we

assume that in cycle ci the instruction window holds instructions i1–i3. If in cycle ci

instructions i1 and i3 are free of dependencies, but i2 depends on instructions that are still in

execution, only instruction i1 can be issued in cycle ci, but both i2 and i3 will be withheld in

the window, since i2 is dependent and blocks the issue of any subsequent instruction. Let us

assume that in the next cycle (ci+1) i2 becomes executable. Then in cycle ci+1 instructions i2

and i3 will be issued for execution as well. In the next cycle (ci+2) the window is shifted by

three along the instruction stream, so it then holds the subsequent three instructions (i4–i6)

and the issue process resumes in a similar way.

2) The throughput of superscalar microarchitectures that use the direct issue scheme:

As far as the throughput (IPC) of the microarchitecture is concerned, the microarchitecture

may best be viewed as a chain of subsystems linked together via buffers. Instructions are

processed in the microarchitecture by flowing through the subsystems in a pipelined

fashion. These subsystems are typically responsible for fetching, decoding and/or issuing,

26

executing and finally retiring (i.e. completing in program order) instructions. The kind and

number of subsystems depend on the microarchitecture in question.

A simplified execution model of a superscalar RISC processor that employs the direct

issue scheme is shown in Figure 14 below. Basically, the microarchitecture consists of a

front and a back end that are connected by the instruction window. The front end consists

of the fetch and decode subsystems, and its task is to „fill” the instruction window.

Instruction
cache

Instruction
window

Execute

Retire

Execute rate

Load data

Data cache
(Memory subsystem)

Fetch rate

Decode rate

Issue rate

Fetch

Decode

Store data

Architectural
register file

Register results

Reg. ops.Issue

Front end

Back end

Retire rate

Figure 14: Simplified execution model of a superscalar RISC processor that employs direct issue

The instruction window is „depleted” by the back end of the microarchitecture that also

takes care of executing the issued instructions. The back end contains the issue, execute

and retire subsystems. The issue subsystem forwards executable instructions from the

instruction window to the execute subsystem. The execute subsystem performs the

27

operations required, where referenced register operands are supplied from the architectural

register file to the EU’ s. Finally, executed instructions are completed by the retire

subsystem in program order and the results generated are sent either to the architectural

register file or to the memory.

We note that the microarchitecture of advanced CISC processors shows some

differences in comparison to RISC processors. Advanced CISC’ s usually convert CISC

instructions into simple RISC-like internal operations. Denoted differently in different

processor lines (e.g. “µops” in Intel’ s Pentium Pro and subsequent models, “RISC86

operations” in AMD’ s K5–K7, and “ROP’ s” in Cyrix’ s M3), these internal operations are

executed by a RISC kernel. For CISC processors the retire subsystem also performs a

“reconversion” by completing those internal operations that belong to the same CISC

instruction together. Thus the execution model of RISC processors is basically valid for

CISC processors as well.

Let us now discuss the notions of throughput and the “width” of the microarchitecture in

relation to the execution model presented.

 Each subsystem has a maximum throughput in terms of the maximum number of

instructions that may be performed per cycle. Maximum throughput values of each

subsystem are disignated as the fetch, decode, issue, execution and the retire rate,

respectively, as indicated in Figure 14. Now, the maximum throughput of a subsystem or

of the entire microarchitecture can be interpreted as its width. Therefore, the width of the

fetch, decode, issue, execute and retire subsystems is represented by their respective rates.

Clearly, the width of the entire microarchitecture is determined by the smallest value of its

subsystems. This notion is analogous to the notion of “word length of a processor” that

indicates the characteristic length of instructions and the data processed.

28

In fact, the width of a subsystem only indicates its performance potential. When

running an application, subsystems have actually less throughput, since they usually

operate under worse than ideal conditions. For instance, branches decrease the actual

throughput of the fetch subsystem; or the actual throughput of the issue subsystem depends

on the number of parallel executable instructions available in the window from one cycle

to the next. In any application, the smallest throughput of any subsystem will be the

bottleneck that determines the resulting throughput (IPC) of the entire microarchitecture.

3) The issue bottleneck of the direct issue scheme: In each cycle some instructions in the

instruction window are available for parallel execution, while others are locked by

dependencies. As EU’ s finish the execution of instructions, existing dependencies become

resolved and formerly dependent instructions become available for parallel execution.

Clearly, a crucial point for the throughput of the microarchitecture is the average number

of instructions that are available for parallel execution in the instruction window per cycle.

In the direct issue scheme all data or resource dependencies occurring in the instruction

window block instruction issue. This actually limits the average number of issued

instructions per cycle (ILP) to about two in general purpose applications [56], [57].

Obviously, when the microarchitecture is confined to issue only up to approx. two

instructions per cycle on average, its throughput is also limited to about two instructions

per cycle, no matter how wide other subsystems of the microarchitecture are.

Consequently, the direct issue scheme leads to an issue bottleneck that severely limits the

maximum throughput of the microarchitecture.

In accordance with this restriction, early superscalars usually have an issue rate of two

to three (as indicated in Figure 11). Consequently, their execution subsystems typically

29

consist of either two pipelines (Intel’ s Pentium, Cyrix’ s M1) or two to four dedicated

pipelined EU’ s (such as e.g. in DEC’ s (now Compaq’ s) Alpha 21064).

In order to increase the throughput of the microarchitecture, designers had to remove the

issue bottleneck and at the same time increase the throughput of all relevant subsystems of

the microarchitecture. In the subsequent section we focus on the first topic, while the

second issue is discussed in Section E.

D. Basic techniques introduced to remove the issue bottleneck and to increase the

number of parallel executable instructions in the instruction window.

1) Overview: The issue bottleneck can be addressed primarily by using dynamic

instruction scheduling. However, in order to effectively capitalize on this technique,

dynamic instruction scheduling is usually augmented by register renaming. Furthermore,

the processor is assumed to make use of speculative execution of branches, a technique

already introduced in pipelined processors.

2) Dynamic instruction scheduling: The key technique used to remove the issue

bottleneck is dynamic instruction scheduling, also known as shelving [4], [5], [58].

Dynamic instruction scheduling means buffered instruction issue. It presumes the

availability of dedicated buffers, called issue buffers (or “ reservation stations” in specific

implementations) in front of the EU’ s, as shown e.g. in Figure 152. With dynamic

instruction scheduling the processor first issues the instructions into available issue buffers

without checking either for data or control dependencies or for busy EU’ s. As data

2 Here we note that beyond individual reservation stations that serve individual EU’ s as shown in Figure 15,
there are a number of other solutions to implement dynamic instruction scheduling [49], [58]. For instance, the
prevailing solution is either to use group reservation stations serving EU’ s of the same type (e.g. fixed point
units) or to have centralized reservation stations (unified reservation stations), as implemented in Intel’ s Pentium
Pro, Pentium II and Pentium III processors.

30

dependencies or busy execution units no longer restrict the flow of instructions, the issue

bottleneck of the direct issue scheme is removed.

With dynamic instruction scheduling the processor is able to issue as many instructions

into the issue buffers as its issue rate (usually 4) in each cycle, provided that no hardware

restrictions occur. Possible hardware restrictions include missing free issue buffers or

datapath width limitations. Nevertheless, in a well-designed microarchitecture the

hardware restrictions mentioned will not severely impede the throughput of the issue

subsystem. Issued instructions remain in the issue buffers until they become free of

dependencies and can be dispatched for execution.

I cache

I-buffer

Decode/Dispatch
Instructions are issued without
checking for data dependences to the
issue buffers (reservation stations)

Shelved not dependent

for execution to the EUs.

Dep. checking/
dispatch

Dep. checking/
dispatch

Dep. checking/
dispatch

EU EU EU

Instruction window (4)

instructions are dispatched

Reservation
station

Dispatch

Issue

Reservation
station

Reservation
station

Figure 15: The principle of dynamic instruction scheduling, assuming that the processor has individual

issue buffers (called reservation stations) in front of the execution units.

Dynamic instruction scheduling improves the throughput of the front end of the

microarchitecture not only by removing the issue bottleneck of the direct issue scheme but

31

also by significantly widening the instruction window. Under the direct issue scheme the

processor attempts to find executable instructions in a small instruction window whose

width equals the processor’ s issue rate (usually 2–3). In contrast, when dynamic instruction

scheduling is used, the processor scans the issue buffers for executable instructions. This

way the width of the instruction window is determined by the total capacity of all issue

buffers available, while its actual width equals the total number of instructions held in the

window (which may change dynamically from one cycle to the next). As processors

usually contain dozens of issue buffers, dynamic instruction scheduling greatly widens the

instruction window in most cases compared to the direct issue scheme. Since the processor

will find in a wider window on average more parallel executable instructions per clock

cycle than in a smaller one, dynamic scheduling increases the throughput of the front end

of the microarchitecture even more.

