[image: image1.jpg]

[image: image2.jpg]L/

N

N/

[image: image3.jpg]' [

. 0000000
] %S5 ‘as' >
<7 Y~

= 0000000

.......

.......

[image: image4.png]

Thesis or “TDK” documentation information
(Zsolt Szabó)

The documentation must contain:

Aim specification
· What is the problem? What is the current status?

· What do we want to create/implement/research?

· As a result, what will change, what will be better, what will become possible?

Description of basic axioms and knowledge / Bibliographical research
· Description of standards, recommendations, rules, requirements
· Maybe: description of modelling alternatives: how can we create a model of the problem space, what kinds of various modelling approaches we can choose (so: how can we create a model from the reality described in the “aim specification” section?)
· Description of implementation alternatives: how can we achieve the aforementioned aim? What are the consequences of these alternatives? Which approach is usable in which scenarios? Describe pros and cons!
· Description of technological alternatives: what various technologies we can use and that alternatives are there for the various technologies (e.g. programming language, OS, database server – which one is more feasible for our task, what do we need. Describe our requirements against each technologies, and also describe the important features that can be used when making decisions)
· How is the problem solved by other developers: description of pre-existing implementations. What technologies, modelling techniques, implementation alternatives are used, and what functionality exists in the other solutions. Describe the pros and cons; what features are those that we will implement the same way, and what is it that we will implement differently.

· (Create a very exact specification: what modelling approach, what technologies, what implementation will be used to solve the problem; what functionalities do we want to create.
Planning
· Description of the steps to create a model: how do I create a computerized model of the aforementioned mathematical model; description of data structures, formats, and communication protocols.

· Software planning: component diagram (division of the project into smaller modules), avoid the traditional use case diagram (rather use tables to list the various functions of the different modules). Use sequence diagrams (to describe the operation of the different functions), use ER diagram & table structure diagrams (to present the database), use gantt diagram (for timing).
· Development planning (timing, planning of development steps. Description of development tools (hw/sw), and software requirements and the environment)

Development
· Description of the general steps (how do we start, how do we get from “new project” to actually developing something to solve our problem. What are the previous requirements for the development, describe the basic principles during the development methodology); ALFA VERSION
· Describe the problems during development (emphasise the decision points (something is possible via solution A or B or C, I chose solution B because…), the hard/difficult development parts (When developing function X of module Y, I ran into unexpected error Z. I tried to solve it using approach A and B and C and eventually approach C worked, because…)

· Summarize the developed system (Using the FINAL VERSION, it is now possible…)
Testing and evaluation
· Start with a description of the steps required to access/build/run/test the system.
· Description of test cases, formal test report (unit tests, integration tests, tests for functionality, stress test, description of testing methods: jMeter, OpenVAS, Skipfish, Andiparos, Selenium)

· A good test run consists of TESTING STEPS, and every step must contain a TEST AIM (what we are testing), a TESTING METHOD (how do we test), a TEST OUTPUT (the outcome of the test), and a POST-ACTION STEP (in case of failure: what was/should be done to fix the error)
· Evaluation of the system (based on the test cases, the aim specification, the finalized system, and the other existing solutions, using personal feelings): what is missing, what are the features that are not done the best way? If there is anything missing, there HAS TO BE a justification! What is great, what is it that we’d like to emphasise. As a conclusion, is the system usable and does it fulfil the aim specification we described at the beginning?

· After the personal feelings, compare the final system with the test results/preliminary goals/other implementations using as much as possible numerical data, diagrams/figures. Try to be fair and straight to the point, and evaluate your results compared to the industrial solutions!
Conclusion
· Possible further development ideas: If you had another year, what would you add? Which functions could be extended or corrected? If you started now, what would you do differently?
· Create some nice easy-to-read conclusion at the end: what are the elements and solutions that we think are the most important / valuable. Give our opinions about the final system and the development process as a whole. Here you can get to a less technical and more personal voice: why was this project a good experience for you? Give some final thoughts, and a proper ending!
Abstract
· Abstract / Summary / Synopsis: exactly ¾ of a page, must not contain any special formatting (no bold or special fonts/bullet-points/spacing/alignments), use only line breaks and justified alignment. „In my project, this and this was the aim. In the first chapter, I write down this and this, and then I describe this and this. After this, I planned my system like this and this, and in the next chapter I described the development test. This was followed by the testing of the system, which resulted in the conclusion that the final system is this and this. As a result of my work, the final system is capable of this and this. ”

Contents, List of figures, Bibliography
· [23] Author Name: Description of something on the web; http://www.some.hu/some.html;

Last retrieved: 2011/JAN/ 42.

· [23] Author Name: Description in a book; Publisher, 2011; ISBN 978-3-16-148410-0;

Chapters: Messing with the thing; Pages: 42-56.

Appendixes: content that do not belong to the base text. Also, the contents of the supplemented CD, if there is one.
Rules for the style
· Use header (name + title), footer (page numbers), justified paragraphs, heading styles (the first two or three heading levels should be numbered), the contents should be automatically generated (usually with 2 levels), the document should be well structured and easy-to-read.
· Line distance maximum 1.5x, font size usually maximum 12px (and essentially: make it look good – nice big and numbered headers, nice looking paragraphs)

· Margins according to the book-style (left side 3.5 cm; right side 2.5 cm; usually 2-3 cm on top and bottom)

· Use references (numbers of the bibliography entries must be present inside the paragraph texts or in the paragraph headings)! If you use direct quotation, make it look like a quotation (quotation mark / special style / italics, and definitely use a reference number to the bibliography entry)!!!
· Every figure/diagram/table must have: identification number, title. At the end of the document, a list of figures must be present: identification number, page number, title, source (bibliography entry number or URL or “self-made”)

· Use a figure/image only if it really explains and means something – we do not want illustrations or picture books! Images/figures bigger than a half page should only be used if absolutely necessary (usually, large figures should go to the appendix)!

· Source code: use syntax highlight, and some monospace font. Long code parts should go into the appendix, in the regular text you should only insert a source code if it is very important/extremely well done/highly difficult so that we want to emphasize it.
· Number of characters: typically somewhere between 60K and 100K characters, but TDK documentations, this can be lower (don’t go below 60K for degree work!!!) (the character number should not include: additional pages, bibliography, contents, list of figures, appendixes).
Presentation (PPT / PPTX / PDF):

· Title slide (name, specialization, neptun code, title, name of supervisor)

· Contents slide: what will you talk about
· Aim specification slide: what it is that you wanted to create
· Bibliography research slide: what it is that you looked after
· Planning 1-2 slides
· Development 1-2 slides
· Testing 1-2 slides
· Screenshots: how does it look like (!!!) / Live presentation
· Conclusion (what is ready (!!!)) and further developments (1 slide)
· Evaluation ((!!! VERY IMPORTANT !!! The emphasis in the presentation must be on the results compared to the aims and the other pre-existing solutions!)
· „Thank you for your attention, please ask your questions” slide
· Must look normal (pretty but not too wild); few and soft (or absolutely zero) animation
· Footer must contain: slide number, name + title
· The slides must only contain bulletpoints (not continuous text!), only 6-7 lines per slide, using a nice large font (if possible, minimum 24px; but absolutely no smaller font than 20px) – must talk continuously (must NOT read!)
· The presentation for thesis work is 10 minutes, 15 minutes for TDK (THIS IS TOO FEW): must not talk slow, must talk like if it is a poem (MUST PRACTICE THE PRESENTATION to see what is possible and what is not in that time frame!

Typical threshold between the first and the second semesters