3) Register renaming: This is another technique used to increase the efficiency of

dynamic instruction scheduling. Register renaming removes false data dependencies, i.e.

write after read (WAR) and write after write (WAW) dependencies between register

operands of subsequent instructions. If the processor uses renaming, it allocates to each

destination register a rename buffer that temporarily holds the result of the instruction. It

also tracks current register allocations, fetches source operands from renamed and/or

architectural registers, writes the results from the rename buffers into the addressed

architectural registers and finally reclaims rename buffers that are no longer needed.

Renaming must also support a recovery mechanism for erroneously speculated branches or

interrupts accepted [4], [5], [49].

The processor renames destination and source registers of instructions during instruction

issue. As renaming removes all false register data dependencies between the instructions

32

held in the instruction window, it considerably increases the average number of

instructions available in the instruction window for parallel execution per cycle.

Figure 16 tracks the introduction of dynamic instruction scheduling and renaming in

major superscalar lines. As indicated, early superscalars (the “ first wave”) typically made

use of the direct issue scheme. A few subsequent processors introduced either renaming

alone (like the PowerPC 602 or the M1) or dynamic instruction scheduling alone (such as

the MC88110, R8000). In general, however, dynamic instruction scheduling and renaming

emerged together in a “ second wave” of superscalars in the mid-1990’ s.

Direct issue with
speculative branching

Direct issue with

speculative branching
renaming and

speculative branching

Dynamic instruction

Issue schemes used in major superscalar lines

R 10000 (1996)

PentiumPro (1995)

Am 29000 sup. (1995)

Am K5 (1995)

PM1 (Sparc 64)

PowerPC 603 (1993)
PowerPC 604 (1995)
PowerPC 620 (1996)
PA 8000 (1996)

(1995)

Issue performance, trend

PowerPC 602 (1995)

 PA 7200 (1995)

 Pentium (1995)

 SuperSparc (1992)

PA 7100 (1992)

 PowerPC 601 (1993)

 UltraSparc (1995)

Alpha 21064 (1992)
Alpha 21064A (1994)
Alpha 21164 (1995)

 R8000 (1994)

M1 (1995)

Alpha 21264 (1998)

MC 88110 (1993)MC 68060 (1993)

Dynamic inst. scheduling
with renaming and

speculative branching

R 12000 (1998)

PA 8200 (1998)
PA 8500 (1999)

Pentium II (1997)
Pentium III (1999)

1

2

 The R8000 shelves only FP instructions.1

 The MC88110, shelves only load/store instructions.2

scheduling with

Figure 16: Introduction of dynamic instruction issue and renaming in superscalar processors

33

4) Advanced speculative branching: Wide instruction windows, however, require

speculation along multiple conditional branches— called deep speculation— in order to

avoid stalling instruction issue due to multiple consecutive conditional branches. However,

the deeper branch speculation (i.e. the more consecutive branches a guessed path may

involve), the higher the penalty for wrong guesses in terms of wasted cycles. As a

consequence, dynamic instruction scheduling calls for deep speculation and highly

accurate branch prediction. For this reason, the design of effective branch prediction

techniques has been a major cornerstone in the development of high performance

superscalars. For more details of advanced branch speculation techniques we refer to the

literature [53] - [55].

5) The throughput of superscalar microarchitectures that use dynamic instruction

scheduling and renaming: RISC processors providing dynamic instruction scheduling and

renaming are usually four instructions wide by design, which means that their fetch rate,

decode rate, rename rate, dispatch rate and retire rate all equal four instructions per cycle.

In Figure 17 we show a simplified execution model of superscalar RISC processors that

use dynamic instruction scheduling and renaming. In this model the front end of the

microarchitecture contains the fetch, decode, rename and the issue subsystems. The front

end feeds instructions into the issue buffers constituting the instruction window.

34

Dispatch

Instruction
cache

Fetch

Decode

Rename

Dispatch

Instruction
window

Issue

Execute

Retire

Data cache
(Memory subsystem)

Store data

Load data

Dispatch rate

Execution rate

Retire rate

Register

operands

Arch. reg.

Ren. reg.

Fetch rate

Decode rate

Rename rate

Issue rate

Register results

Front end

Back end

Dispatch

Copy register results

Figure 17: Simplified execution model of a superscalar RISC processor that employs both dynamic

instruction scheduling and renaming

Executable instructions are dispatched from the window to available EU’ s by the

dispatch subsystem. Referenced register operands are supplied either during instruction

issue or during instruction dispatch. The execute subsystem performs the operations as

required. Register results and fetched memory data are forwarded to the rename registers

that temporarily hold all register results. Finally, executed instructions are retired in

program order by the retire subsystem. Register results are copied at this stage from

rename registers to the corresponding architectural registers, and memory data are

forwarded to the data cache in program order.

35

 We note that dispatch rates are typically higher than issue rates, as indicated in Figure

17. In most cases, the dispatch rate is five to eight instructions per cycle (see Table 1).

There are two reasons for this: (a) to sustain a high enough execution width even though

complex instructions that often have much higher repetition rates than one cycle (like

division, square root etc.); and (b) to provide ample execution resources (EU’ s) for a wide

variety of possible mixes of dispatched instructions. Execution rates are usually even

higher than dispatch rates, because multiple multi-cycle EU’ s are typically able to operate

in parallel, but for cost reasons they often share the same bus, which allows only one

instruction to be issued to them per cycle.

Processors/year of
volume shipment

Issue rate
(instr./cycle)

Dispath rate a
(instr./cycle)

PowerPC 603 (1993) 3 3

PowerPC 604 (1995) 4 6

Power2 (1993) 4/6
b

10

Nx586 (1994) 3/4 c,d 3/4 c,d

K5 (1995) 4
d

5 d

PentiumPro (1995) 3

PM1 (Sparc 64) (1995) 4

5 d

8

PA8000 (1996) 4 4

R10000 (1996) 4 5

Alpha 21264 (1998) 4 6

a Because of address calculations performed separately, the given numbers
are usually to be interpreted as operations/cycle. For instance, the Power2
performs maximum 10 operations/cycle, which corresponds to 8 instr./cycle.b The issue rate is 4 for sequential mode and 6 for target mode.

c Both rates are 3 without an optional FP-unit (labelled Nx587) and 4 with it.
d Both rates refer to RISC operations (rather than to the native CISC

operations) performed by the superscalar RISC core.

Comparison of issue and dispatch rates of recent superscalar processors

Table 1: Issue and dispatch rates of superscalar processors

36

As far as advanced CISC processors with dynamic instruction scheduling and renaming

are concerned, they typically decode up to three CISC instructions per clock cycle and

usually perform an internal conversion to RISC-like operations, as discussed earlier. As

x86 CISC instructions generate on average approx. 1.2–1.5 RISC-like instructions [59], the

front end of advanced CISC processors has roughly the same width than that of advanced

RISC processors in terms of RISC-like operations.

Another interesting consideration is how the introduction of dynamic instruction

scheduling and renaming contributes to increasing the efficiency of microarchitectures. In

Figure 18 we show the relative cycle-by-cycle performance of processors in terms of their

SPECint95 scores standardized to 100 MHz. Designs using dynamic scheduling and

renaming are identified by outlined processor designations. As this figure demonstrates,

superscalars featuring dynamic scheduling and renaming have a true advantage over

microarchitectures using direct issue. Models comparable in this respect are e.g. Pentium

vs. Pentium Pro, PowerPC 601 vs. PowerPC 604, PA7100 vs. PA8000, R8000 (which

“ shelves” only FP instructions) and R10000 or Alpha 21064 vs. Alpha 21264. These

comparisons are slightly distorted due to the fact that designs with dynamic instruction

scheduling are typically wider than microarchitectures with direct issue. In order to include

this aspect, we also indicate the issue rates of the processors after the processor

designations in brackets (see Figure 18).

We note that the UltraSparc superscalar family is the only line that has not yet

introduced dynamic scheduling and renaming. In order to reduce time-to-market, designers

ruled out a “ shelved” design at the beginning of the design process [60]. This caps the

cycle-by-cycle throughput of the UltraSparc line well below comparable advanced RISC

37

designs that make use of both dynamic scheduling and renaming (such as the R12000, the

PA 8200 and PA8500 or the Alpha 21264).

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

1

2

3

4

5

6

7

8

t

SPECint95/100 MHz

Alpha 21064(2) Alpha 21064A(2)

Alpha 21164(4)

PA7100(2)

Alpha 21264(4)

PA7200(2)

PA8200(4)

PowerPC 601(3)

R12000(4)

SuperSPARC(3)

UltraSPARC(4)
UltraSPARC II(4)

Power1(4)

PowerPC 603(3)

R8000(4)

PowerPC 604(4)

PA8000(4)

R10000(4)

Sparc64(4) 750 (Arthur)(3)

PA8500(4)

Power3(4)

7400(4)

Partial dyn. instr. scheduling

Full dyn. instr.scheduling and renaming

Pentium(2)
1

Power2(6/4)
2

Pentium III(3)
Pentium Pro(3) Pentium II(3)

K6(3)1

K5(4) 1

Nx586(4)1

P2SC(6/4)

K7(3) 1

1 CISC processors

2
1

1

2 The issue rate is 6 for the sequential path and
immediately after branching

1

Figure 18: Efficiency of microarchitectures

Finally, we point out one important feature characterizing the internal operation of

superscalars that use dynamic instruction scheduling, renaming and speculative branch

processing. If all these techniques are used, only RAW dependencies between register

operands as well as memory data dependencies restrict the processor from executing

instructions in parallel from the instruction window (not considering any obvious hardware

limitations). Consequently, the microarchitecture executes instructions with register

operands (and literals) internally according to the dataflow principle of operation. Then

38

basically only producer-consumer type register data dependencies set the dataflow limit of

execution.

39

E. Approaches to increase the throughput of particular subsystems of superscalar

microarchitectures

1) Overview: Raising the throughput of the microarchitecture is a real challenge, as it

requires a properly orchestrated enhancement of all subsystems involved. In addition to

dynamic instruction scheduling and renaming there are a number of techniques that have

been used or proposed to increase the throughput of particular subsystems. Below we give

an overview of these possibilities.

2) Increasing the throughput of the instruction fetch subsystem: Ideally, the instruction

fetch subsystem supplies instructions for processing at the fetch rate. However, conditional

branches or cache misses may interrupt the continuous stream of instructions for a large

number of cycles. Designers introduced a handful of advanced techniques to cope with

these challenges, including: (a) more intricate branch handling schemes, as already

discussed, (b) diverse techniques to access branch target paths as quickly as possible using

Branch History Tables, Branch Target Buffers, Subroutine Return Stacks etc. [49], (c)

various instruction prefetch schemes to reduce latencies incurred by cache misses [33], and

(d) trace caches [10], [11], [12]. Current processors improve the throughput of the fetch

subsystem by continuously refining these techniques.

3) Increasing the throughput of the decode subsystem: With superscalar instruction

issue, multiple instructions need to be decoded per cycle, so decoding becomes much more

complex than in scalar processors. Moreover, assuming dynamic instruction scheduling

and renaming, a time critical path arises that consists of decoding, renaming and issuing

the instructions to the issue buffers. A variety of checks need to be carried out along this

path to see whether there are enough empty rename or issue buffers, or whether required

buses are wide enough to forward multiple instructions into the same buffer, etc. As a

40

consequence, higher issue rates (3 or higher) can unduly lengthen this time critical path.

Pipelined instruction processing segments this path into decode, rename and issue

subtasks, where each subtask takes one or more clock cycles (pipeline stages) to perform

the particular subtasks mentioned. If, assuming higher issue rates, the time to perform one

of the subtasks becomes longer, either the clock frequency must be lowered or additional

clock cycle slots (pipeline stages) need to be included, which unfortunately also increases

the penalty for mispredicted branches. An appropriate technique to avoid lengthened

decode times with higher issue rates is known as predecoding [49].

The fundamental idea behind predecoding is to reduce the complexity of the decode

stage by partially decoding instructions while fetching them into the instruction buffer, as

indicated in Figure 19. The results of predecoding may include identified instruction types,

recognized branches, determined instruction length (in the case of a CISC processor), etc.

Typically 128 bits/cycle

E.g.148 bits/cycle usually

Second-level cache
(or memory)

Predecode
unit

I-cache

When instructions are written into the

I-cache, the predecode unit appends

4-7 bits to each RISC instruction

Figure 19: The basic idea behind predecoding

41

Predecoding appeared with the second wave of superscalars approximately in the mid-

1990s, and soon became a standard feature in both RISC and CISC processors. We note

that trace processors also predecode instructions to alleviate the complexity of the time

critical decode–rename–issue path [10] - [12].

4) Increasing the throughput of the dispatch subsystem: In order to increase the

throughput of the dispatch subsystem, either the dispatch rate needs to be raised or the

instruction window widened.

(a) Raising the dispatch rate, i.e. the maximum number of instructions that can be

dispatched per cycle, is the “ brute force” solution to increase the throughput of the dispatch

subsystem. It requires more execution resources, such as EU’ s, datapaths and more

complex logic to select executable instructions from the window. Table 1 indicates the

dispatch rates of various superscalar processors.

(b) Widening the instruction window is a more subtle approach to raise the throughput

of the dispatch subsystem. This approach is motivated by the expectation that more parallel

executable instructions per cycle can be found in a wider instruction window than in a

smaller one. This is the reason why recent processors typically have wider instruction

windows (by providing more issue buffers) than earlier ones, as shown in Table 2.

However, a wider window requires deeper and more accurate branch speculation, as we

emphasized earlier.

42

Processor
Width of the
instr. window

RISC processor

CISC processor

3

12

12

15

42

36

20

48

56

35

20

48

20

24

54

56

56

PowerPC 603 (1993)

PowerPC 604 (1995)

PowerPC 620 (1996)

Power3 (1998)

PA8500 (1999)

PA8000(1996)

Alpha 21264 (1998)

PM1 (Sparc64) (1995)

R10000 (1996)

K5 (1995)

K6 (1996)

K7 (1998)

Nx586 (1994)

M3 (2000)

Pentium II (1997)

PentiumPro (1995)

R12000 (1998)

Table 2: Width of the instruction window in superscalar processors that use dynamic

instruction issue

Finally, we note that parallel optimizing compilers also contribute to increase the

average number of parallel executable instructions available in the window per cycle.

As our paper focuses on the microarchitecture itself and does not discuss compiler

issues, readers interested in this topic are referred to the literature [61] - [62].

5) Increasing the throughput of the execution subsystem: There are three chief ways to

increase the throughput of the execution subsystem: (a) increasing the execution rate of the

processor by providing more EU’ s that are able to operate simultaneously; (b) reducing the

repetition rates of EU’ s (i.e. the number of cycles needed until an EU can accept a new

instruction for execution); and (c) shortening the execution latency of EU’ s (i.e. the

number of cycles needed until the result of an instruction becomes available to a

subsequent instruction). Below we will discuss only the last issue mentioned.

43

If the processor performs both dynamic instruction scheduling and renaming, then

decoded, issued and renamed instructions wait for execution in the issue buffers, i.e. in the

instruction window. Clearly, the earlier existing RAW dependencies are resolved in the

instruction window, the more instructions will be available for parallel execution on the

average per cycle. This calls for shortening the execution latencies of instructions.

Subsequently, we review techniques used or proposed to achieve this objective either a) for

register instructions or b) for load/store instructions.

a) Shortening the execution latencies of register instructions. Basically, the following

two techniques are used to achieve this goal.

(i) Result forwarding provides a bypass from the outputs of EU’ s to their inputs in order

to make the results immediately available for subsequent instructions, as indicated in

Figure 20. This way execution latencies can be shortened by the time needed to first write

the results into the specified destination register and then to read them from there for a

subsequent instruction.

EU

Reg. File

Inputs

From

Cache

Load forwarding

Result forwarding

Figure 20: The principle of result and load forwarding

However, implementing result forwarding requires a relatively large number of

buses, since a separate bus is needed from the output ports of each EU to the input ports

44

of all EU’ s that may need the results. This technique has already been introduced in

pipelined processors, such as the i486, and now it is a mature, established technique

widely used in superscalars.

(ii) Exceeding the dataflow limit of execution for multi-cycle register operations, such

as division. This can be achieved by using intricate techniques like value prediction [63] -

[66] or value reuse [67] - [71]. These are current research topics.

b) Shortening the execution latencies of load/store instructions. This requirement is a

crucial point for increasing the throughput of the microarchitecture for two reasons: first,

load/store instructions represent approximately 25–35 % of all instructions [72], and

second, the memory subsystem is typically slower than the processor’ s pipeline. There are

three major approaches to address this problem: (i) using load forwarding, (ii) introducing

out of order loads, and (iii) exceeding the dataflow limit of execution imposed by load

operations.

 (i) Load forwarding is a technique similar to result forwarding described above. It cuts

load latencies (i.e. the time needed until the result of a load operation becomes available to

a subsequent instruction) by immediately forwarding fetched data to the input ports of the

EU’ s, as indicated in Figure 20. This technique is also widely used in current superscalars.

(ii) Out of order execution of loads is a technique to bypass younger, already executable

loads over older loads and stores not yet ready for execution. This technique effectively

contributes to reducing delays caused by load misses. Out of order execution of loads can

be implemented in a number of ways. Speculative loads (PowerPC 620, R10000, Sparc64,

Nx586) and store forwarding (Nx586, Cyrix’ s 686 MX, M3, K-3, UltraSparc3) are

implementation alternatives already employed in current processors, whereas dynamically

speculated loads [73] - [75] and speculative store forwarding [50] are new alternatives that

have been proposed.

45

(iii) It is also possible to exceed the dataflow limit caused by load operations, either by

load value prediction [50], [75] or by load value reuse [85], [69], [75]. These issues are

recent research topics.

Finally, we emphasize that the overall design of a microarchitecture calls for

discovering and removing possible bottlenecks in individual subsystems. This task usually

requires a tedious, iterative cycle-by-cycle simulation on a number of benchmark

applications.

6) Limits of utilizing issue parallelism: Obviously, it is rather impractical to widen the

microarchitecture beyond the extent of available instruction level parallelism. As general-

purpose programs have on average no more than about 4–8 parallel executable instructions

per cycle [77] and recent microarchitectures are already at least four-wide designs, not

much room seems to remain for performance increase through widening the

microarchitecture even further, at least for general purpose applications.

VI. INTRODUCTION OF INTRA-INSTRUCTION PARALLELISM

A. Key approaches to introduce intra-instruction parallelism

The last major possibility to increase processor performance at the instruction level is to

introduce multiple data operations within instructions. This type of parallelism is called

intra-instruction parallelism. Three different approaches exist for the implementation of

multiple-data-operation instructions: (a) dual-operation instructions, (b) SIMD instructions

and (c) VLIW instructions, as indicated in Figure 21. Its introduction requires, however,

either an extension of the ISA by adding instructions that perform multiple data operations

and an appropriate enhancement of the microarchitecture to enable their execution (for the

approaches (a) and (b)) or a completely new ISA (for (c)).

46

Dual-operation
instructions instructions

SIMD
instructions

VLIW

Possible approaches to introduce
intra-instuction parallelism

ISA-extension

OPI : Average number of operations per instruction

Narrow
VLIWs

Wide
VLIWs

OPIn 2 2/4/8/16/32 (2/3; for gen.use) (~n*10)

(i=a*b+c) (MM-support)

i: O2 O1 O1O4 O3 O2i: i:
Om Om-1 O1O3 O2O1O3 O2i:

Dedicated use General use/Dedicated use

OPI >11+ε >>1

New ISA

i: O2 O1

2/4

(3D-support)

FX-SIMD FP-SIMD

OPIn : Number of operations per instruction

Dedicated use
(2-8; for DSPs)

(for gen.use)

Figure 21: Possibilities to introduce intra-instruction parallelism

(a) Dual-operation instructions comprise, as their name suggests, two different data

operations within the same instruction. The most widely used one is the multiply-add

instruction (“ multiply-and-accumulate” or “ fused multiply-add” instruction) that calculates

the dot product (x = a * b + c) for floating-point data.

Multiply-add instructions were introduced in the early 1990’ s in the POWER [78],

PowerPC [79], PA-RISC [80] and MIPS-IV [81] ISA’ s and in the respective

microprocessor models. However, this instruction is only useful for numeric computations,

and thus it only marginally increases the average number of operations executed per

instruction (OPI) in general purpose applications. Other examples of dual-operation

instructions include fused load/op, shift & add, etc. instructions.

47

(b) SIMD instructions allow the same operation to be performed on more than one set of

operands. E.g. in Intel’ s MMX multimedia extension [82], the

PADDW MM1, MM2

SIMD instruction performs four fixed point additions on the four 16-bit operand pairs

held in the 64-bit registers MM1 and MM2.

As Figure 21 indicates, SIMD instructions may refer either to fixed point or to floating

point data. Fixed point SIMD instructions enhance multimedia applications, i.e. multiple

(2/4/8/16/32) operations on display pixels, whereas floating point SIMD instructions

accelerate 3D graphics by executing (usually) two floating point operations

simultaneously.

Fixed point SIMD instructions were pioneered in 1993–1994 in the MC88110 and PA-

7100LC processors, as shown in Figure 22. Driven by the proliferation of multimedia

applications, SIMD extensions (such as AltiVec from Motorola [83], MVI from Compaq

[84], MDMX from MIPS [85], MAX-2 from Hewlett-Packard [86], VIS from Sun [87] and

MMX from Intel [82]) soon became a standard feature of most established processor

families. Floating point SIMD extensions, such as 3DNow! from AMD, CYRIX and IDT

[88] and SSE from Intel [89] emerged in 1998 in order to support 3D applications. They

were implemented in the K6-2, K6-3 and Pentium III processors, followed later by the G4

and K7, as indicated in Figure 22.

48

C
om

pa
q/

D
E

C

M
ot

or
ol

a

Su
n/

H
al

M
IP

S

H
P

A
lp

ha
 2

10
64

 A

lp
ha

 2
11

64

21
26

4

M
C

88
11

0

R
 1

20
00

R
 1

00
00

PA
71

00

PA
80

00

PA
 8

50
0

PA
-7

20
0

PA
-7

10
0L

C
PA

-8
20

0

21
16

4P
C

C
YR

IX
 /V

IA

A
M

D
/N

ex
G

en

In
te

l
Pe

nt
iu

m
Pe

nt
iu

m
Pr

o

K
5

N
x5

86

Pe
nt

iu
m

 II
I

K
7

K
6

M
II

Pe
nt

iu
m

 II

Pe
nt

iu
m

/M
M

X

K
6-

2
K

6-
3

 M
ul

tim
ed

ia
 s

up
po

rt
 (F

X
-S

IM
D

)

 S
up

po
rt

 o
f 3

D
 (F

P-
SI

M
D

)

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

R
IS

C
 p

ro
ce

ss
or

s

M
C

 8
80

00

PA

A
lp

ha

SP
A

R
C

Po
w

er
PC

R

N
x/

K

80
x8

6

C
IS

C
 p

ro
ce

ss
or

s

Po
w

er
 P

C
A

lli
an

ce
PP

C
 6

01
 (3

)

PP
C

 6
03

 (3
)

PP
C

 6
02

 (2
)

PP
C

 6
04

 (4
)

R
 8

00
00

G
3

(3
)

Po
w

er
3

(4
)

Su
pe

rS
pa

rc
U

ltr
aS

pa
rc

U
ltr

aS
pa

rc
-2

U
ltr

aS
pa

rc
-3

G
4

(3
)

19
91

19
90

IB
M

Po
w

er
Po

w
er

1(
4)

Po
w

er
2(

6/
4)

P2
SC

(6
/4

)

PP
C

 6
20

 (4
)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

90
91

92
93

94

95
96

97
98

99
98 10

8
10

9
11

0

11
1

11
2

11
3

11
4

11
5

11
7

11
8

11
9

12
0

12
1

12
2

12
3

12
6

12
7

12
9

13
0

13
1

Sp
ar

c6
4

11
6

M
1

12
4

12
8

12
5

M

M

Fi
gu

re
 2

2:
 T

he
 e

m
er

ge
nc

e
of

 F
X

-S
IM

D
 a

nd
 F

P-
SI

M
D

 in
st

ru
ct

io
ns

 in
 m

ic
ro

pr
oc

es
so

rs

(T
he

 re
fe

re
nc

es
 to

 s
up

er
sc

al
ar

 p
ro

ce
ss

or
s

ar
e

gi
ve

n
as

 s
up

er
sc

ri
pt

s
be

hi
nd

 th
e

pr
oc

es
so

r d
es

ig
na

tio
ns

)

49

Clearly, multimedia and 3D support will boost processor performance mostly in

dedicated applications. For instance, based on Media Benchmark ratings Intel stated a per

cycle performance gain of about 37 % from multimedia support in its Pentium II over

Pentium Pro [132]. Intel has also published figures demonstrating that its 3D-enabled

Pentium III has a cycle by cycle performance gain of approx. 61% over Pentium II running

the 3D Lighting and Transformation Test of the 3D WinBench99 benchmark suite [133].

On the other hand, multimedia and 3D support results in only a rather modest performance

gain for general purpose applications measured in terms of SPECint92 benchmark ratings

normed to the same clock frequency. For instance, the Pentium II offers only a 3–5 %

performance increase over the Pentium Pro at the same clock frequency, whereas Pentium

III shows a similarly slight benefit over Pentium II at the same clock frequency [1].

(c) The third major possibility to introduce intra-instruction parallelism is the VLIW

(Very Long Instruction Word) approach. In VLIW’ s, different fields of the same

instruction word control simultaneously operating EU’ s of the microarchitecture. As a

consequence, VLIW processors with a large number of EU’ s need very long instruction

words, hence the name. For instance, Multiflow’ s TRACE VLIW machine used 256-bit to

1024-bit long instruction words to specify 7 to 28 simultaneous operations within the same

instruction word [134].

Unlike superscalars, VLIW’ s are scheduled statically. This means that the compiler

takes all responsibilities for resolving all types of dependencies. To be able to do so, the

compiler needs intimate knowledge of the microarchitecture concerning the number, types,

repetition rates and latencies of the EU’ s, load-use latencies of the caches etc. On the one

hand, this results in a complex and technology-dependent compiler, while on the other

hand it leads to reduced hardware complexity as opposed to comparable superscalar

50

designs. In addition, the compiler is expected to perform aggressive parallel optimization

in order to find enough executable operations for high throughput.

VLIW proposals emerged as paper designs in the first half of the 1980’ s (Polycyclic

architecture [135], ELI-512 [136]), followed by two commercial machines in the second

half of the 1980s (Multiflow’ s TRACE [134] and Cydrome’ s Cydra-5 [137]). We will term

these traditional designs as wide VLIW’s, since they incorporate a large number of EU’ s,

typically in the range of 10 or more.

Wide VLIW’ s disappeared from the market fairly quickly, which was partly due to their

deficiencies— technological sensitivity of compilers, wasted memory fetch bandwidth

owing to sparsely populated instruction words, etc. [4]— as well as to the onus of their

manufacturers being start-up companies.

The reduced hardware complexity of VLIW designs versus superscalar designs and the

progress achieved in compiler technology have led to a revival of VLIW’ s in the late

1990’ s, both for DSP and general purpose applications. VLIW-based DSP’s, such as

Philips’ TM1000 TriMedia processors [138], TI’ s TMS320C6000 cores [139], the SC140

core from Motorola and Lucent [140] and ADI’ s TigerSharc [141] are intended for

multimedia applications. We have good reason to term these designs as narrow VLIW’s in

contrast to the earlier VLIW designs mentioned above.

General purpose narrow VLIW’s with 3–4 operations per instruction have recently

emerged on the horizon, including Intel’ s Itanium (a. k. a. Merced) [142] that implements

the EPIC (Explicitly Parallel Instruction Computing) VLIW philosophy, Sun’ s MAJC

processor units used in their MCP chips [143] and Transmeta’ s Crusoe processors [144],

which have become rivals of superscalars.

In summary, out of the above approaches designed to introduce intra-instruction

parallelism only traditional wide VLIW’ s and general purpose narrow VLIW’ s are able to

51

perform considerably more than one operation per instruction (OPI>>1) on average for

general purpose applications. On the other hand, dual-operation and SIMD instructions as

well as DSP-oriented VLIW’ s are intended for dedicated applications.

VII. THE MAIN ROAD OF THE MICROARCHITECTURE EVOLUTION

As pointed out before, the main road of the microarchitecture evolution is marked by an

increasing utilization of available instruction level parallelism. This took place while

designers introduced one after another temporal, issue and intra-instruction parallelism in

new microarchitectures (see Figure 23). This sequence has been determined basically by

the objective to boost performance while maintaining upward compatibility with preceding

models. Nevertheless, the price to be paid for increased performance is decreasing

efficiency of hardware utilization.

In this respect we point out that scalar pipelined processors that only make use of

temporal parallelism exhibit the best hardware utilization, since in essence all stages of

their pipelines are always used to process instructions. Superscalar processors that also

utilize issue parallelism make less efficient use of their hardware resources due to the

availability of multiple (parallel) execution paths. SIMD hardware extensions— which also

enable architectures to exploit intra-instruction parallelism— are the least utilized, as they

are used only for MM and 3D applications. In summary, higher per cycle throughput

necessarily leads to higher hardware redundancy, as indicated in Figure 23.

52

Extent of

opereration level

parallelism

Level of

hardware

utilization

Sequential
Parallel processing

Traditional

von N. procs.

~ 1985/88 ~ 1990/93 ~ 1994/97

parallelism
+ Intra-instruction

Superscalar processors

with MM/3D support

+ Issue
parallelism

Superscalar

processors

Temporal
parallelism

Pipelined

processors

processing

Figure 23: Main road of the evolution of microarchitectures

We note that beyond the above discussed evolutionary scenario, a second scenario was

also open for the development of microarchitectures.

Evolutionary scenario (Superscalar approach)a.

b. Radical scenario (VLIW approach)

Introduction

temporal
parallelism

and increase of
Introduction

issue
parallelism

and increase of

Introduction

temporal
parallelism

and increase of

Introduction

intra-instructions
parallelism

and increase of

Introduction

intra-instructions
parallelism

and increase of

Figure 24: Possible scenarios for the development of processors

In this second scenario, the introduction of temporal parallelism is followed

immediately by the debut of intra-instruction parallelism in the form of VLIW instructions,

as indicated in Figure 24. Clearly, introducing multiple data operations per instruction

53

instead of issuing and executing multiple instructions per clock cycle is a competitive

alternative of boosting throughput. However, in contrast to the evolutionary scenario that

preserves upward compability, this scenario represents in a sense a quite “radical” path,

since the introduction of multi-operation VLIW instructions demands a completely new

ISA. This is the key reason why this alternative, pioneered by wide VLIW’ s at the end of

the 1980’ s, turned out to be a dead end.

VIII. CONCLUSIONS

As we pointed out in our paper, microarchitectures evolved at the instruction level

basically in three consecutive cycles, following a twisting upward curve not unlike a spiral

with three windings. Each cycle added a new dimension of parallelism to the

microarchitecture by means of a new basic technique. However, once a basic technique

enhances a particular subsystem of the microarchitecture, other subsystems become the

bottleneck of processor performance. Consequently, the introduction of a new basic

technique eventually calls for several additional techniques to resolve these new

bottlenecks. Each cycle ends up when the additional techniques, introduced to augment the

basic technique, enable it to achieve its full potential. This, however, gives rise to a new

cycle in which a new dimension of parallel operation must be introduced to the

microarchitecture in order to increase processor performance even further.

In particular, temporal parallelism was the first to make its debut with pipelined

processors, as Figure 25 shows. The emergence of pipelined instruction processing

stimulated the introduction of caches and of speculative branch processing. Thus the entire

potential of temporal parallelism could be exhausted. For further performance increase,

issue parallelism became utilized next via the introduction of superscalar processors.

Superscalars evolved in two waves, differing basically in the effective width of the

54

microarchitecture. First wave superscalars made use of direct (unbuffered) instruction

issue, accompanied by advanced branch processing and a more powerful memory

subsystem. The issue bottleneck inherent to the direct issue scheme basically limited the

microarchitecture to a two-wide design. However, the demand for still higher throughput

called for widening the microarchitecture. This gave rise to a second wave of superscalars

featuring dynamic instruction scheduling (buffered instruction issue), register renaming

and several additional techniques to widen particular subsystems, as outlined in the paper.

Finally, having exhausted the extent of instruction level parallelism available in general

purpose programs, intra-instruction parallelism has been introduced with SIMD

instructions. However, this enhancement, effective primarily in emerging multimedia and

3D applications, required a considerable extension of the ISA.

55

Traditional sequential
processors

Pipelined
processors

branch proc.

Caches
Speculative

by pipelined
instruction processing

Introduction of
temporal parallelism

Advanced memory subsystem
Advanced branch processing

processors
Superscalar

by superscalar instr.
issue

Introduction of
issue parallelism

by SIMD - instructions

with MM/3D support
Superscalar processors

ISA extension

Introduction of
intra-instr. parallelism

Traditional sequential
processing

~ 1985/88 ~ 1990/93 ~ 1994/97

Renaming

Raising the issue rate
Widening the
instruction window

Out of order execution
of loads (spec. loads,
store forwarding, etc.)
Exceeding the dataflow
limit of execution
(value prediction,
value reuse, load value
prediction, load value
reuse)

Enhancing the instr.
fetch subsystem
Enhancing the decode
 subsystem

Dynamic inst. scheduling
MM/3D extension of
the microarchitecture

Raising the execution
rate

Raising the dispatch
rate

Figure 25: Major steps in the evolution of microprocessors

All the decisive aspects mentioned above constitute a framework that explains the main

road of the microarchitecture evolution, including the sequence of major innovations

encountered.

56

ANNEX

The throughput of the processor (TOPC). To express the throughput of the processor

(TOPC) with the operational parameters of the microarchitecture, we assume the following

model of processor operation (see Figure 26).

In the figure, the arrows indicate decoded instructions issued for processing.

Instructions
issued

sm

n j
IPL = 2

n
_

OPI = 1.5

s j s1s2

n j
CPI = 3

s j

n j
ILP

n j
OPI

:

:

:

n j
CPI

:

jth issue interval

number of instructions issued at the beginning of

average number of operations included in the
instructions issued in sj

length of (in cycles)sj

o1
o2

o1
o2

o1

Issue
intervals

_

j

sj

Figure 26: Assumed model of processor operation

(a) We assume that the processor operates in cycles, issuing in each cycle 0, 1...ni

instructions, where ni is the issue rate of the processor.

(b) We allow instructions to include more than one operation.

(c) Out of the cycles needed to execute a given program, we focus on those in which the

processor issues at least one instruction. We call these cycles issue cycles, and denote them

by cj, j = 1...m. The issue cycles cj subdivide the execution time of the program into issue

intervals sj, j = 1...m, such that each issue interval begins with an issue cycle and lasts until

57

the next issue cycle begins. s1 is the first issue interval, whereas sm is the last one belonging

to the given program.

(d) We describe the operation of the processor using a set of three parameters which are

given for each of the issue intervals sj., j = 1...m. The set of the parameters chosen is as

follows (see Figure 26):

nj
IPL = the number of instructions issued at the beginning of the issue interval sj, j =

1...m,

n OPI = the average number of operations included in the instructions, which are issued

in the issue interval sj, j = 1...m,

nj
CPI = the length of the issue interval sj in cycles, j = 1...m. Here nm

CPI is the length of

the last issue interval, which is interpreted as the number of cycles to be elapsed until the

processor is ready to issue instructions again.

Then, in issue interval sj the processor issues nj
OPC operations per cycle, where:

n
n n

OPC
ILP OPI

n CPI

= *
j

j

j
j

(6)

Now let us consider nj
OPC as a stochastic variable, which is derived from the stochastic

variables nj
ILP, n j

OPI and nj
CPI, as indicated in (6). Assuming that the stochastic variables

involved are independent, the throughput of the processor (TOPC), which is the average

value of nOPC (n OPC), can be calculated from the averages of the three stochastic variables

included, as indicated below:

58

n =
OPC *

nn1/n
CPI ILP OPI* (7)T =OPC

Temporal
parallelism

Issue
parallelism

Intra-instruction
parallelism

Finally, we rename the terms introduced above for better readability as follows:

= T OPC (11) OPC

Thus we obtain for the average number of operations processed per cycle (OPC):

As according to expression (3) OPC = IPC * OPI, it follows from (3) and (12) that

= * 1/CPI ILP (13) IPC

ACKNOWLEDGMENTS

The author would like to thank the anonymous reviewers for their valuable comments

and suggestions on earlier drafts of this paper.

59

REFERENCES

 [1] ___,“ Intel Microprocessor Quick

Reference Guide,”

http://developer.intel.com/pressroom/ki

ts/processors/quickref.html.

 [2] L. Gwennap, “ Processor performance

climbs steadily” , Microprocessor

Report, vol. 9, no. 1, pp. 17-23, 1995.

 [3] J. L. Hennessy, “ VLSI processor

architecture,” IEEE Transactions on

Computers, vol. C-33, no. 12, pp. 1221-

1246, Dec. 1984.

 [4] B. R. Rau and J. A. Fisher,

“ Instruction level parallel processing:

history, overview and perspective,” The

Journal of Supercomputing, vol. 7, no.

1, pp. 9-50, 1993.

 [5] J. E. Smith and G. S. Sohi, “ The

microarchitecture of superscalar

processors,” Proc. IEEE, vol. 83, no.

12, pp. 1609-1624, Dec. 1995.

 [6] A. Yu, “ The Future of

microprocessors” , IEEE Micro, vol. 16,

no. 6, pp. 46-53, Dec. 1996.

 [7] K. Diefendorff, “ PC processor

microarchitecture, a concise review of

the techniques used in modern PC

processors,” Microprocessor Report,

vol. 13, no. 9, pp. 16-22, 1999.

 [8] M. Franklin, “ The Multiscalar

Architecture,” Ph.D. thesis, TR 1196,

Comp. Science Dept., Univ. of

Wisconsin-Madison, 1993.

[9] G. S. Sohi, S. E. Breach, and T. N.

Vijaykumar, “ Multiscalar Processors,”

in Proc. 22th ISCA, 1995, pp. 415-425.

[10] E. Rothenberg, Q. Jacobson, Y.

Sazeides and J. Smith, “ Trace

Processors,” in Proc. Micro 30, 1997,

pp. 138-148.

[11] J. E. Smith and S. Vajapeyam, ” Trace

processors: Moving to fourth generation

microarchitectures,” IEEE Computer,

vol. 30, no. 9, pp. 68-74, Sept. 1997

[12] Y. N. Patt, S. J. Patel, M. Evers, D. H.

Friendly, and J. Stark, “ One billion

transistors, one uniprocessor, one chip,”

IEEE Computer, vol. 30, no. 9, pp. 51-

57, Sept. 1997.

60

[13] D. M. Tullsen, S. J. Eggers, and H. M.

Levy, “ Simultaneous multithreading:

Maximizing on-chip parallelism,“ in

Proc. 22th ISCA, 1995, pp. 392-403.

[14] S. J. Eggers, J. S. Emer, H. M. Levy,

J. L. Lo, R. L. Stamm, and D. M.

Tullsen, “ Simultaneous multithreading:

A platform for next generation

processors,” IEEE Micro, vol. 17, no. 5,

pp. 12-19, Sept./Oct. 1997.

[15] K. Olukotun, B. A. Nayfeh, L.

Hammond, K. Wilson, and K. Chang

” The case for a single chip

multiprocessor,” in Proc. ASPLOS VII,

1996, pp. 2-11.

[16] L. Hammond, B. A. Nayfeh and K.

Olukotun, “ A single-chip

multiprocessor,” IEEE Computer, vol.

30, no. 9, pp. 79-85, Sept. 1997.

[17] ___, “ SPEC Benchmark Suite,

Release 1.0,” SPEC, Santa Clara, CA,

Oct. 1989.

[18] ___, “ SPEC CPU92 Benchmarks,”

http://www.specbench.org/osg/cpu92/

[19] ___, “ SPEC CPU95 Benchmarks,”

http://www.specbench.org/osg/cpu95

[20] [11] ___, “ Winstone 99,”

http://www1.zdnet.com/zdbob/winstone

/winstone.html.

[21] ___, “ WinBench 99,”

http://www.zdnet.com/zdbop/winbench/

winbench.html

[22] ___, “ SYSmark Bench Suite,”

http://www.babco.com/

[23] H. J. Curnow and B. A. Wichmann,

“ A synthetic benchmark,” The

Computer J., vol. 19, no. 1, pp. 43-49,

Jan. 1976.

[24] R. P. Weicker, “ Drystone: A synthetic

systems programming benchmark,”

Comm. ACM, vol. 27, no. 10, pp. 1013-

1030, Oct. 1984.

[25] D. Anderson and T. Shanley, ISA

System Architecture, 3rd ed. Reading,

MA: Addison-Wesley Developers

Press, 1995.

[26] D. Anderson and T. Shanley, EISA

System Architecture, 2nd ed. Reading,

61

MA: Addison-Wesley Developers

Press, 1995.

[27] D. Anderson and T. Shanley, PCI

System Architecture, 4th ed. Reading,

MA: Addison-Wesley Developers

Press, 1999.

[28] ___, “ PCI-X Addendum Released for

Member Review,”

http://www.pcisig.com/

[29] V. Cuppu, B. Jacob, B. Davis, and T.

Mudge, “ A performance comparison

of contemporary DRAM

architectures,” in Proc. 26th ISCA,

1999, pp. 222 – 233.

[30] G. S. Sohi and M. Franklin, “ High

bandwith data memory systems for

superscalar processors,” in Proc.

ASPLOS IV, 1991, pp. 53-62.

[31] T. Juan, J. J. Navarro, and O. Teman,

“ Data caches for superscalar

processors,” in Proc. ICS’97, 1997,

pp. 60–67.

[32] D. Burger, J. R. Goodman, and A.

Kägi, “ Memory bandwidth limitations

of future microprocessors,” in Proc.

ISCA, 1996, pp. 78-89.

[33] W. C. Hsu and J. E. Smith, “ A

performance study of instruction cache

prefetching methods” , IEEE Trans.

Computers, vol. 47, no. 5, pp. 497-

508, May 1998.

[34] E. Bloch, “ The engineering design of

the STRETCH computer” , in Proc.

East. Joint Comp. Conf., New York:

Spartan Books, 1959, pp. 48-58.

[35] R. M. Tomasulo, “ An efficient

algorithm for exploiting multiple

arithmetic units,” IBM J. Res. and

Dev. vol. 11, no.1, pp. 25-33, Jan.

1967.

[36] R. W. Hockney and C. R. Jesshope,

Parallel Computers. Bristol: Adam

Hilger, 1981.

[37] T. Kilburn, D. B. G. Edwards, M. J.

Lanigan, and F. H. Sumner, “ One-

level storage system,” IRE Trans. EC-

11, vol. 2, pp. 223-235, Apr. 1962.

[38] D. W. Anderson, F. J. Sparacio and F.

M. Tomasulo, “ The IBM System/360

62

Model 91: Machine philosophy and

instruction-handling,” IBM Journal,

vol. 11, no 1, pp. 8-24, Jan. 1967.

[39] ___, „ 80286 High performance

microprocessor with memory

management and protection,”

Microprocessors, vol. 1. Mt. Prospect,

IL: Intel, pp. 3. 60-3. 115, 1991.

[40] T. L. Johnson, “ A comparison of

M68000 family processors,” BYTE,

vol. 11, no. 9, pp. 205-218, Sept.

1986.

[41] G. Kane and J. Heinrich, MIPS RISC

Architecture. Englewood Cliffs, NJ:

Prentice Hall, 1992.

[42] ___, „ 80386 DX High performance

32-bit CHMOS microprocessor with

memory management and protection,”

Microprocessors, vol. 1. Mt. Prospect,

IL: Intel, pp. 5. 287-5. 424, 1991.

[43] ___, “ The 68030 microprocessor: a

window on 1988 computing,”

Computer Design, vol. 27, no. 1, pp.

20-23, Jan. 1988.

[44] F. Faggin, M. Shima, M. E. Hoff, Jr.,

H. Feeney, and S. Mazor, “ The MCS-

4: An LSI Micro Computer System,”

in Proc. IEEE Region 6 Conf., 1972,

pp. 8-11.

[45] S. P. Morse, B. W. Ravenel, S. Mazor,

and W. B. Pohlman, “ Intel

microprocessors: 8008 to 8086,” Intel

Corp. 1978, in D. P. Siewiorek, C. G.

Bell and A. Newell, Computer

Structures: Principles and Examples.

McGraw-Hill Book Comp., New

York: 1982.

[46] C. J. Conti, D. H. Gibson, and S. H.

Pitkowsky, “ Structural aspects of the

System/360 Model85, Part 1: General

Organization,” IBM Syst. J., vol. 7, no.

1, pp. 2-14, Jan. 1968.

[47] J. E. Smith, "A study of branch

prediction strategies," in Proc. 8th

ISCA, May 1981, pp. 135-148.

[48] K. F. Lee and A. J. Smith, "Branch

prediction strategies and branch target

buffer design," Computer, vol. 17, no.

1, pp. 6-22, Jan. 1984.

63

[49] D. Sima, T. Fountain, and P. Kacsuk,

Advanced Computer Architectures.

Harlow: Addison-Wesley, 1997.

[50] M. H. Lipasti and J. P. Shen,

"Superspeculative microarchitecture

for beyond AD 2000," IEEE

Computer, vol. 30, no. 9, pp. 59-66,

Sept. 1997.

[51] Y. Patt, W.-M. Hwu, and M.

Shebanow, “ HPS, A new

microarchitecture: Rationale an

Introduction,” in Proc. MICRO28,

Asilomar, CA, Dec. 1985, pp. 103-

108.

[52] D. Sima, “ Superscalar instruction

issue,” IEEE Micro, vol. 17, no. 5, pp.

28-39, Sept./Oct. 1997.

[53] T.-Y. Yeh and Y. N. Patt, “ Alternative

implementations of two-level adaptive

branch prediction,” in Proc. 19th

ISCA, 1992, pp. 124-134.

[54] S. McFarling, “ Combining Branch

Predictors” , TR TN-36, WRL, June

1993.

[55] S. Duta and M. Franklin, “ Control

flow prediction schemes for wide-

issue superscalar processors,” IEEE

Trans. Parallel and Distributed

Systems, vol. 10, no. 4, pp. 346-359,

April 1999.

[56] N. P. Jouppi and D. W. Wall,

“ Available instruction-level

parallelism for superscalar and

superpipelined machines,” in Proc.

ASPLOS-III, 1989, pp. 272-282.

[57] M. S. Lam and R. P. Wilson, “ Limits

of control flow on parallelism,” in

Proc. 19th ISCA, 1992, pp. 46-57.

[58] D. Sima, “ The design space of

shelving,” J. Systems Architecture,

vol. 45, no. 11, pp. 863-885, 1999.

[59] L. Gwennap, „ Nx686 Goes Toe-to-

Toe with Pentium Pro,”

Microprocessor Reports, vol. 9, no.

14, pp. 1, 6-10, Oct. 1998.

[60] R. Yung, „ Evaulation of a

Commercial Microprocessor,” Ph. D.

dissertation, University of California,

Berkeley, June 1998.

64

[61] S. V. Adve, “ Changing interaction of

compiler and architecture,” IEEE

Computer, vol. 30, no. 12, pp. 51-58,

Dec. 1997.

[62] J. Shipnes and M. Phillips, „ A

Modular approach to Motorola

PowerPC Compilers,” Comm. ACM,

vol. 37, no. 6, pp. 56-63, June 1994.

[63] C. Fu, M. D. Jennings, S. Y. Larin,

and T. M. Conte, “ Value speculation

scheduling for high performance

processors,” in Proc. ASPLOS-VIII,

1998, pp. 262-271.

[64] M. H. Lipasti and J. P. Shen,

"Exceeding the dataflow limit via

value prediction," in Proc.

MICRO29, 1996, pp. 226-237.

[65] Y. Sazeides and J. E. Smith, "The

predictability of data values," in Proc.

MICRO30, 1997, pp. 248-258.

[66] B. Calder, P. Feller, and A. Eustace,

"Value profiling," in Proc. MICRO30,

1997, pp. 259-269.

[67] D. Michie, "Memo functions and

machine learning," Nature, no 218,

pp. 19-22, 1968.

[68] S. Richardson, "Exploiting trivial

and redundant computation," in

Proc. 11th Symp. Computer

Arithmetic, 1993, pp. 220-227.

[69] A. Sodani and G.S. Sohi, "Dynamic

instruction reuse," in Proc. 24th

ISCA, 1997, pp. 194-205.

[70] A. Sodani and G.S. Sohi, "An

empirical analysis of instruction

repetition," in Proc. ASPLOS VIII,

1998, pp. 35-45.

[71] D. Citron, D. Feitelson, and L.

Rudolph, "Accelerating multi-media

processing by implementing

memoing in multiplication and

division," in Proc. ASPLOS VIII,

1998, pp. 252-261.

[72] M. Butler, T.-Y. Yeh, Y. Patt, M.

Alsup, H. Scales, and M. Shebnow,

“ Single instruction stream

parallelism is greater than two, “ in

Proc. 18th ISCA, 1991, pp. 276-286.

65

[73] A. Moshovos et al., "Dynamic

speculation and synchronization of

data dependencies," in Proc. 24th

ISCA, 1997, pp. 181-193.

[74] G. Z. Chrysos and J. S. Emer,

"Memory dependence prediction

using store sets," in Proc. 25th ISCA,

1998, pp. 142-153.

[75] M. H. Lipasti, C. B. Wilkerson, and

J. P. Shen, "Value locality and load

value prediction," in Proc. ASPLOS

VII, 1996, pp. 138-147.

[76] M. Franklin and G. S. Sohi, “ ARB: a

hardware mechanism for dynamic

reordering of memory references,”

IEEE Trans. Computers, vol. 45, no.

5, pp. 552-571, May 1996.

[77] D. W. Wall, “ Limits of instruction

level parallelism,” in Proc. ASPLOS

IV, 1991, pp. 176-188.

[78] R. R. Oehler and M. W. Blasgen,

"IBM RISC System/6000:

Architecture and performance," IEEE

Micro, vol. 11, no. 3, pp. 14-17, 56-

62, May/June 1991.

[79] K. Diefendorff and E. Shilha, "The

PowerPC user instruction set

architecture," IEEE Micro, vol. 14,

no. 5, pp. 30-41, Sept./Oct. 1994.

[80] D. Hunt, "Advanced performance

features of the 64-bit PA-8000," in

Proc. COMPCON, 1995, pp. 123-

128.

[81] ___, “ MIPS IV Instruction Set

Architecture,” White Paper, MIPS

Technologies Inc., Mountain View,

CA, 1994.

[82] A. Peleg and U. Weiser, “ MMX

technology extension to the Intel

architecture,” IEEE Micro, vol. 16,

no. 4, pp. 42-50, July/Aug. 1996.

[83] S. Fuller, "Motorola’ s AltiVec

technology,” White Paper, Austin Tx:

Motorola Inc., 1998.

[84] ___, "Advanced Technology for

Visual Computing: Alpha

Architecture with MVI,” White

Paper, http://www.digital.com/

semiconductor/mvi-

backgrounder.htm

66

[85] D. Sweetman, See MIPS Run. San

Francisco, CA: Morgan Kaufmann,

1999.

[86] R. B. Lee, “ Subword parallelism

with MAX-2,” IEEE Micro, vol. 16,

no. 4, pp. 51-59, July/Aug. 1996.

[87] L. Kohn, G. Maturana, M. Tremblay,

A. Prabhu, and G. Zyner, “ The Visual

Instruction Set (VIS) in

UltraSPARC” , in Proc. COMPCON,

1995, pp. 462-469.

[88] S. Oberman, G. Favor, and F. Weber,

“ AMD 3DNow! technology:

architecture and implementations,”

IEEE Micro, vol. 19, no. 2, pp. 37-48,

March/Apr. 1999.

[89] ___, Intel Architecture Software

Developers Manual,

http://developer.intel.com/design/

PentiumIII/manuals/

[90] ___, “ DECchip 21064 and DECchip

21064A Alpha AXP Microprocessors

Hardware Reference Manual,”

Maynard, MA: DEC, 1994.

[91] ___, “ Alpha 21164 Microprocessor

Hardware Reference Manual,”

Maynard, MA: DEC, 1994.

[92] ___, “ Microprocessor Hardware

Reference Manual,” Sept. 1997

[93] D. Leibholz and R. Razdan, "The

Alpha 21264: a 500 MIPS out-of-

order execution microprocessor," in

Proc. COMPCON, 1997, pp. 28-36.

[94] K. Diefendorff and M. Allen,

“ Organization of the Motorola 88110

superscalar RISC microprocessor,”

IEEE Micro, vol. 12, no. 2, pp. 40-62,

March/Apr. 1992.

[95] T. Asprey, G. S. Averill, E. Delano,

B. Weiner, and J. Yetter, “

Performance features of the PA7100

microprocessor, IEEE Micro, vol.

13, no. 3, pp. 22-35, May/June 1993.

[96] R. L. Lee, “ Accelerating multimedia

with enhanced microprocessors,”

IEEE Micro, vol. 15, no. 2, pp. 22-

32, March/Apr. 1995.

67

[97] G. Kurpanek, K. Chan, J. Zheng, E.

CeLano, and W. Bryg, "PA-7200: A

PA-RISC processor with integrated

high performance MP bus interface,"

in Proc. COMPCON, 1994, pp. 375-

82.

[98] A. P. Scott et. al., "Four-Way

Superscalar PA-RISC Processors,"

Hewlett-Packard Journal, pp. 1-9,

Aug. 1997.

[99] G. Lesartre and D. Hunt, "PA-8500:

The Continuing Evolution of the PA-

8000 Family," PA-8500 Document,

Hewlett-Packard Company, pp. 1-11,

1998.

[100] G. F. Grohoski, "Machine

organization of the IBM RISC

System/6000 processor," IBM J.

Research and Development, vol. 34,

no. 1, pp. 37-58, Jan. 1990.

[101] S. White and J. Reysa, "PowerPC

and POWER2: Technical Aspects of

the New IBM RISC System/6000,"

Austin, TX:, IBM Corp. 1994.

[102] L. Gwennap, "IBM crams Power2

onto single chip," Microprocessor

Report, vol. 10, no. 11, pp. 14-16,

1996.

[103] M. Becker, "The PowerPC 601

microprocessor," IEEE Micro, vol. 13,

no. 5, pp. 54-68, Sept./Oct. 1993.

[104] B. Burgess et al., "The PowerPC 603

microprocessor," Comm. ACM, vol.

37, no. 6, pp. 34-42, Apr. 1994.

[105] S. P. Song et al., "The PowerPC 604

RISC microprocessor," IEEE Micro,

vol. 14, no. 5, pp. 8-17, Sept./Oct.

1994.

[106] D. Ogden et al., "A new PowerPC

microprocessor for low power

computing systems," in Proc.

COMPCON, 1995, pp. 281-284.

[107] D. Levitan et al., "The PowerPC 620

microprocessor: a high performance

superscalar RISC microprocessor," in

Proc. COMPCON, 1995, pp. 285-291.

[108] ___, “ MPC750 RISC

Microprocessor User’ s Manual,”

Motorola Inc., 1997.

68

[109] M. Papermaster, R. Dinkjian, M.

Jayfiield, P. Lenk, B. Ciarfella, F.

O’ Conell, and R. Dupont, “ POWER3:

Next generation 64-bit PowerPC

processor design,”

http://www.rs6000.ibm.com/resource/t

echnology/index.html.

[110] A. Patrizio and M. Hachman,

“ Motorola announces G4 chip,”

http://www.techweb.

com/wire/story/twb19981016S0013

[111] P. Y-T. Hsu, “ Designing the FPT

microprocessor” , IEEE Micro, vol. 14,

no. 2, pp. 23-33, March/Apr. 1994.

[112] ___, “ R10000 Microprocessor

Product Overview” , MIPS

Technologies Inc., Oct. 1994.

[113] I. Williams, “ An Illustration of the

Benefits of the MIPS R12000

Microprocessor and OCTANE System

Architecture,” White Paper, Mountain

View, CA: Silicon Graphics, 1999.

[114] ___,” The SuperSPARC

microprocessor Technical White

Paper” , Mountain View, CA: Sun

Microsystems, 1992.

[115] UltraSparc D. Greenley et al.,

“ UltraSPARC: The next generation

superscalar 64-bit SPARC,” in Proc.

COMPCON, 1995, pp. 442-461.

[116] N. Patkar, A. Katsuno, S. Li, T.

Maruyama, S. Savkar, M. Simone,

G. Shen, R. Swami, and D. Tovey,

“ Microarchitecture of Hal’ s CPU,” in

Proc. COMPCON, 1995, pp. 259-

266.

[117] G. Goldman and P. Tirumalai,

“ UltraSPARC-II: the advancement of

UltraComputing,” in Proc.

COMPCON, 1996, pp. 417-423.

[118] T. Hore and G. Lauterbach,

“ UltraSparc-III,” IEEE Micro, vol.

19, no. 3, pp. 73-85, May/June 1999.

[119] D. Alpert and D. Avnon,

“ Architecture of the Pentium

microprocessor,” IEEE Micro, vol.

13, no. 3, pp. 11-21, May/ Jun. 1993.

[120] ?

69

[121] M. Eden and M. Kagan, “ The

Pentium Processor with MMX

technology,” in Proc. COMPCON,

1997, pp. 260-262.

[122] ___, “ P6 Family of Processors,”

Hardware Developers Manual, Sept.

1998

[123] J. Keshava and V. Pentkovski,

“ Pentium III Processor

implementation tradeoffs,” Intel

Technology Journal, pp.1-11, 2nd

Quarter 1999.

[124] ___, “ The Cyrix M1 architecture,”

Richardson, TX: Cyrix Corp. 1995.

[125] ___, “ Cyrix 686 MX processor,”

Richardson, TX: Cyrix Corp. 1997.

[126] ___, “ Nx586 Processor Product

Brief,”

http://www.amd.com/products/cpg/n

x586/nx586brf.html.

[127] ___, “ AMD-K5 Processor

Technical Reference Manual,”

Advanced Micro Devices Inc., 1996.

[128] B. Shriver and B. Smith, The

Anatomy of a High-Performance

Microprocessor. Los Alamitos, CA:

IEEE Computer Society Press, 1998.

[129] ___, “ AMD-K6-2 Processor

Technical Reference Manual,”

Advanced Micro Devices Inc., 1999.

[130] ___, “ AMD-K6-3 Processor

Technical Reference Manual,”

Advanced Micro Devices Inc., 1999.

[131] ___, ” AMD Athlon Processor

Technical Brief,” Advanced Micro

Devices Inc., 1999.

[132] M. Mittal, A. Peleg, and U. Weiser,

“ MMX technology overview,” Intel

Technology Journal, pp. 1-10, 3rd

Quarter 1997.

[133] ---, “ 3D Winbench 99-3D Lightning

and Transformation Test,”

http://developer.intel.

com/procs/perf/PentiumIII/ed/3dwinben

ch.html

[134] R. P. Colwell, R. P. Nix, J. O.

Donell, D. B. Papworth, and P. K.

Rodman,” A VLIW architecture for a

trace scheduling compiler,” IEEE

70

Trans. Computers, vol. 37, no. 8, pp.

967-979, Aug. 1988.

[135] B. R. Rau, C. D. Glaser, and R. L.

Picard, “ Efficient code generation for

horizontal architectures: compiler

techniques and architectural

support,” in Proc. 9th ISCA, 1982,

pp. 131-139.

[136] J. A. Fisher, “ Very long instruction

word architectures and the ELI-512,”

in Proc. 10th ISCA, 1983, pp. 140-

150.

[137] B. R. Rau, D. W. L. Yen, W. Yen,

and R. A. Towle, “ The Cydra 5

departmental supercomputer” ,

Computer, vol. 22, no. 1, pp. 12-35,

Jan. 1989.

[138] ___, “ TM1000 Preliminary Data

Book” , Philips Electronics

Corporation, 1997.

[139] ___, “ TMS320C6000 Technical

Brief” , Texas Instruments, February

1999.

[140] ___, “ SC140 DSP Core Reference

Manual” , Lucent Technologies, Inc.,

December 1999.

[141] S. Hacker, “ Static Superscalar

Design: A new architecture for the

TigerSHARC DSP Processor,”

White Papers, Analog Devices Inc.

[142] ___, “ Inside Intel’ s Merced: A

Strategic Planning Discussion” , An

Executive White Paper, July 1999.

[143] ___, “ MAJC Architecture

Tutorial” , Whitepaper, Sun

Microsystems, Inc.

[144] ___, “ Crusoe Processor” ,

Transmeta Corporation, 2000.

